访问CP15寄存器指令的编码格式及语法说明如下:

31  28

27  24

23  21

20

19  16

15  12

11  8

7  5

4

3  0

cond

1 1 1 0

opcode_1

L

cr n

rd

1 1 1 1

opcode_2

1

crm

说明:

<opcode_1>:协处理器行为操作码,对于CP15来说,<opcode_1>永远为0b000,否则结果未知。

<rd>:不能是r15/pc,否则,结果未知。

<crn>:作为目标寄存器的协处理器寄存器,编号为C0~C15。

<crm>:附加的目标寄存器或源操作数寄存器,如果不需要设置附加信息,将crm设置为c0,否则结果未知。

<opcode_2>:提供附加信息比如寄存器的版本号或者访问类型,用于区分同一个编号的不同物理寄存器,可以省略<opcode_2>或者将其设置为0,否则结果未知。

指    令

说    明

语法格式

mcr

将ARM处理器的寄存器中的数据写到CP15中的寄存器中

mcr{<cond>}   p15, <opcode_1>, <rd>, <crn>, <crm>, {<opcode_2>}

mrc

将CP15中的寄存器中的数据读到ARM处理器的寄存器中

mcr{<cond>}   p15, <opcode_1>, <rd>, <crn>, <crm>, {<opcode_2>}

4.1.2  CP15寄存器介绍

CP15的寄存器列表如表4-1所示。

表4-1 ARM处理器中CP15协处理器的寄存器

寄存器编号

基本作用

在MMU中的作用

在PU中的作用

0

ID编码(只读)

ID编码和cache类型

1

控制位(可读写)

各种控制位

2

存储保护和控制

地址转换表基地址

Cachability的控制位

3

存储保护和控制

域访问控制位

Bufferablity控制位

4

存储保护和控制

保留

保留

5

存储保护和控制

内存失效状态

访问权限控制位

6

存储保护和控制

内存失效地址

保护区域控制

7

高速缓存和写缓存

高速缓存和写缓存控制

8

存储保护和控制

TLB控制

保留

9

高速缓存和写缓存

高速缓存锁定

10

存储保护和控制

TLB锁定

保留

11

保留

12

保留

13

进程标识符

进程标识符

14

保留

15

因不同设计而异

因不同设计而异

因不同设计而异

·        CP15的寄存器C0

CP15中寄存器C0对应两个标识符寄存器,由访问CP15中的寄存器指令中的<opcode_2>指定要访问哪个具体物理寄存器,<opcode_2>与两个标识符寄存器的对应关系如下所示:

opcode_2编码

对应的标识符号寄存器

0b000

主标识符寄存器

0b001

cache类型标识符寄存器

其他

保留

1)主标识符寄存器

访问主标识符寄存器的指令格式如下所示:

mrc p15, 0, r0, c0, c0,0       ;将主标识符寄存器C0,0的值读到r0中

ARM不同版本体系处理器中主标识符寄存器的编码格式说明如下。

ARM7之后处理器的主标识符寄存器编码格式如下所示:

31             24      23            20      19              16    15              4     3               0

由生产商确定

产品子编号

ARM体系版本号

产品主编号

处理器版本号

说    明

位[3: 0]

生产商定义的处理器版本号

位[15: 4]

生产商定义的产品主编号,其中最高4位即位[15:12]可能的取值为0~7但不能是0或7

位[19: 16]

ARM体系的版本号,可能的取值如下:

0x1   ARM体系版本4

0x2   ARM体系版本4T

0x3   ARM体系版本5

0x4   ARM体系版本5T

0x5   ARM体系版本5TE

其他  由ARM公司保留将来使用

位[23: 20]

生产商定义的产品子编号,当产品主编号相同时,使用子编号来区分不同的产品子类,如产品中不同的高速缓存的大小等

位[31: 24]

生产厂商的编号,现在已经定义的有以下值:

0x41  =A  ARM公司

0x44  =D  Digital Equipment公司

0x69  =I   intel公司

ARM7处理器的主标识符寄存器编码格式如下所示:

31             24     23     22                        16           15          4         3          0

由生产商确定

A

产品子编号

产品主编号

处理器版本号

说    明

位[3: 0]

生产商定义的处理器版本号

位[15: 4]

