深入理解 python 虚拟机:令人拍案叫绝的字节码设计

在本篇文章当中主要给大家介绍 cpython 虚拟机对于字节码的设计以及在调试过程当中一个比较重要的字段 co_lnotab 的设计原理!

python 字节码设计

一条 python 字节码主要有两部分组成,一部分是操作码,一部分是这个操作码的参数,在 cpython 当中只有部分字节码有参数,如果对应的字节码没有参数,那么 oparg 的值就等于 0 ,在 cpython 当中 opcode < 90 的指令是没有参数的。

opcode 和 oparg 各占一个字节,cpython 虚拟机使用小端方式保存字节码。

我们使用下面的代码片段先了解一下字节码的设计:

import disdef add(a, b):return a + bif __name__ == '__main__':print(add.__code__.co_code)print("bytecode: ", list(bytearray(add.__code__.co_code)))dis.dis(add)

上面的代码在 python3.9 的输出如下所示:

b'|\x00|\x01\x17\x00S\x00'
bytecode:  [124, 0, 124, 1, 23, 0, 83, 0]5           0 LOAD_FAST                0 (a)2 LOAD_FAST                1 (b)4 BINARY_ADD6 RETURN_VALUE

首先 需要了解的是 add.__code__.co_code 是函数 add 的字节码,是一个字节序列,list(bytearray(add.__code__.co_code)) 是将和这个序列一个字节一个字节进行分开,并且将其变成 10 进制形式。根据前面我们谈到的每一条指令——字节码占用 2 个字节,因此上面的字节码有四条指令:

操作码和对应的操作指令在文末有详细的对应表。在上面的代码当中主要使用到了三个字节码指令分别是 124,23 和 83 ,他们对应的操作指令分别为 LOAD_FAST,BINARY_ADD,RETURN_VALUE。他们的含义如下:

  • LOAD_FAST:将 varnames[var_num] 压入栈顶。
  • BINARY_ADD:从栈中弹出两个对象并且将它们相加的结果压入栈顶。
  • RETURN_VALUE:弹出栈顶的元素,将其作为函数的返回值。

首先我们需要知道的是 BINARY_ADD 和 RETURN_VALUE,这两个操作指令是没有参数的,因此在这两个操作码之后的参数都是 0 。

但是 LOAD_FAST 是有参数的,在上面我们已经知道 LOAD_FAST 是将 co-varnames[var_num] 压入栈,var_num 就是指令 LOAD_FAST 的参数。在上面的代码当中一共有两条 LOAD_FAST 指令,分别是将 a 和 b 压入到栈中,他们在 varnames 当中的下标分别是 0 和 1,因此他们的操作数就是 0 和 1 。

字节码扩展参数

在上面我们谈到的 python 字节码操作数和操作码各占一个字节,但是如果 varnames 或者常量表的数据的个数大于 1 个字节的表示范围的话那么改如何处理呢?

为了解决这个问题,cpython 为字节码设计的扩展参数,比如说我们要加载常量表当中的下标为 66113 的对象,那么对应的字节码如下:

[144, 1, 144, 2, 100, 65]

其中 144 表示 EXTENDED_ARG,他本质上不是一个 python 虚拟机需要执行的字节码,这个字段设计出来主要是为了用与计算扩展参数的。

100 对应的操作指令是 LOAD_CONST ,其操作码是 65,但是上面的指令并不会加载常量表当中下标为 65 对象,而是会加载下标为 66113 的对象,原因就是因为 EXTENDED_ARG 。

现在来模拟一下上面的分析过程:

  • 先读取一条字节码指令,操作码等于 144 ,说明是扩展参数,那么此时的参数 arg 就等于 (1 x (1 << 8)) = 256 。
  • 读取第二条字节码指令,操作码等于 144 ,说明是扩展参数,因为前面 arg 已经存在切不等于 0 了,那么此时 arg 的计算方式已经发生了改变,arg = arg << 8 + 2 << 8 ,也就是说原来的 arg 乘以 256 再加上新的操作数乘以 256 ,此时 arg = 66048 。
  • 读取第三条字节码指令,操作码等于 100,此时是 LOAD_CONST 这条指令,那么此时的操作码等于 arg += 65,因为操作码不是 EXTENDED_ARG 因此操作数不需要在乘以 256 了。

