CV之IC之AlexNet:基于tensorflow框架采用CNN卷积神经网络算法(改进的AlexNet,训练/评估/推理)实现猫狗分类识别案例应用

目录

基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

训练结果

核心代码


基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

数据下载:Dogs vs. Cats Redux: Kernels Edition | Kaggle

train文件夹里有25000张狗和猫的图片。这个文件夹中的每个图像都有标签作为文件名的一部分。测试文件夹包含12500张图片,根据数字id命名。对于测试集中的每个图像,您应该预测图像是一只狗的概率(1 =狗,0 =猫)。

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

序号 使用model.ckpt-4000模型预测 使用model.ckpt-6000模型预测 使用model.ckpt-8000模型预测 使用model.ckpt-10000模型预测 使用model.ckpt-12000模型预测
1 cat cat (1).jpg 猫的概率 0.631 cat (1).jpg 狗的概率 0.740 cat (1).jpg 狗的概率 0.781 cat (1).jpg 狗的概率 0.976 cat (1).jpg 狗的概率 0.991
2 cat (10).jpg 狗的概率 0.697 cat (10).jpg 猫的概率 0.566 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.816
3 cat (11).jpg 猫的概率 0.927 cat (11).jpg 猫的概率 0.988 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000
4 cat (12).jpg 狗的概率 0.746 cat (12).jpg 狗的概率 0.723 cat (12).jpg 狗的概率 0.822 cat (12).jpg 狗的概率 0.998 cat (12).jpg 狗的概率 1.000
5 cat (13).jpg 猫的概率 0.933 cat (13).jpg 猫的概率 0.983 cat (13).jpg 猫的概率 0.997 cat (13).jpg 猫的概率 1.000 cat (13).jpg 猫的概率 1.000
6 cat (14).jpg 狗的概率 0.657 cat (14).jpg 猫的概率 0.597 cat (14).jpg 狗的概率 0.758 cat (14).jpg 狗的概率 0.695 cat (14).jpg 猫的概率 0.544
7 cat (15).jpg 狗的概率 0.578 cat (15).jpg 狗的概率 0.535 cat (15).jpg 狗的概率 0.526 cat (15).jpg 狗的概率 0.750 cat (15).jpg 狗的概率 0.569
8 cat (2).jpg 猫的概率 0.649 cat (2).jpg 猫的概率 0.637 cat (2).jpg 猫的概率 0.844 cat (2).jpg 猫的概率 0.996 cat (2).jpg 猫的概率 0.998
9 cat (3).jpg 狗的概率 0.668 cat (3).jpg 猫的概率 0.538 cat (3).jpg 猫的概率 0.710 cat (3).jpg 猫的概率 0.968 cat (3).jpg 猫的概率 0.995
10 cat (4).jpg 狗的概率 0.856 cat (4).jpg 狗的概率 0.780 cat (4).jpg 狗的概率 0.831 cat (4).jpg 狗的概率 0.974 cat (4).jpg 狗的概率 0.976
11 cat (5).jpg 猫的概率 0.812 cat (5).jpg 猫的概率 0.776 cat (5).jpg 猫的概率 0.505 cat (5).jpg 猫的概率 0.732 cat (5).jpg 狗的概率 0.608
12 cat (6).jpg 猫的概率 0.524 cat (6).jpg 狗的概率 0.661 cat (6).jpg 狗的概率 0.748 cat (6).jpg 狗的概率 0.970 cat (6).jpg 狗的概率 0.987
13 cat (7).jpg 狗的概率 0.612 cat (7).jpg 猫的概率 0.845 cat (7).jpg 猫的概率 0.894 cat (7).jpg 猫的概率 0.987 cat (7).jpg 猫的概率 0.728