生产商定义的产品主编号,其中最高4位即位[15:12]的值为0x7

位[22: 16]

生产商定义的产品子编号,当产品主编号相同时,使用子编号来区分不同的产品子类,如产品中不同的高速缓存的大小等

续表

说    明

位[23]

ARM7支持下面两种ARM体系的版本号:

0x0   ARM体系版本3

0x1   ARM体系版本4T

位[31: 24]

生产厂商的编号,现在已经定义的有以下值:

0x41  =A  ARM公司

0x44  =D  Digital Equipment公司

0x69  =I   Intel公司

ARM7之前处理器的主标识符寄存器编码格式如下所示:

31           24       23       22                    16            15          4         3           0

由生产商确定

A

产品子编号

产品主编号

处理器版本号

说    明

位[3: 0]

生产商定义的处理器版本号

位[15: 4]

生产商定义的产品主编号,其中最高4位即为[15:12]的值为0x7

位[22: 16]

生产商定义的产品子编号,当产品主编号相同时,使用子编号来区分不同的产品子类,如产品中不同的高速缓存的大小等

位[23]

ARM7支持下面两种ARM体系的版本号:

0x0   ARM体系版本3

0x1   ARM体系版本4T

位[31: 24]

生产厂商的编号,现在已经定义的有以下值:

0x41  =A  ARM公司

0x44  =D  Digital Equipment公司

0x69  =I   intel公司

2)cache类型标识符寄存器

访问cache类型标识符寄存器的指令格式如下所示:

mrc p15, 0, r0, c0, c0,1       ;将cache类型标识符寄存器C0,1的值读到r0中

ARM处理器中cache类型标识符寄存器的编码格式如下所示:

31             29     28           25    24       23             12               11            0

0   0   0

属性字段

S

数据cache相关属性

指令cache相关属性

说明

位[28: 25]

指定控制字段位[24: 0]指定的属性之外的cache的其他属性,详见表4-2

位[24]

定义系统中的数据cache和指令cache是分开的还是统一的:

0   系统的数据cache和指令cache是统一的;

1   系统的数据cache和指令cache是分开的

位[23: 12]

定义数据cache的相关属性,如果位[24]为0,本字段定义整个cache的属性

位[31: 24]

定义指令cache的相关属性,如果位[24]为0,本字段定义整个cache的属性

其中控制字段位[28:25]的含义说明如下:

表4-2 cache类型标识符寄存器的控制字段位[28:25]

编    码

cache类型

cache内容清除方法

cache内容锁定方法

0b0000

写通类型

不需要内容清除

不支持内容锁定

0b0001

写回类型

数据块读取

不支持内容锁定

0b0010

写回类型

由寄存器C7定义

不支持内容锁定

0b0110

写回类型

由寄存器C7定义

支持格式A

0b0111

写回类型

由寄存器C7定义

支持格式B

控制字段位[23:12]和控制字段位[11:0]的编码格式相同,含义如下所示:

11      9         8             6         5          3                2            1               0

0    0    0

cache容量

cache相联特性

M

块大小

cache容量字段bits[8: 6]的含义如下所示:

编    码

M=0时含义(单位KB)

M=1时含义(单位KB)

0b000

0.5

0.75

0b001

1

1.5

0b010

2

3

0b011

4

6

0b100

8

12

0b101

16

24

0b110

32

48

0b111

64

96

cache相联特性字段bits[5: 3]的含义如下所示:

编    码

M=0时含义

M=1时含义

0b000

1路相联(直接映射)

没有cache

0b001

2路相联

3路相联

0b010

4路相联

6路相联

0b011

8路相联

12路相联

0b100

16路相联

24路相联

0b101

32路相联

48路相联

0b110

64路相联

96路相联

0b111

128路相联

192路相联

cache块大小字段bits[1: 0]的含义如下所示:

编    码

cache块大小

0b00

2个字(8字节)

0b01

4个字(16字节)

0b10

8个字(32字节)

0b11

16个字(64字节)

·        CP15的寄存器C1

访问主标识符寄存器的指令格式如下所示:

mrc p15, 0, r0, c1, c0{, 0}     ;将CP15的寄存器C1的值读到r0中

mcr p15, 0, r0, c1, c0{, 0}     ;将r0的值写到CP15的寄存器C1中

CP15中的寄存器C1的编码格式及含义说明如下:

31 16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

附加

L4

RR

V

I

Z

F

R

S

B

L

D

P

W

C

A

M

说    明

M

0:禁止MMU或者PU;1:使能MMU或者PU

A

0:禁止地址对齐检查;1:使能地址对齐检查

C

0:禁止数据/整个cache;1:使能数据/整个cache

W

0:禁止写缓冲;1:使能写缓冲

P

0:异常中断处理程序进入32位地址模式;1:异常中断处理程序进入26位地址模式

D

0:禁止26位地址异常检查;1:使能26位地址异常检查

L

0:选择早期中止模型;1:选择后期中止模型

B

0:little endian;1:big endian

S

在基于MMU的存储系统中,本位用作系统保护

R

在基于MMU的存储系统中,本位用作ROM保护

F

0:由生产商定义

Z

0:禁止跳转预测功能;1:使能跳转预测指令

I

0:禁止指令cache;1:使能指令cache

V

0:选择低端异常中断向量0x0~0x1c;1:选择高端异常中断向量0xffff0000~ 0xffff001c

RR

0:常规的cache淘汰算法,如随机淘汰;1:预测性淘汰算法,如round-robin淘汰算法

L4

0:保持ARMv5以上版本的正常功能;1:将ARMv5以上版本与以前版本处理器兼容,不根据跳转地址的bit[0]进行ARM指令和Thumb状态切换:bit[0]等于0表示ARM指令,等于1表示Thumb指令

附加:

·        CP15的寄存器C2

CP15中的寄存器C2保存的是页表的基地址,即一级映射描述符表的基地址。其编码格如下所示:

31                                                                                                     0

一级映射描述符表的基地址(物理地址)

·        CP15的寄存器C3

CP15中的寄存器C3定义了ARM处理器的16个域的访问权限。

31                                                                                                     0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

·        CP15的寄存器C5

CP15中的寄存器C5是失效状态寄存器,编码格式如下所示:

31                                                           9        8    7       4     3        0

UNP/SBZP

0

域标识

状态标识

其中,域标识bit[7:4]表示存放引起存储访问失效的存储访问所属的域。

状态标识bit[3:0]表示放引起存储访问失效的存储访问类型,该字段含义如表4-3所示(优先级由上到下递减)。

表4-3 状态标识字段含义

引起访问失效的原因

状态标识

域标识

C6

终端异常(Terminal Exception)

0b0010

无效

生产商定义

中断向量访问异常(Vector Exception)

0b0000

无效

有效

地址对齐

0b00x1

无效

有效

一级页表访问失效

0b1100

无效

有效

二级页表访问失效

0b1110

有效

有效

基于段的地址变换失效

0b0101

无效

有效

基于页的地址变换失效

0b0111

有效

有效

基于段的存储访问中域控制失效

0b1001

有效

有效

基于页的存储访问中域控制失效

0b1101

有效

有效

基于段的存储访问中访问权限控制失效

0b1111

有效

有效

基于页的存储访问中访问权限控制失效

0b0100

有效

有效

基于段的cache预取时外部存储系统失效

0b0110

有效

有效

基于页的cache预取时外部存储系统失效

0b1000

有效

有效

基于段的非cache预取时外部存储系统失效

0b1010

有效

有效

·        CP15中的寄存器C6

CP15中的寄存器C5是失效地址寄存器,编码格式如下所示:

31                                                                                                     0

失效地址(虚拟地址)

·        CP15中的寄存器C7

CP15的C7寄存器用来控制cache和写缓存,它是一个只写寄存器,读操作将产生不可预知的后果。

访问CP15的C7寄存器的指令格式如下所示:

mcr p15, 0, <rd>, <c7>, crm, <opcode_2>;<rd>、<crm>和<opcode_2>的不同取值组合   实现不同功能

·        CP15中的寄存器C8

CP15的C8寄存器用来控制清除TLB的内容,是只写寄存器,读操作将产生不可预知的后果。

访问CP15的C8寄存器的指令格式如下所示:

mcr p15, 0, <rd>, <c8>, crm, <opcode_2>;<rd>、<crm>和<opcode_2>的不同取值组合实现不同功能,见第4.2节