上面的计算过程用程序代码表示如下,下面的代码当中 code 就是真正的字节序列 HAVE_ARGUMENT = 90 。

def _unpack_opargs(code):extended_arg = 0for i in range(0, len(code), 2):op = code[i]if op >= HAVE_ARGUMENT:arg = code[i+1] | extended_argextended_arg = (arg << 8) if op == EXTENDED_ARG else 0else:arg = Noneyield (i, op, arg)

我们可以使用代码来验证我们前面的分析:

import disdef num_to_byte(n):return n.to_bytes(1, "little")def nums_to_bytes(data):ans = b"".join([num_to_byte(n) for n in data])return ansif __name__ == '__main__':# extended_arg extended_num opcode oparg for python_version > 3.5bytecode = nums_to_bytes([144, 1, 144, 2, 100, 65])print(bytecode)dis.dis(bytecode)

上面的代码输出结果如下所示:

b'\x90\x01\x90\x02dA'0 EXTENDED_ARG             12 EXTENDED_ARG           2584 LOAD_CONST           66113 (66113)

根据上面程序的输出结果可以看到我们的分析结果是正确的。

源代码字节码映射表

在本小节主要分析一个 code object 对象当中的 co_lnotab 字段,通过分析一个具体的字段来学习这个字段的设计。

import disdef add(a, b):a += 1b += 2return a + bif __name__ == '__main__':dis.dis(add.__code__)print(f"{list(bytearray(add.__code__.co_lnotab)) = }")print(f"{add.__code__.co_firstlineno = }")

首先 dis 的输出第一列是字节码对应的源代码的行号,第二列是字节码在字节序列当中的位移。

上面的代码输出结果如下所示:

  源代码的行号  字节码的位移6           0 LOAD_FAST                0 (a)2 LOAD_CONST               1 (1)4 INPLACE_ADD6 STORE_FAST               0 (a)7           8 LOAD_FAST                1 (b)10 LOAD_CONST               2 (2)12 INPLACE_ADD14 STORE_FAST               1 (b)8          16 LOAD_FAST                0 (a)18 LOAD_FAST                1 (b)20 BINARY_ADD22 RETURN_VALUE
list(bytearray(add.__code__.co_lnotab)) = [0, 1, 8, 1, 8, 1]
add.__code__.co_firstlineno = 5

从上面代码的输出结果可以看出字节码一共分成三段,每段表示一行代码的字节码。现在我们来分析一下 co_lnotab 这个字段,这个字段其实也是两个字节为一段的。比如上面的 [0, 1, 8, 1, 8, 1] 就可以分成三段 [0, 1], [8, 1], [8, 1] 。这其中的含义分别为:

  • 第一个数字表示距离上一行代码的字节码数目。
  • 第二个数字表示距离上一行有效代码的行数。

现在我们来模拟上面代码的字节码的位移和源代码行数之间的关系:

  • [0, 1],说明这行代码离上一行代码的字节位移是 0 ,因此我们可以看到使用 dis 输出的字节码 LOAD_FAST ,前面的数字是 0,距离上一行代码的行数等于 1 ,代码的第一行的行号等于 5,因此 LOAD_FAST 对应的行号等于 5 + 1 = 6 。
  • [8, 1],说明这行代码距离上一行代码的字节位移为 8 个字节,因此第二块的 LOAD_FAST 前面是 8 ,距离上一行代码的行数等于 1,因此这个字节码对应的源代码的行号等于 6 + 1 = 7。
  • [8, 1],同理可以知道这块字节码对应源代码的行号是 8 。

现在有一个问题是当两行代码之间相距的行数超过 一个字节的表示范围怎么办?在 python3.5 以后如果行数差距大于 127,那么就使用 (0, 行数) 对下一个组合进行表示,(0, x 1 x_1 x1​), (0,$ x_2$) … ,直到 x 1 + . . . + x n x_1 + ... + x_n x1​+...+xn​ = 行数。