14 cat (8).jpg 狗的概率 0.823 cat (8).jpg 狗的概率 0.948 cat (8).jpg 狗的概率 0.920 cat (8).jpg 狗的概率 0.982 cat (8).jpg 狗的概率 0.999
15 cat (9).jpg 猫的概率 0.697 cat (9).jpg 猫的概率 0.704 cat (9).jpg 狗的概率 0.819 cat (9).jpg 猫的概率 0.930 cat (9).jpg 狗的概率 0.718
16 dog dog (1).jpg 狗的概率 0.987 dog (1).jpg 狗的概率 0.995 dog (1).jpg 狗的概率 0.999 dog (1).jpg 狗的概率 1.000 dog (1).jpg 狗的概率 1.000
17 dog (10).jpg 狗的概率 0.628 dog (10).jpg 猫的概率 0.629 dog (10).jpg 猫的概率 0.994 dog (10).jpg 猫的概率 1.000 dog (10).jpg 猫的概率 1.000
18 dog (11).jpg 狗的概率 0.804 dog (11).jpg 狗的概率 0.879 dog (11).jpg 狗的概率 0.993 dog (11).jpg 狗的概率 1.000 dog (11).jpg 狗的概率 1.000
19 dog (12).jpg 猫的概率 0.704 dog (12).jpg 猫的概率 0.758 dog (12).jpg 狗的概率 0.503 dog (12).jpg 狗的概率 0.653 dog (12).jpg 猫的概率 0.985
20 dog (13).jpg 狗的概率 0.987 dog (13).jpg 狗的概率 0.997 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000
21 dog (14).jpg 狗的概率 0.815 dog (14).jpg 狗的概率 0.844 dog (14).jpg 狗的概率 0.904 dog (14).jpg 狗的概率 0.996 dog (14).jpg 狗的概率 0.950
22 dog (15).jpg 狗的概率 0.917 dog (15).jpg 狗的概率 0.984 dog (15).jpg 狗的概率 0.999 dog (15).jpg 狗的概率 1.000 dog (15).jpg 狗的概率 1.000
23 dog (16).jpg 狗的概率 0.883 dog (16).jpg 狗的概率 0.931 dog (16).jpg 狗的概率 0.830 dog (16).jpg 狗的概率 0.975 dog (16).jpg 狗的概率 0.983
24 dog (2).jpg 狗的概率 0.934 dog (2).jpg 狗的概率 0.982 dog (2).jpg 狗的概率 0.998 dog (2).jpg 狗的概率 1.000 dog (2).jpg 狗的概率 1.000
25 dog (3).jpg 狗的概率 0.993 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000
26 dog (4).jpg 狗的概率 0.693 dog (4).jpg 狗的概率 0.754 dog (4).jpg 狗的概率 0.976 dog (4).jpg 狗的概率 0.515 dog (4).jpg 狗的概率 0.995
27 dog (5).jpg 狗的概率 0.916 dog (5).jpg 狗的概率 0.976 dog (5).jpg 狗的概率 0.993 dog (5).jpg 狗的概率 0.998 dog (5).jpg 狗的概率 1.000
28 dog (6).jpg 狗的概率 0.947 dog (6).jpg 狗的概率 0.989 dog (6).jpg 狗的概率 0.999 dog (6).jpg 狗的概率 1.000 dog (6).jpg 狗的概率 1.000
29 dog (7).jpg 猫的概率 0.526 dog (7).jpg 猫的概率 0.685 dog (7).jpg 猫的概率 0.961 dog (7).jpg 猫的概率 1.000 dog (7).jpg 猫的概率 1.000
30 dog (8).jpg 狗的概率 0.981 dog (8).jpg 狗的概率 0.998 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000
31 dog (9).jpg 狗的概率 0.899 dog (9).jpg 狗的概率 0.983 dog (9).jpg 狗的概率 0.999 dog (9).jpg 狗的概率 1.000 dog (9).jpg 狗的概率 1.000