·        CP15中的寄存器C9

CP15的C9寄存器用于控制cache内容锁定。

访问CP15的C9寄存器的指令格式如下所示:

mcr p15, 0, <rd>, <c9>, c0, <opcode_2>

mrc p15, 0, <rd>, <c9>, c0, <opcode_2>

如果系统中包含独立的指令cache和数据cache,那么对应于数据cache和指令cache分别有一个独立的cache内容锁定寄存器,<opcode_2>用来选择其中的某个寄存器:

<opcode_2>=1选择指令cache的内容锁定寄存器;

<opcode_2>=0选择数据cache的内容锁定寄存器。

CP15的C9寄存器有A、B两种编码格式。编码格式A如下所示:

31                                       32-W 31-W                                         0

cache组内块序号index

0

其中index表示当下一次发生cache未命中时,将预取的存储块存入cache中该块对应的组中序号为index的cache块中。此时序号为0~index-1的cache块被锁定,当发生cache替换时,从序号为index到ASSOCIATIVITY的块中选择被替换的块。

编码格式B如下所示:

31    30                                          W      W-1                                     0

L

0

cache组内块序号index

说    明

L=0

当发生cache未命中时,将预取的存储块存入cache中该块对应的组中序号为index的cache块中

续表

说    明

L=1

如果本次写操作之前L=0,并且index值小于本次写入的index,本次写操作执行的结果不可预知;否则,这时被锁定的cache块包括序号为0~index-1的块,当发生cache替换时,从序号为index到ASSOCIATIVITY的块中选择被替换的块

·        CP15的寄存器C10

CP15的C10寄存器用于控制TLB内容锁定。

访问CP15的C10寄存器的指令格式如下所示:

mcr p15, 0, <rd>, <c10>, c0, <opcode_2>

mrc p15, 0, <rd>, <c10>, c0, <opcode_2>

如果系统中包含独立的指令TLB和数据TLB,那么对应于数据TLB和指令TLB分别有一个独立的TLB内容锁定寄存器,<opcode_2>用来选择其中的某个寄存器:

<opcode_2>=1选择指令TLB的内容锁定寄存器;

<opcode_2>=0选择数据TLB的内容锁定寄存器。

C10寄存器的编码格式如下:

31 30                         32-W       31-W                            32-2W    31-2W     1    0

可被替换的条目起始地址的base

下一个将被替换的条目地址victim

0

P

说    明

victim

指定下一次TLB没有命中(所需的地址变换条目没有包含在TLB中)时,从内存页表中读取所需的地址变换条目,并把该地址变换条目保存在TLB中地址victim处

base

指定TLB替换时,所使用的地址范围,从(base)到(TLB中条目数-1);字段victim的值应该包含在该范围内

P

1:写入TLB的地址变换条目不会受使整个TLB无效操作的影响,一直保持有效;0:写入TLB的地址变换条目将会受到使整个TLB无效操作的影响

·        CP15的寄存器C13

C13寄存器用于快速上下文切换FCSE。

访问CP15的C13寄存器的指令格式如下所示:

mcr p15, 0, <rd>, <c13>, c0, 0

mrc p15, 0, <rd>, <c13>, c0, 0

C13寄存器的编码格式如下所示:

31                25       24                                                                     0

PID

0

其中,PID表示当前进程的所在的进程空间块的编号,即当前进程的进程标识符,取值为0~127。

0:MVA(变换后的虚拟地址)= VA(虚拟地址),禁止FCSE(快速上下文切换技术),系统复位后PID=0;

非0:使能FCSE。

ARM-CP15寄存器组介绍(开启I/D catch,MMU都需要此寄存器)相关推荐

  1. Intel 64/x86_64/IA-32/x86处理器 - SIMD指令集 - SSE扩展(1) - 概述/历史/新数据类型/XMM寄存器组

    SSE Instructions SSE Overview & History Intel SSE技术的全称是Streaming SIMD Extension,中文译作流式单指令多数据指令扩展 ...

  2. 8086/8088 CPU寄存器组

    作者:黑剑  出处:http://www.cnblogs.com/blacksword/ 8086/8088 CPU寄存器组 今天来回顾一下8086/8088 CPU寄存器组的知识.其实8086汇编还 ...

