Logistic回归与牛顿迭代法

很早之前介绍过《无约束的最优方法》里面介绍了梯度下降法和牛顿迭代法等优化算法。

同时大家对于Logistic回归中的梯度下降法更为熟悉,而牛顿迭代法对数学要求更高,所以这里介绍如何在Logistic回归问题中使用牛顿迭代法。

似然函数与代价函数

似然函数则是

L(ω)=Πmi=1[g(xi)]yi[1−g(xi)]1−yi

L(\omega) = \Pi_{i=1}^m[g(x_i)]^{y_i}[1-g(x_i)]^{1-y_i}

然后我们的目标是求出使这一似然函数的值最大的参数,最大似然估计就是求出参数.

对上式两边取log或者ln就可以得到熟悉的代价函数了。

lnL(ω)=∑i=1m[yiln(g(xi))+(1−yi)(1−g(xi))]=∑i=1m(yi·lnexiexi+1+(1−yi)·ln1exi+1)=∑i=1m(xiyi−ln(1+exi))

lnL(\omega)=\sum_{i=1}^m[y_iln(g(x_i))+(1-y_i)(1-g(x_i))] \\ = \sum_{i=1}^m(y_i·ln{e^x_i\over e^x_i+1}+(1-y_i)·ln{1\over e^x_i+1}) \\ = \sum_{i=1}^m(x_iy_i-ln(1+e^x_i))

其中xi=ω0+ω1xi1+ω2xi2+...+ωnxinx_i=\omega_0+\omega_1x_i1+\omega_2x_i2+...+\omega_nx_in。现在求向量ω=(ω0,ω1,ω2,...,ωn)\omega = (\omega_0, \omega_1, \omega_2, ..., \omega_n)使得L(ω)L(\omega)

偏导函数为

∂ln(L(ω))∂ωk=∑i=1mxik[yi−g(xi)]

{\partial ln(L(\omega))\over \partial\omega_k} = \sum_{i=1}^mx_{ik}[y_i-g(x_i)]

这是一个多元函数,变元就是ω0→ωn\omega_0 \rightarrow \omega_n,在之前的文章中有如何用牛顿迭代法求解多元函数的极值。

Hessian矩阵

极值点的导数一定为零,所以我们可以列出n+1个方程,联立解出所有的参数ω0→ωn\omega_0 \rightarrow \omega_n。

首先,用Hessian矩阵判断极值的存在性,方程组如下:

∂ln(L(ω))∂ω0=∑i=1mxi0[yi−g(xi)]=0

{\partial ln(L(\omega))\over \partial\omega_0} = \sum_{i=1}^mx_{i0}[y_i-g(x_i)]=0

∂ln(L(ω))∂ω1=∑i=1mxi1[yi−g(xi)]=0

{\partial ln(L(\omega))\over \partial\omega_1} = \sum_{i=1}^mx_{i1}[y_i-g(x_i)]=0

∂ln(L(ω))∂ω2=∑i=1mxi2[yi−g(xi)]=0

{\partial ln(L(\omega))\over \partial\omega_2} = \sum_{i=1}^mx_{i2}[y_i-g(x_i)]=0

⋅⋅⋅

\cdot \\ \cdot \\ \cdot

∂ln(L(ω))∂ωn=∑i=1mxin[yi−g(xi)]=0

{\partial ln(L(\omega))\over \partial\omega_n} = \sum_{i=1}^mx_{in}[y_i-g(x_i)]=0

这一共是n−1n-1个方程,现在的问题变为如何解这个方程组。求Hessian矩阵就得先求二阶偏导,即

∂2ln(L(ω))∂ωk∂ωr=∂(∑mi=1xin[yi−g(xi)])∂ωr=∑i=1mxik(−exi1+exi)′−∑i=1mxikexix′i(1+exi)−e2xix′i(1+exi)2=∑i=1mxikxirg(xi)[g(xi)−1]==∑i=1mxikg(xi)[g(xi)−1]xir

{\partial^2 ln(L(\omega))\over \partial\omega_k\partial\omega_r} = {\partial(\sum_{i=1}^mx_{in}[y_i-g(x_i)])\over \partial\omega_r} \\ = \sum_{i=1}^mx_{ik}(-{e^x_i\over 1+e^x_i})^\prime \\ -\sum_{i=1}^mx_{ik}{e^x_ix_i^\prime(1+e^x_i)-e^{2x_i}x_i^\prime \over (1+e^x_i)^2} \\ = \sum_{i=1}^mx_{ik}x_{ir}g(x_i)[g(x_i)-1] == \sum_{i=1}^mx_{ik}g(x_i)[g(x_i)-1]x_{ir}