训练结果

Step 0, train loss = 0.69, train accuracy = 78.12%
Step 50, train loss = 0.69, train accuracy = 43.75%
Step 100, train loss = 0.70, train accuracy = 46.88%
Step 150, train loss = 0.65, train accuracy = 75.00%
Step 200, train loss = 0.66, train accuracy = 59.38%
Step 250, train loss = 0.66, train accuracy = 62.50%
Step 300, train loss = 0.72, train accuracy = 40.62%
Step 350, train loss = 0.66, train accuracy = 62.50%
Step 400, train loss = 0.58, train accuracy = 68.75%
Step 450, train loss = 0.70, train accuracy = 65.62%
Step 500, train loss = 0.68, train accuracy = 56.25%
Step 550, train loss = 0.51, train accuracy = 81.25%
Step 600, train loss = 0.54, train accuracy = 75.00%
Step 650, train loss = 0.64, train accuracy = 68.75%
Step 700, train loss = 0.69, train accuracy = 53.12%
Step 750, train loss = 0.57, train accuracy = 71.88%
Step 800, train loss = 0.80, train accuracy = 50.00%
Step 850, train loss = 0.62, train accuracy = 59.38%
Step 900, train loss = 0.59, train accuracy = 65.62%
Step 950, train loss = 0.54, train accuracy = 71.88%
Step 1000, train loss = 0.57, train accuracy = 68.75%
Step 1050, train loss = 0.56, train accuracy = 78.12%
Step 1100, train loss = 0.66, train accuracy = 59.38%
Step 1150, train loss = 0.50, train accuracy = 84.38%
Step 1200, train loss = 0.46, train accuracy = 81.25%
Step 1250, train loss = 0.57, train accuracy = 59.38%
Step 1300, train loss = 0.37, train accuracy = 81.25%
Step 1350, train loss = 0.64, train accuracy = 62.50%
Step 1400, train loss = 0.44, train accuracy = 81.25%
Step 1450, train loss = 0.46, train accuracy = 84.38%
Step 1500, train loss = 0.50, train accuracy = 71.88%
Step 1550, train loss = 0.58, train accuracy = 62.50%
Step 1600, train loss = 0.43, train accuracy = 75.00%
Step 1650, train loss = 0.55, train accuracy = 71.88%
Step 1700, train loss = 0.50, train accuracy = 71.88%
Step 1750, train loss = 0.46, train accuracy = 75.00%
Step 1800, train loss = 0.81, train accuracy = 53.12%
Step 1850, train loss = 0.41, train accuracy = 90.62%
Step 1900, train loss = 0.65, train accuracy = 68.75%
Step 1950, train loss = 0.37, train accuracy = 84.38%
Step 2000, train loss = 0.39, train accuracy = 81.25%
Step 2050, train loss = 0.45, train accuracy = 84.38%
Step 2100, train loss = 0.44, train accuracy = 78.12%
Step 2150, train loss = 0.59, train accuracy = 65.62%
Step 2200, train loss = 0.51, train accuracy = 78.12%
Step 2250, train loss = 0.42, train accuracy = 81.25%
Step 2300, train loss = 0.32, train accuracy = 87.50%
Step 2350, train loss = 0.48, train accuracy = 75.00%
Step 2400, train loss = 0.54, train accuracy = 71.88%
Step 2450, train loss = 0.51, train accuracy = 71.88%
Step 2500, train loss = 0.73, train accuracy = 59.38%
Step 2550, train loss = 0.52, train accuracy = 78.12%
Step 2600, train loss = 0.65, train accuracy = 62.50%
Step 2650, train loss = 0.52, train accuracy = 71.88%
Step 2700, train loss = 0.48, train accuracy = 71.88%
Step 2750, train loss = 0.37, train accuracy = 84.38%
Step 2800, train loss = 0.46, train accuracy = 78.12%
Step 2850, train loss = 0.40, train accuracy = 84.38%
Step 2900, train loss = 0.45, train accuracy = 81.25%
Step 2950, train loss = 0.36, train accuracy = 84.38%
Step 3000, train loss = 0.46, train accuracy = 75.00%
Step 3050, train loss = 0.53, train accuracy = 71.88%
Step 3100, train loss = 0.37, train accuracy = 84.38%
Step 3150, train loss = 0.53, train accuracy = 75.00%
Step 3200, train loss = 0.52, train accuracy = 75.00%
Step 3250, train loss = 0.62, train accuracy = 65.62%
Step 3300, train loss = 0.58, train accuracy = 71.88%
Step 3350, train loss = 0.71, train accuracy = 65.62%
Step 3400, train loss = 0.43, train accuracy = 78.12%
Step 3450, train loss = 0.46, train accuracy = 78.12%
Step 3500, train loss = 0.46, train accuracy = 71.88%
Step 3550, train loss = 0.53, train accuracy = 68.75%
Step 3600, train loss = 0.44, train accuracy = 75.00%
Step 3650, train loss = 0.55, train accuracy = 65.62%
Step 3700, train loss = 0.62, train accuracy = 75.00%
Step 3750, train loss = 0.48, train accuracy = 75.00%
Step 3800, train loss = 0.66, train accuracy = 53.12%
Step 3850, train loss = 0.53, train accuracy = 75.00%