在后面的程序当中我们会使用 compile 这个 python 内嵌函数。当你使用Python编写代码时,可以使用compile()函数将Python代码编译成字节代码对象。这个字节码对象可以被传递给Python的解释器或虚拟机,以执行代码。

compile()函数接受三个参数:

  • source: 要编译的Python代码,可以是字符串,字节码或AST对象。
  • filename: 代码来源的文件名(如果有),通常为字符串。
  • mode: 编译代码的模式。可以是 ‘exec’、‘eval’ 或 ‘single’ 中的一个。‘exec’ 模式用于编译多行代码,‘eval’ 用于编译单个表达式,‘single’ 用于编译单行代码。
import discode = """
x=1
y=2
""" \
+ "\n" * 500 + \
"""
z=x+y
"""code = compile(code, '<string>', 'exec')
print(list(bytearray(code.co_lnotab)))
print(code.co_firstlineno)
dis.dis(code)

上面的代码输出结果如下所示:

[0, 1, 4, 1, 4, 127, 0, 127, 0, 127, 0, 121]
12           0 LOAD_CONST               0 (1)2 STORE_NAME               0 (x)3           4 LOAD_CONST               1 (2)6 STORE_NAME               1 (y)505           8 LOAD_NAME                0 (x)10 LOAD_NAME                1 (y)12 BINARY_ADD14 STORE_NAME               2 (z)16 LOAD_CONST               2 (None)18 RETURN_VALUE

根据我们前面的分析因为第三行和第二行之间的差距大于 127 ,因此后面的多个组合都是用于表示行数的。

505 = 3(前面已经有三行了) + (127 + 127 + 127 + 121)(这个是第二行和第三行之间的差距,这个值为 502,中间有 500 个换行但是因为字符串相加的原因还增加了两个换行,因此一共是 502 个换行)。

具体的算法用代码表示如下所示,下面的参数就是我们传递给 dis 模块的 code,也就是一个 code object 对象。

def findlinestarts(code):"""Find the offsets in a byte code which are start of lines in the source.Generate pairs (offset, lineno) as described in Python/compile.c."""byte_increments = code.co_lnotab[0::2]line_increments = code.co_lnotab[1::2]bytecode_len = len(code.co_code)lastlineno = Nonelineno = code.co_firstlinenoaddr = 0for byte_incr, line_incr in zip(byte_increments, line_increments):if byte_incr:if lineno != lastlineno:yield (addr, lineno)lastlineno = linenoaddr += byte_incrif addr >= bytecode_len:# The rest of the lnotab byte offsets are past the end of# the bytecode, so the lines were optimized away.returnif line_incr >= 0x80:# line_increments is an array of 8-bit signed integersline_incr -= 0x100lineno += line_incrif lineno != lastlineno:yield (addr, lineno)