用Hessian矩阵表示为

所以得到Hessian矩阵H=XTAXH=X^TAX,因为0<g(xi)<10,矩阵A是负定的,那么现在证明H也是负定的。

证明:
设任意的VV是nn维向量,因为A是负定的,那么(XV)TA(XV)(XV)^TA(XV)为二次型,也是负定的,那么

(XV)TA(XV)=VTXTAXV≤0

(XV)^TA(XV)=V^TX^TAXV\leq 0
所以 H=XTAXH=X^TAX也是负定的。

Hessian矩阵是负定的,也就是说多元函数存在局部极大值,这符合开始需求的最大似然估计。

牛顿迭代法

对于Logistic回归问题,Hessian矩阵对于任意数据都是负定的,所以说极值点只有一个,初始点选取无关紧要。
可以得到如下迭代式子

其中H为Hessian矩阵,而U的表示如下

由于Hessian矩阵H是对称负定的,将矩阵A提取一个负号出来,得到

则Hessian矩阵H就变成了H′=XTA′XH^\prime = X^TA^\prime X,则H′H^\prime就是对称正定,则牛顿迭代法公式变成:

现在的重点是如何快速并有效计算H′−1UH^{\prime -1}U,即解方程组,通常的做法是直接用高斯消元法求解,
但是这样做有弊端,弊端有两个:

  1. 效率低
  2. 数值稳定性差

由于H′H^\prime是对称正定的,可以用Cholesky矩阵分解法来解。

/*****************************************************************************/
/* Name: matrix.h                                                            */
/* Uses: Class for matrix math functions.                                    */
/* Date: 4/19/2011                                                           */
/* Author: Andrew Que <http://www.DrQue.net/>                                */
/* Revisions:                                                                */
/*   0.1 - 2011/04/19 - QUE - Creation.                                      */
/*   0.5 - 2011/04/24 - QUE - Most functions are complete.                   */
/*   0.8 - 2011/05/01 - QUE -                                                */
/*     = Bug fixes.                                                          */
/*     + Dot product.                                                        */
/*   1.0 - 2011/11/26 - QUE - Release.                                       */
/*                                                                           */
/* Notes:                                                                    */
/*   This unit implements some very basic matrix functions, which include:   */
/*    + Addition/subtraction                                                 */
/*    + Transpose                                                            */
/*    + Row echelon reduction                                                */
/*    + Determinant                                                          */
/*    + Dot product                                                          */
/*    + Matrix product                                                       */
/*    + Scalar product                                                       */
/*    + Inversion                                                            */
/*    + LU factorization/decomposition                                       */
/*     There isn't much for optimization in this unit as it was designed as  */
/*   more of a learning experience.                                          */
/*                                                                           */
/* License:                                                                  */
/*   This program is free software: you can redistribute it and/or modify    */
/*   it under the terms of the GNU General Public License as published by    */
/*   the Free Software Foundation, either version 3 of the License, or       */
/*   (at your option) any later version.                                     */
/*                                                                           */
/*   This program is distributed in the hope that it will be useful,         */
/*   but WITHOUT ANY WARRANTY; without even the implied warranty of          */
/*   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the           */
/*   GNU General Public License for more details.                            */
/*                                                                           */
/*   You should have received a copy of the GNU General Public License       */
/*   along with this program.  If not, see <http://www.gnu.org/licenses/>.   */
/*                                                                           */
/*                     (C) Copyright 2011 by Andrew Que                      */
/*                           http://www.DrQue.net/                           */
/*****************************************************************************/
#ifndef _MATRIX_H_
#define _MATRIX_H_  #include <iostream>
#include <cassert>
#include <climits>
#include <vector>  // Class forward for identity matrix.
template< class TYPE > class IdentityMatrix;  //=============================================================================
// Matrix template class
//   Contains a set of matrix manipulation functions.  The template is designed
// so that the values of the matrix can be of any type that allows basic
// arithmetic.
//=============================================================================
template< class TYPE = int >  class Matrix  {  protected:  // Matrix data.  unsigned rows;  unsigned columns;  // Storage for matrix data.  std::vector< std::vector< TYPE > > matrix;  // Order sub-index for rows.  //   Use: matrix[ order[ row ] ][ column ].  unsigned * order;  //-------------------------------------------------------------  // Return the number of leading zeros in the given row.  //-------------------------------------------------------------  unsigned getLeadingZeros  (  // Row to count  unsigned row  ) const  {  TYPE const ZERO = static_cast< TYPE >( 0 );  unsigned column = 0;  while ( ZERO == matrix[ row ][ column ] )  ++column;  return column;  }  //-------------------------------------------------------------  // Reorder the matrix so the rows with the most zeros are at  // the end, and those with the least at the beginning.  //  // NOTE: The matrix data itself is not manipulated, just the  // 'order' sub-indexes.  //-------------------------------------------------------------  void reorder()  {  unsigned * zeros = new unsigned[ rows ];  for ( unsigned row = 0; row < rows; ++row )  {  order[ row ] = row;  zeros[ row ] = getLeadingZeros( row );  }  for ( unsigned row = 0; row < (rows-1); ++row )  {  unsigned swapRow = row;  for ( unsigned subRow = row + 1; subRow < rows; ++subRow )  {  if ( zeros[ order[ subRow ] ] < zeros[ order[ swapRow ] ] )  swapRow = subRow;  }  unsigned hold    = order[ row ];  order[ row ]     = order[ swapRow ];  order[ swapRow ] = hold;  }  delete zeros;  }  //-------------------------------------------------------------  // Divide a row by given value.  An elementary row operation.  //-------------------------------------------------------------  void divideRow  (  // Row to divide.  unsigned row,  // Divisor.  TYPE const & divisor  )  {  for ( unsigned column = 0; column < columns; ++column )  matrix[ row ][ column ] /= divisor;  }  //-------------------------------------------------------------  // Modify a row by adding a scaled row. An elementary row  // operation.  //-------------------------------------------------------------  void rowOperation  (  unsigned row,  unsigned addRow,  TYPE const & scale  )  {  for ( unsigned column = 0; column < columns; ++column )  matrix[ row ][ column ] += matrix[ addRow ][ column ] * scale;  }  //-------------------------------------------------------------  // Allocate memory for matrix data.  //-------------------------------------------------------------  void allocate  (  unsigned rowNumber,  unsigned columnNumber  )  {  // Allocate order integers.  order = new unsigned[ rowNumber ];  // Setup matrix sizes.  matrix.resize( rowNumber );  for ( unsigned row = 0; row < rowNumber; ++row )  matrix[ row ].resize( columnNumber );  }  //-------------------------------------------------------------  // Free memory used for matrix data.  //-------------------------------------------------------------  void deallocate  (  unsigned rowNumber,  unsigned columnNumber  )  {  // Free memory used for storing order (if there is any).  if ( 0 != rowNumber )  delete[] order;  }  public:  // Used for matrix concatenation.  typedef enum  {  TO_RIGHT,  TO_BOTTOM  } Position;  //-------------------------------------------------------------  // Return the number of rows in this matrix.  //-------------------------------------------------------------  unsigned getRows() const  {  return rows;  }  //-------------------------------------------------------------  // Return the number of columns in this matrix.  //-------------------------------------------------------------  unsigned getColumns() const  {  return columns;  }  //-------------------------------------------------------------  // Get an element of the matrix.  //-------------------------------------------------------------  TYPE get  (  unsigned row,   // Which row.  unsigned column // Which column.  ) const  {  assert( row < rows );  assert( column < columns );  return matrix[ row ][ column ];  }  //-------------------------------------------------------------  // Proform LU decomposition.  // This will create matrices L and U such that A=LxU  //-------------------------------------------------------------  void LU_Decomposition  (  Matrix & upper,  Matrix & lower  ) const  {  assert( rows == columns );  TYPE const ZERO = static_cast< TYPE >( 0 );  upper = *this;  lower = *this;  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  lower.matrix[ row ][ column ] = ZERO;  for ( unsigned row = 0; row < rows; ++row )  {  TYPE value = upper.matrix[ row ][ row ];  if ( ZERO != value )  {  upper.divideRow( row, value );  lower.matrix[ row ][ row ] = value;  }  for ( unsigned subRow = row + 1; subRow < rows; ++subRow )  {  TYPE value = upper.matrix[ subRow ][ row ];  upper.rowOperation( subRow, row, -value );  lower.matrix[ subRow ][ row ] = value;  }  }  }  //-------------------------------------------------------------  // Set an element in the matrix.  //-------------------------------------------------------------  void put  (  unsigned row,  unsigned column,  TYPE const & value  )  {  assert( row < rows );  assert( column < columns );  matrix[ row ][ column ] = value;  }  //-------------------------------------------------------------  // Return part of the matrix.  // NOTE: The end points are the last elements copied.  They can  // be equal to the first element when wanting just a single row  // or column.  However, the span of the total matrix is  // ( 0, rows - 1, 0, columns - 1 ).  //-------------------------------------------------------------  Matrix getSubMatrix  (  unsigned startRow,  unsigned endRow,  unsigned startColumn,  unsigned endColumn,  unsigned const * newOrder = NULL  )  {  Matrix subMatrix( endRow - startRow + 1, endColumn - startColumn + 1 );  for ( unsigned row = startRow; row <= endRow; ++row )  {  unsigned subRow;  if ( NULL == newOrder )  subRow = row;  else  subRow = newOrder[ row ];  for ( unsigned column = startColumn; column <= endColumn; ++column )  subMatrix.matrix[ row - startRow ][ column - startColumn ] =  matrix[ subRow ][ column ];  }  return subMatrix;  }  //-------------------------------------------------------------  // Return a single column from the matrix.  //-------------------------------------------------------------  Matrix getColumn  (  unsigned column  )  {  return getSubMatrix( 0, rows - 1, column, column );  }  //-------------------------------------------------------------  // Return a single row from the matrix.  //-------------------------------------------------------------  Matrix getRow  (  unsigned row  )  {  return getSubMatrix( row, row, 0, columns - 1 );  }  //-------------------------------------------------------------  // Place matrix in reduced row echelon form.  //-------------------------------------------------------------  void reducedRowEcholon()  {  TYPE const ZERO = static_cast< TYPE >( 0 );  // For each row...  for ( unsigned rowIndex = 0; rowIndex < rows; ++rowIndex )  {  // Reorder the rows.  reorder();  unsigned row = order[ rowIndex ];  // Divide row down so first term is 1.  