Step 3900, train loss = 0.36, train accuracy = 81.25%
Step 3950, train loss = 0.37, train accuracy = 87.50%
Step 4000, train loss = 0.46, train accuracy = 78.12%
Step 4050, train loss = 0.36, train accuracy = 84.38%
Step 4100, train loss = 0.34, train accuracy = 78.12%
Step 4150, train loss = 0.48, train accuracy = 78.12%
Step 4200, train loss = 0.43, train accuracy = 87.50%
Step 4250, train loss = 0.34, train accuracy = 84.38%
Step 4300, train loss = 0.28, train accuracy = 87.50%
Step 4350, train loss = 0.19, train accuracy = 96.88%
Step 4400, train loss = 0.46, train accuracy = 71.88%
Step 4450, train loss = 0.33, train accuracy = 84.38%
Step 4500, train loss = 0.55, train accuracy = 75.00%
Step 4550, train loss = 0.31, train accuracy = 93.75%
Step 4600, train loss = 0.30, train accuracy = 84.38%
Step 4650, train loss = 0.38, train accuracy = 84.38%
Step 4700, train loss = 0.36, train accuracy = 84.38%
Step 4750, train loss = 0.32, train accuracy = 87.50%
Step 4800, train loss = 0.36, train accuracy = 81.25%
Step 4850, train loss = 0.36, train accuracy = 87.50%
Step 4900, train loss = 0.49, train accuracy = 71.88%
Step 4950, train loss = 0.51, train accuracy = 68.75%
Step 5000, train loss = 0.59, train accuracy = 68.75%
Step 5050, train loss = 0.55, train accuracy = 75.00%
Step 5100, train loss = 0.71, train accuracy = 68.75%
Step 5150, train loss = 0.48, train accuracy = 71.88%
Step 5200, train loss = 0.39, train accuracy = 90.62%
Step 5250, train loss = 0.49, train accuracy = 81.25%
Step 5300, train loss = 0.36, train accuracy = 81.25%
Step 5350, train loss = 0.31, train accuracy = 90.62%
Step 5400, train loss = 0.39, train accuracy = 87.50%
Step 5450, train loss = 0.34, train accuracy = 78.12%
Step 5500, train loss = 0.29, train accuracy = 84.38%
Step 5550, train loss = 0.21, train accuracy = 93.75%
Step 5600, train loss = 0.41, train accuracy = 78.12%
Step 5650, train loss = 0.38, train accuracy = 84.38%
Step 5700, train loss = 0.27, train accuracy = 87.50%
Step 5750, train loss = 0.24, train accuracy = 90.62%
Step 5800, train loss = 0.17, train accuracy = 96.88%
Step 5850, train loss = 0.23, train accuracy = 93.75%
Step 5900, train loss = 0.37, train accuracy = 71.88%
Step 5950, train loss = 0.49, train accuracy = 71.88%
Step 6000, train loss = 0.43, train accuracy = 81.25%
Step 6050, train loss = 0.33, train accuracy = 87.50%
Step 6100, train loss = 0.46, train accuracy = 75.00%
Step 6150, train loss = 0.61, train accuracy = 81.25%
Step 6200, train loss = 0.34, train accuracy = 84.38%
Step 6250, train loss = 0.63, train accuracy = 71.88%
Step 6300, train loss = 0.21, train accuracy = 90.62%
Step 6350, train loss = 0.21, train accuracy = 90.62%
Step 6400, train loss = 0.27, train accuracy = 87.50%
Step 6450, train loss = 0.17, train accuracy = 87.50%
Step 6500, train loss = 0.34, train accuracy = 87.50%
Step 6550, train loss = 0.34, train accuracy = 87.50%
Step 6600, train loss = 0.32, train accuracy = 84.38%
Step 6650, train loss = 0.39, train accuracy = 84.38%
Step 6700, train loss = 0.38, train accuracy = 84.38%
Step 6750, train loss = 0.41, train accuracy = 84.38%
Step 6800, train loss = 0.49, train accuracy = 81.25%
Step 6850, train loss = 0.36, train accuracy = 84.38%
Step 6900, train loss = 0.20, train accuracy = 93.75%
Step 6950, train loss = 0.13, train accuracy = 93.75%
Step 7000, train loss = 0.31, train accuracy = 87.50%
Step 7050, train loss = 0.18, train accuracy = 93.75%
Step 7100, train loss = 0.23, train accuracy = 90.62%
Step 7150, train loss = 0.13, train accuracy = 96.88%
Step 7200, train loss = 0.14, train accuracy = 96.88%
Step 7250, train loss = 0.32, train accuracy = 84.38%
Step 7300, train loss = 0.18, train accuracy = 93.75%
Step 7350, train loss = 0.14, train accuracy = 100.00%
Step 7400, train loss = 0.60, train accuracy = 75.00%
Step 7450, train loss = 0.20, train accuracy = 93.75%
Step 7500, train loss = 0.13, train accuracy = 93.75%
Step 7550, train loss = 0.22, train accuracy = 90.62%
Step 7600, train loss = 0.13, train accuracy = 96.88%
Step 7650, train loss = 0.20, train accuracy = 93.75%
Step 7700, train loss = 0.24, train accuracy = 90.62%
Step 7750, train loss = 0.19, train accuracy = 93.75%