python 字节码表

操作 操作码
POP_TOP 1
ROT_TWO 2
ROT_THREE 3
DUP_TOP 4
DUP_TOP_TWO 5
ROT_FOUR 6
NOP 9
UNARY_POSITIVE 10
UNARY_NEGATIVE 11
UNARY_NOT 12
UNARY_INVERT 15
BINARY_MATRIX_MULTIPLY 16
INPLACE_MATRIX_MULTIPLY 17
BINARY_POWER 19
BINARY_MULTIPLY 20
BINARY_MODULO 22
BINARY_ADD 23
BINARY_SUBTRACT 24
BINARY_SUBSCR 25
BINARY_FLOOR_DIVIDE 26
BINARY_TRUE_DIVIDE 27
INPLACE_FLOOR_DIVIDE 28
INPLACE_TRUE_DIVIDE 29
RERAISE 48
WITH_EXCEPT_START 49
GET_AITER 50
GET_ANEXT 51
BEFORE_ASYNC_WITH 52
END_ASYNC_FOR 54
INPLACE_ADD 55
INPLACE_SUBTRACT 56
INPLACE_MULTIPLY 57
INPLACE_MODULO 59
STORE_SUBSCR 60
DELETE_SUBSCR 61
BINARY_LSHIFT 62
BINARY_RSHIFT 63
BINARY_AND 64
BINARY_XOR 65
BINARY_OR 66
INPLACE_POWER 67
GET_ITER 68
GET_YIELD_FROM_ITER 69
PRINT_EXPR 70
LOAD_BUILD_CLASS 71
YIELD_FROM 72
GET_AWAITABLE 73
LOAD_ASSERTION_ERROR 74
INPLACE_LSHIFT 75
INPLACE_RSHIFT 76
INPLACE_AND 77
INPLACE_XOR 78
INPLACE_OR 79
LIST_TO_TUPLE 82
RETURN_VALUE 83
IMPORT_STAR 84
SETUP_ANNOTATIONS 85
YIELD_VALUE 86
POP_BLOCK 87
POP_EXCEPT 89
STORE_NAME 90
DELETE_NAME 91
UNPACK_SEQUENCE 92
FOR_ITER 93
UNPACK_EX 94
STORE_ATTR 95
DELETE_ATTR 96
STORE_GLOBAL 97
DELETE_GLOBAL 98
LOAD_CONST 100
LOAD_NAME 101
BUILD_TUPLE 102
BUILD_LIST 103
BUILD_SET 104
BUILD_MAP 105
LOAD_ATTR 106
COMPARE_OP 107
IMPORT_NAME 108
IMPORT_FROM 109
JUMP_FORWARD 110
JUMP_IF_FALSE_OR_POP 111
JUMP_IF_TRUE_OR_POP 112
JUMP_ABSOLUTE 113
POP_JUMP_IF_FALSE 114
POP_JUMP_IF_TRUE 115
LOAD_GLOBAL 116
IS_OP 117
CONTAINS_OP 118
JUMP_IF_NOT_EXC_MATCH 121
SETUP_FINALLY 122
LOAD_FAST 124
STORE_FAST 125
DELETE_FAST 126
RAISE_VARARGS 130
CALL_FUNCTION 131
MAKE_FUNCTION 132
BUILD_SLICE 133
LOAD_CLOSURE 135
LOAD_DEREF 136
STORE_DEREF 137
DELETE_DEREF 138
CALL_FUNCTION_KW 141
CALL_FUNCTION_EX 142
SETUP_WITH 143
LIST_APPEND 145
SET_ADD 146
MAP_ADD 147
LOAD_CLASSDEREF 148
EXTENDED_ARG 144
SETUP_ASYNC_WITH 154
FORMAT_VALUE 155
BUILD_CONST_KEY_MAP 156
BUILD_STRING 157
LOAD_METHOD 160
CALL_METHOD 161
LIST_EXTEND 162
SET_UPDATE 163
DICT_MERGE 164
DICT_UPDATE 165

总结

在本篇文章当中主要给大家介绍了 cpython 当中对于字节码和源代码和字节码之间的映射关系的具体设计,这对于我们深入去理解 cpython 虚拟机的设计非常有帮助!


本篇文章是深入理解 python 虚拟机系列文章之一,文章地址:https://github.com/Chang-LeHung/dive-into-cpython

更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

深入理解 python 虚拟机:令人拍案叫绝的字节码设计相关推荐

  1. python虚拟机直接加载字节码运行程序_第二章 python如何运行程序

    一.python解释器介绍 Python解释器是一种让程序运行起来的程序.实际上,解释器是代码与机器的计算机硬件之间的软件逻辑层. 当Python包安装在机器上后,它包含了一些最小化的组件:一个解释器 ...

  2. 深入理解java虚拟机(5)---字节码执行引擎

    字节码是什么东西? 以下是百度的解释: 字节码(Byte-code)是一种包含执行程序.由一序列 op 代码/数据对组成的二进制文件.字节码是一种中间码,它比机器码更抽象. 它经常被看作是包含一个执行 ...

  3. Python 2.6.2的字节码指令集一览

    对Python的字节码指令集感兴趣但不知道从何下手么?执行这段代码就能看到字节码的列表: Python代码   import opcode for op in range(len(opcode.opn ...

  4. Python源码学习笔记:Python程序执行过程与字节码

    Python程序执行过程与字节码 注:本篇是根据教程学习记录的笔记,部分内容与教程是相同的,因为转载需要填链接,但是没有,所以填的原创,如果侵权会直接删除. 问题: 我们每天都要编写一些Python程 ...