  3. 《计算机组成与CPU设计实验》实验3:寄存器组(堆)实验

    实验目的 掌握寄存器的HDL描述方法; 掌握HDL参数化设计方法; 理解寄存器组(堆)的电路结构,并能用HDL描述; 了解逻辑电路成本的概念. 实验原理 寄存器 寄存器定义 锁存器和触发器都是寄存器, ...

  4. Cortex-A7 MPCore 架构详细介绍(九种运行模式、内核寄存器组R0~R15,有特定的名字和功能)

    目录 0.ARM架构的历史简介 1.Cortex-A7 MPCore(即多核) 简介 2.Cortex-A 处理器九种运行模式 3.Cortex-A 寄存器组(内核寄存器) 3.1通用寄存器 3.1. ...

  5. ARM协处理器(CP15)指令介绍

    什么是协处理器 协处理器是一种芯片,用于减轻系统微处理器的特定处理任务.例如,数学协处理器可以控制数字处理:图形协处理器可以处理视频绘制.例如,intel pentium微处理器就包括内置的数学协处理 ...

  6. ARM FPU 加速浮点计算 介绍

    引言 笔者接触嵌入式领域软件开发以来,几乎用的都是 ARM Cortex M 内核系列的微控制器.感谢C语言编译器的存在,让我不用接触汇编即可进行开发,但是彷佛也错过了一些风景,没有领域到编译器之美和 ...

  7. 全面了解 ARM CP15协处理器 (深度好文)

    转载自:http://blog.chinaunix.net/uid-14114479-id-3110951.html ARM926EJ-S/ARM920T 协处理器CP14, CP15详解 ARM 微 ...

  8. ARM CP15协处理器说明

    访问CP15寄存器指令的编码格式及语法说明如下: 31  28 27  24 23  21 20 19  16 15  12 11  8 7  5 4 3  0 cond 1 1 1 0 opcode ...

  9. 计算机组成原理R寄存器组,计算机组成原理实验的探讨论文(2)

    计算机组成原理实验的探讨论文篇二 <计算机组成原理实验初探> 摘要:根据国内外计算机硬件类实践课程教育的现状,分析传统计算机组成原理实验课程教学中的弊端,介绍南京大学计算机系对此门实验课的 ...

最新文章

  1. 深度学习:知识回收(Lecture1and2)
  2. javascript数据结构与算法---检索算法(二分查找法、计算重复次数)
  3. RecyclerView 使用指南
  4. rails 数据库相关操作命令
  5. jenkins maven没有使用全局设置文件地址_Jenkins手把手图文教程「基于Jenkins 2.164.1」...
  6. 关于OPENSSL的使用
  7. InvalidClassException: org.antlr.v4.runtime.atn.ATN; Could not deserialize ATN with UUID
  8. 外卖点餐系统源码|餐饮点餐源码开发
  9. 第一个Django项目----一小时写出账号密码管理系统
  10. 人工智能续写贝多芬生前未完成的《第十交响曲》【智能快讯】
  11. c/c++ notify/wait 消息机制
  12. nmn是真的还是假的,如何鉴别高质量的nmn,方法一览
  13. python twisted教程_twisted基础教程.pdf
  14. 恒生电子股份有限公司--软件测试--《社招、校招jd、校招行程,招聘动态》整理
  15. 【虹科案例】Dimetix 激光测距传感器:筒仓内料位高度的测量
  16. python firefly 游戏引擎 教程(二) 程序入口
  17. 拿什么拯救你——王阿姨的少女心!
  18. kdj指标主要看哪个值_KDJ指标的J值与D值差别
  19. video 视频播放
  20. CAD建筑制图教程之全屏编辑

热门文章

  1. 单机安装多个mysql_单机环境下安装多个MySQL服务器
  2. 2022,了不起的程序员日历来啦!
  3. K8S 快速入门(一)虚拟化、容器化构建云计算平台的基本概念及原理解析
  4. Vue性能提升之Object.freeze()
  5. 常用的JS页面跳转代码调用大全
  6. AIIC学习日记-十进制浮点数预处理为二进制定点数
  7. 用户和计算机的交互通常通过,人机交互课后题答案
  8. 2022年全球市场GDI汽油机缸内直喷系统总体规模、主要生产商、主要地区、产品和应用细分研究报告
  9. 微信开发h5图片上传(拍照、图片压缩、IOS照片旋转)
  10. 华章计算机给各位读者拜年了!