Step 7800, train loss = 0.16, train accuracy = 93.75%
Step 7850, train loss = 0.08, train accuracy = 100.00%
Step 7900, train loss = 0.10, train accuracy = 96.88%
Step 7950, train loss = 0.13, train accuracy = 93.75%
Step 8000, train loss = 0.18, train accuracy = 90.62%
Step 8050, train loss = 0.27, train accuracy = 93.75%
Step 8100, train loss = 0.04, train accuracy = 100.00%
Step 8150, train loss = 0.27, train accuracy = 87.50%
Step 8200, train loss = 0.06, train accuracy = 96.88%
Step 8250, train loss = 0.12, train accuracy = 100.00%
Step 8300, train loss = 0.28, train accuracy = 87.50%
Step 8350, train loss = 0.24, train accuracy = 90.62%
Step 8400, train loss = 0.16, train accuracy = 93.75%
Step 8450, train loss = 0.11, train accuracy = 93.75%
Step 8500, train loss = 0.13, train accuracy = 96.88%
Step 8550, train loss = 0.05, train accuracy = 100.00%
Step 8600, train loss = 0.10, train accuracy = 93.75%
Step 8650, train loss = 0.14, train accuracy = 100.00%
Step 8700, train loss = 0.21, train accuracy = 90.62%
Step 8750, train loss = 0.09, train accuracy = 96.88%
Step 8800, train loss = 0.11, train accuracy = 96.88%
Step 8850, train loss = 0.10, train accuracy = 96.88%
Step 8900, train loss = 0.12, train accuracy = 93.75%
Step 8950, train loss = 0.48, train accuracy = 81.25%
Step 9000, train loss = 0.07, train accuracy = 100.00%
Step 9050, train loss = 0.03, train accuracy = 100.00%
Step 9100, train loss = 0.10, train accuracy = 93.75%
Step 9150, train loss = 0.05, train accuracy = 96.88%
Step 9200, train loss = 0.04, train accuracy = 100.00%
Step 9250, train loss = 0.03, train accuracy = 100.00%
Step 9300, train loss = 0.04, train accuracy = 96.88%
Step 9350, train loss = 0.08, train accuracy = 100.00%
Step 9400, train loss = 0.05, train accuracy = 100.00%
Step 9450, train loss = 0.15, train accuracy = 90.62%
Step 9500, train loss = 0.03, train accuracy = 100.00%
Step 9550, train loss = 0.05, train accuracy = 100.00%
Step 9600, train loss = 0.15, train accuracy = 96.88%
Step 9650, train loss = 0.03, train accuracy = 100.00%
Step 9700, train loss = 0.02, train accuracy = 100.00%
Step 9750, train loss = 0.08, train accuracy = 96.88%
Step 9800, train loss = 0.04, train accuracy = 100.00%
Step 9850, train loss = 0.06, train accuracy = 96.88%
Step 9900, train loss = 0.03, train accuracy = 100.00%
Step 9950, train loss = 0.03, train accuracy = 100.00%
Step 10000, train loss = 0.11, train accuracy = 93.75%
Step 10050, train loss = 0.02, train accuracy = 100.00%
Step 10100, train loss = 0.01, train accuracy = 100.00%
Step 10150, train loss = 0.05, train accuracy = 96.88%
Step 10200, train loss = 0.07, train accuracy = 96.88%
Step 10250, train loss = 0.06, train accuracy = 96.88%
Step 10300, train loss = 0.03, train accuracy = 100.00%
Step 10350, train loss = 0.08, train accuracy = 96.88%
Step 10400, train loss = 0.05, train accuracy = 96.88%
Step 10450, train loss = 0.02, train accuracy = 100.00%
Step 10500, train loss = 0.22, train accuracy = 93.75%
Step 10550, train loss = 0.06, train accuracy = 100.00%
Step 10600, train loss = 0.02, train accuracy = 100.00%
Step 10650, train loss = 0.02, train accuracy = 100.00%
Step 10700, train loss = 0.03, train accuracy = 100.00%
Step 10750, train loss = 0.15, train accuracy = 96.88%
Step 10800, train loss = 0.05, train accuracy = 100.00%
Step 10850, train loss = 0.02, train accuracy = 100.00%
Step 10900, train loss = 0.04, train accuracy = 96.88%
Step 10950, train loss = 0.05, train accuracy = 96.88%
Step 11000, train loss = 0.02, train accuracy = 100.00%
Step 11050, train loss = 0.10, train accuracy = 96.88%
Step 11100, train loss = 0.08, train accuracy = 96.88%
Step 11150, train loss = 0.02, train accuracy = 100.00%
Step 11200, train loss = 0.01, train accuracy = 100.00%
Step 11250, train loss = 0.06, train accuracy = 96.88%
Step 11300, train loss = 0.18, train accuracy = 93.75%
Step 11350, train loss = 0.02, train accuracy = 100.00%
Step 11400, train loss = 0.04, train accuracy = 100.00%
Step 11450, train loss = 0.03, train accuracy = 100.00%
Step 11500, train loss = 0.01, train accuracy = 100.00%
Step 11550, train loss = 0.02, train accuracy = 100.00%