  5. 【Java 虚拟机原理】动态字节码技术 | Dalvik ART 虚拟机 | Android 字节码打包过程

    文章目录 一.动态字节码技术 二.Dalvik & ART 虚拟机 三.Android 字节码打包过程 总结 一.动态字节码技术 动态字节码技术 就是在 运行时 , 动态修改 Class 字节 ...

  6. 【Java 虚拟机原理】Class 字节码二进制文件分析 七 ( 局部变量表分析 )

    文章目录 前言 一.编译生成带局部变量表的字节码文件 二.局部变量表 前言 上一篇博客 [Java 虚拟机原理]Class 字节码二进制文件分析 二 ( 常量池位置 | 常量池结构 | tag | i ...

  7. 【Java 虚拟机原理】Class 字节码二进制文件分析 六 ( 属性类型 | Code 属性 | 属性名称索引 | 属性长度 | 操作数栈最大深度 | 局部变量存储空间 | 字节码长度 )

    文章目录 前言 一.属性类型 二.Code 属性表数据结构 三.属性名称索引 四.属性长度 五.操作数栈最大深度 六.局部变量存储空间 七.字节码长度 八.存储字节码指令的一系列字节流 前言 上一篇博 ...

  8. 【Java 虚拟机原理】Class 字节码二进制文件分析 五 ( 方法计数器 | 方法表 | 访问标志 | 方法名称索引 | 方法返回值类型 | 方法属性数量 | 方法属性表 )

    文章目录 前言 一.方法表结构 二.方法计数器 三.方法表数据解析 ( init 构造方法 ) 1.方法访问标志 2.方法名称索引 3.方法返回类型 4.方法属性数量 前言 上一篇博客 [Java 虚 ...

  9. 【Java 虚拟机原理】Class 字节码二进制文件分析 四 ( 字段表数据结构 | 字段表详细分析 | 访问标志 | 字段名称 | 字段描述符 | 属性项目 )

    文章目录 前言 一.字段表总数据结构 二.访问标志 三.字段名称 四.字段描述符 五.属性项目数 前言 上一篇博客 [Java 虚拟机原理]Class 字节码二进制文件分析 三 ( 访问和修饰标志 | ...

最新文章

  1. Arduino Yun的主要部件介绍选自Arduino Yun快速入门教程
  2. 电源稳定性测试软件,电源稳定性测试
  3. Know more about RAC GES STATISTICS
  4. 打开高效文本编辑之门_Linux Awk自定义变量与操作符
  5. 洛谷 - P4013 数字梯形问题(最大费用最大流+举一反三)
  6. 关于java获取当前时间前一周、前一月、前一年的时间
  7. APL平台对C++开发者的价值和作用
  8. java 编程题_最新JAVA编程题全集(50题及答案)92862
  9. IOS开发之Storyboard应用
  10. 在页面中给flash加链接
  11. 分析日志下载时间脚本
  12. nbu备份软件异机恢复需要注意问题
  13. Android widget之CompoundButton
  14. RS485电路及隔离技术(收藏)
  15. 最新服务器CPUe5,看这里!2019 至强 Xeon E5 服务器系列 CPU 天梯图分享
  16. Sublime——让SublimeText换行的时候不拆散一个单词或者代码
  17. 戴尔服务器装完系统没启动项,华硕电脑重装系统后没有硬盘启动项是什么原因?...
  18. AGV搬运机器人以在物流、电商等仓储企业中成为标配
  19. 产权:使用权、收益权和转让权
  20. [Vuforia]二.3D物体识别

热门文章

  1. 厦大计算机信息学院,施明辉-厦门大学信息学院 | 掌握信息,把握未来
  2. python抢票12306源码_Python实现12306火车票抢票系统
  3. 三星 Galaxy S21 Ultra 与 苹果 iPhone 13 Pro Max:你应该选哪一个
  4. 图片速览 GroupViT: Semantic Segmentation Emerges from Text Supervision
  5. Git 天天用 但是 Git 原理你了解吗?
  6. uniapp实现canvas画图
  7. Update批量更新(高性能、动态化)
  8. DirectX基本框架
  9. 高德地图-绘制个人历史位置路线
  10. 移动端H5调试工具——eruda