核心代码

        weights = tf.get_variable('weights',  shape=[3, 3, 3, 16],  dtype=tf.float32,  initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  biases = tf.get_variable('biases',  shape=[16],  dtype=tf.float32,  initializer=tf.constant_initializer(0.1))  conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')  pre_activation = tf.nn.bias_add(conv, biases)  conv1 = tf.nn.relu(pre_activation, name=scope.name)  with tf.variable_scope('pooling1_lrn') as scope:  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')  norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')  with tf.variable_scope('conv2') as scope:  weights = tf.get_variable('weights',  shape=[3, 3, 16, 16],  dtype=tf.float32,  initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  biases = tf.get_variable('biases',  shape=[16],  dtype=tf.float32,  initializer=tf.constant_initializer(0.1))  conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')  pre_activation = tf.nn.bias_add(conv, biases)  conv2 = tf.nn.relu(pre_activation, name='conv2')  with tf.variable_scope('pooling2_lrn') as scope:  norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')  with tf.variable_scope('local3') as scope:  reshape = tf.reshape(pool2, shape=[batch_size, -1])  dim = reshape.get_shape()[1].value  weights = tf.get_variable('weights',  shape=[dim, 128],  dtype=tf.float32,  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  biases = tf.get_variable('biases',  shape=[128],  dtype=tf.float32,  initializer=tf.constant_initializer(0.1))  local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)  # local4  with tf.variable_scope('local4') as scope:  weights = tf.get_variable('weights',  shape=[128, 128],  dtype=tf.float32,  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  biases = tf.get_variable('biases',  shape=[128],  dtype=tf.float32,  initializer=tf.constant_initializer(0.1))  local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')  with tf.variable_scope('softmax_linear') as scope:  weights = tf.get_variable('softmax_linear',  shape=[128, n_classes],  dtype=tf.float32,  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  biases = tf.get_variable('biases',  shape=[n_classes],  dtype=tf.float32,  initializer=tf.constant_initializer(0.1))  softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear') 

CV之IC之AlexNet:基于tensorflow框架采用CNN卷积神经网络算法(改进的AlexNet,训练/评估/推理)实现猫狗分类识别案例应用相关推荐

  1. CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

    CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别 目录 基于tensorflow框架采用CNN(改进的AlexNet, ...

  2. Pytorch之CNN:基于Pytorch框架实现经典卷积神经网络的算法(LeNet、AlexNet、VGG、NIN、GoogleNet、ResNet)——从代码认知CNN经典架构

    Pytorch之CNN:基于Pytorch框架实现经典卷积神经网络的算法(LeNet.AlexNet.VGG.NIN.GoogleNet.ResNet)--从代码认知CNN经典架构 目录 CNN经典算 ...

  3. TF之LSTM:基于Tensorflow框架采用PTB数据集建立LSTM网络的自然语言建模

    TF之LSTM:基于Tensorflow框架采用PTB数据集建立LSTM网络的自然语言建模 目录 关于PTB数据集 代码实现 关于PTB数据集 PTB (Penn Treebank Dataset)文 ...

  4. 基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统

    今天在查资料的时候在网上看到一篇文章,博主是基于TensorFlow实现的CNN来完成对垃圾分类识别的,想到最近正好在使用Pytorch就想也做一下,就当是项目开发实践了.先看下动态操作效果: 原文在 ...

  5. DL之VGG16:基于VGG16迁移技术实现猫狗分类识别(图片数据量调整→保存h5模型)

    DL之VGG16:基于VGG16迁移技术实现猫狗分类识别(图片数据量调整→保存h5模型) 目录 基于VGG16迁移技术实现猫狗分类识别(图片数据量调整→保存h5模型) 设计思路 输出结果 1488/1 ...

  6. DL之AlexNet:利用卷积神经网络类AlexNet实现猫狗分类识别(图片数据增强→保存h5模型)

    DL之AlexNet:利用卷积神经网络类AlexNet实现猫狗分类识别(图片数据增强→保存h5模型) 目录 利用卷积神经网络类AlexNet实现猫狗分类识别(图片数据增强→保存h5模型) 设计思路 处 ...

  7. 【Deep Learning】基于 Keras 的猫狗分类识别

    基于 Keras 的猫狗分类识别 更新: 本文代码github连接:https://github.com/Sdamu/Keras_pratice    本篇主要实现利用 Keras 来实现 Kaggl ...

  8. 基于深度学习的恶意样本行为检测(含源码) ----采用CNN深度学习算法对Cuckoo沙箱的动态行为日志进行检测和分类...

    from:http://www.freebuf.com/articles/system/182566.html 0×01 前言 目前的恶意样本检测方法可以分为两大类:静态检测和动态检测.静态检测是指并 ...

  9. 使用Tensorflow 2进行猫狗分类识别

    使用Tensorflow 2进行猫狗分类识别 本文参照了大佬Andrew Ng的所讲解的Tensorflow 2视频所写,本文将其中只适用于Linux的功能以及只适用于Google Colab的功能改 ...

最新文章

  1. SpringCloud Alibaba微服务实战(一) - 基础环境搭建
  2. jquery控制只监听数字_jQuery老矣,尚能饭否
  3. NYOJ 336 子序列
  4. Spring入门hello world常见问题及解决办法
  5. 只需要30秒就可以做的30件事情:你会选择哪一件来改变世界?
  6. 对话王晶:音频人才亟待培养,高水平研究人员尤其欠缺
  7. MySQL 事务 | ACID、四种隔离级别、并发带来的隔离问题、事务的使用与实现
  8. LeetCode OJ 之 Valid Anagram
  9. 第一次使用Android Studio时你应该知道的一切配置(二):新建一个属于自己的工程并安装Genymotion模拟器...
  10. Starter Kit for ASP.NET 2.0 家族又添新丁!
  11. linux x64系统android开发环境搭建
  12. 存档:命令行程序的路径参数不能有空格
  13. 平台型时间信号强度曲线_中联重科直臂式高空作业平台 ZT42J
  14. 阿里云产品专家孟威:SLS 全景体验
  15. 基于AChartEngine绘制股票走势图----分时图二(五日,涨跌涨跌幅)
  16. Cocos Creator 3D 摇杆控制器一种简单实现!
  17. 【.7z 格式文件的压缩、解压】
  18. android入门小Demo
  19. The end tag “</c:forEach“ is unbalanced
  20. 系统学习机器学习之维度归约(完整篇)

热门文章

  1. Android 版本更新(非热更新) 适配7.0更新 以及三星 note系列读取内存相关目录无权限问题
  2. vue项目 前端跨域进行配置
  3. ShardingSphere对接京东白条实战
  4. java集合业务问题:取出List里面Map的key:value值(具体问题在文中)
  5. 服务器上的文件总提示只读,如何解决域内成员打开文件老是以只读方式打开
  6. 关于河北省推进实施污染防治设施分表计电的解读
  7. Linux 根目录满了 linux根目录扩容方法 详解!!!
  8. 分享7个实用又高效的 Node.js 工具库
  9. Android之——自动挂断电话的实现
  10. 癞蛤蟆与天鹅的爱情故事--天空16度蓝