unsigned column = getLeadingZeros( row );  TYPE divisor = matrix[ row ][ column ];  if ( ZERO != divisor )  {  divideRow( row, divisor );  // Subtract this row from all subsequent rows.  for ( unsigned subRowIndex = ( rowIndex + 1 ); subRowIndex < rows; ++subRowIndex )  {  unsigned subRow = order[ subRowIndex ];  if ( ZERO != matrix[ subRow ][ column ] )  rowOperation  (  subRow,  row,  -matrix[ subRow ][ column ]  );  }  }  }  // Back substitute all lower rows.  for ( unsigned rowIndex = ( rows - 1 ); rowIndex > 0; --rowIndex )  {  unsigned row = order[ rowIndex ];  unsigned column = getLeadingZeros( row );  for ( unsigned subRowIndex = 0; subRowIndex < rowIndex; ++subRowIndex )  {  unsigned subRow = order[ subRowIndex ];  rowOperation  (  subRow,  row,  -matrix[ subRow ][ column ]  );  }  }  } // reducedRowEcholon  //-------------------------------------------------------------  // Return the determinant of the matrix.  // Recursive function.  //-------------------------------------------------------------  TYPE determinant() const  {  TYPE result = static_cast< TYPE >( 0 );  // Must have a square matrix to even bother.  assert( rows == columns );  if ( rows > 2 )  {  int sign = 1;  for ( unsigned column = 0; column < columns; ++column )  {  TYPE subDeterminant;  Matrix subMatrix = Matrix( *this, 0, column );  subDeterminant  = subMatrix.determinant();  subDeterminant *= matrix[ 0 ][ column ];  if ( sign > 0 )  result += subDeterminant;  else  result -= subDeterminant;  sign = -sign;  }  }  else  {  result = ( matrix[ 0 ][ 0 ] * matrix[ 1 ][ 1 ] )  - ( matrix[ 0 ][ 1 ] * matrix[ 1 ][ 0 ] );  }  return result;  } // determinant  //-------------------------------------------------------------  // Calculate a dot product between this and an other matrix.  //-------------------------------------------------------------  TYPE dotProduct  (  Matrix const & otherMatrix  ) const  {  // Dimentions of each matrix must be the same.  assert( rows == otherMatrix.rows );  assert( columns == otherMatrix.columns );  TYPE result = static_cast< TYPE >( 0 );  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  {  result +=  matrix[ row ][ column ]  * otherMatrix.matrix[ row ][ column ];  }  return result;  } // dotProduct  //-------------------------------------------------------------  // Return the transpose of the matrix.  //-------------------------------------------------------------  Matrix const getTranspose() const  {  Matrix result( columns, rows );  // Transpose the matrix by filling the result's rows will  // these columns, and vica versa.  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  result.matrix[ column ][ row ] = matrix[ row ][ column ];  return result;  } // transpose  //-------------------------------------------------------------  // Transpose the matrix.  //-------------------------------------------------------------  void transpose()  {  *this = getTranspose();  }  //-------------------------------------------------------------  // Return inverse matrix.  //-------------------------------------------------------------  Matrix const getInverse() const  {  // Concatenate the identity matrix onto this matrix.  Matrix inverseMatrix  (  *this,  IdentityMatrix< TYPE >( rows, columns ),  TO_RIGHT  );  // Row reduce this matrix.  This will result in the identity  // matrix on the left, and the inverse matrix on the right.  inverseMatrix.reducedRowEcholon();  // Copy the inverse matrix data back to this matrix.  Matrix result  (  inverseMatrix.getSubMatrix  (  0,  rows - 1,  columns,  columns + columns - 1,  inverseMatrix.order  )  );  return result;  } // invert  //-------------------------------------------------------------  // Invert this matrix.  //-------------------------------------------------------------  void invert()  {  *this = getInverse();  } // invert  //=======================================================================  // Operators.  //=======================================================================  //-------------------------------------------------------------  // Add by an other matrix.  //-------------------------------------------------------------  Matrix const operator +  (  Matrix const & otherMatrix  ) const  {  assert( otherMatrix.rows == rows );  assert( otherMatrix.columns == columns );  Matrix result( rows, columns );  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  result.matrix[ row ][ column ] =  matrix[ row ][ column ]  + otherMatrix.matrix[ row ][ column ];  return result;  }  //-------------------------------------------------------------  // Add self by an other matrix.  //-------------------------------------------------------------  Matrix const & operator +=  (  Matrix const & otherMatrix  )  {  *this = *this + otherMatrix;  return *this;  }  //-------------------------------------------------------------  // Subtract by an other matrix.  //-------------------------------------------------------------  Matrix const operator -  (  Matrix const & otherMatrix  ) const  {  assert( otherMatrix.rows == rows );  assert( otherMatrix.columns == columns );  Matrix result( rows, columns );  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  result.matrix[ row ][ column ] =  matrix[ row ][ column ]  - otherMatrix.matrix[ row ][ column ];  return result;  }  //-------------------------------------------------------------  // Subtract self by an other matrix.  //-------------------------------------------------------------  Matrix const & operator -=  (  Matrix const & otherMatrix  )  {  *this = *this - otherMatrix;  return *this;  }  //-------------------------------------------------------------  // Matrix multiplication.  //-------------------------------------------------------------  Matrix const operator *  (  Matrix const & otherMatrix  ) const  {  TYPE const ZERO = static_cast< TYPE >( 0 );  assert( otherMatrix.rows == columns );  Matrix result( rows, otherMatrix.columns );  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < otherMatrix.columns; ++column )  {  result.matrix[ row ][ column ] = ZERO;  for ( unsigned index = 0; index < columns; ++index )  result.matrix[ row ][ column ] +=  matrix[ row ][ index ]  * otherMatrix.matrix[ index ][ column ];  }  return result;  }  //-------------------------------------------------------------  // Multiply self by matrix.  //-------------------------------------------------------------  Matrix const & operator *=  (  Matrix const & otherMatrix  )  {  *this = *this * otherMatrix;  return *this;  }  //-------------------------------------------------------------  // Multiply by scalar constant.  //-------------------------------------------------------------  Matrix const operator *  (  TYPE const & scalar  ) const  {  Matrix result( rows, columns );  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  result.matrix[ row ][ column ] = matrix[ row ][ column ] * scalar;  return result;  }  //-------------------------------------------------------------  // Multiply self by scalar constant.  //-------------------------------------------------------------  Matrix const & operator *=  (  TYPE const & scalar  )  {  *this = *this * scalar;  return *this;  }  //-------------------------------------------------------------  // Copy matrix.  //-------------------------------------------------------------  Matrix & operator =  (  Matrix const & otherMatrix  )  {  if ( this == &otherMatrix )  return *this;  // Release memory currently in use.  deallocate( rows, columns );  rows    = otherMatrix.rows;  columns = otherMatrix.columns;  allocate( rows, columns );  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  matrix[ row ][ column ] =  otherMatrix.matrix[ row ][ column ];  return *this;  }  //-------------------------------------------------------------  // Copy matrix data from array.  // Although matrix data is two dimensional, this copy function  // assumes the previous row is immediately followed by the next  // row's data.  //  // Example for 3x2 matrix:  //     int const data[ 3 * 2 ] =  //     {  //       1, 2, 3,  //       4, 5, 6  //     };  //    Matrix< int > matrix( 3, 2 );  //    matrix = data;  //-------------------------------------------------------------  Matrix & operator =  (  TYPE const * data  )  {  unsigned index = 0;  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  matrix[ row ][ column ] = data[ index++ ];  return *this;  }  //-----------------------------------------------------------------------  // Return true if this matrix is the same of parameter.  //-----------------------------------------------------------------------  bool operator ==  (  Matrix const & value  ) const  {  bool isEqual = true;  for ( unsigned row = 0; row < rows; ++row )  for ( unsigned column = 0; column < columns; ++column )  if ( matrix[ row ][ column ] != value.matrix[ row ][ column ] )  isEqual = false;  return isEqual;  }  //-----------------------------------------------------------------------  // Return true if this matrix is NOT the same of parameter.  //-----------------------------------------------------------------------  bool operator !=  (  Matrix const & value  ) const  {  return !( *this == value );  }  //-------------------------------------------------------------  // Constructor for empty matrix.  // Only useful if matrix is being assigned (i.e. copied) from  // somewhere else sometime after construction.  //-------------------------------------------------------------  Matrix()  :  rows( 0 ),  columns( 0 )  {  allocate( 0, 0 );  }  //-------------------------------------------------------------  // Constructor using rows and columns.  //-------------------------------------------------------------  Matrix  (  unsigned rowsParameter,  unsigned columnsParameter  )  :  rows( rowsParameter ),  columns( columnsParameter )  {  TYPE const ZERO = static_cast< TYPE >( 0 );  // Allocate memory for new matrix.  allocate( rows, columns );  // Fill matrix with zero.  for ( unsigned row = 0; row < rows; ++row )  {  order[ row ] = row;  for ( unsigned column = 0; column < columns; ++column )  matrix[ row ][ column ] = ZERO;  }  }  //-------------------------------------------------------------  // This constructor will allow the creation of a matrix based off  // an other matrix.  It can copy the matrix entirely, or omitted a  // row/column.  //-------------------------------------------------------------  Matrix  (  Matrix const & copyMatrix,  unsigned omittedRow    = INT_MAX,  unsigned omittedColumn = INT_MAX  )  {  // Start with the number of rows/columns from matrix to be copied.  rows    = copyMatrix.getRows();  columns = copyMatrix.getColumns();  // If a row is omitted, then there is one less row.  if ( INT_MAX != omittedRow  )  rows--;  // If a column is omitted, then there is one less column.  if ( INT_MAX != omittedColumn )  columns--;  // Allocate memory for new matrix.  allocate( rows, columns );  unsigned rowIndex = 0;  for ( unsigned row = 0; row < rows; ++row )  {  // If this row is to be skipped...  if ( rowIndex == omittedRow )  rowIndex++;  // Set default order.  order[ row ] = row;  unsigned columnIndex = 0;  for ( unsigned column = 0; column < columns; ++column )  {  // If this column is to be skipped...  if ( columnIndex == omittedColumn )  columnIndex++;  matrix[ row ][ column ] = copyMatrix.matrix[ rowIndex ][ columnIndex ];  columnIndex++;  }  ++rowIndex;  }  }  //-------------------------------------------------------------  // Constructor to concatenate two matrices.  Concatenation  // can be done to the right, or to the bottom.  //   A = [B | C]  //-------------------------------------------------------------  Matrix  (  Matrix const & copyMatrixA,  Matrix const & copyMatrixB,  Position position = TO_RIGHT  )  {  unsigned rowOffset    = 0;  unsigned columnOffset = 0;  if ( TO_RIGHT == position )  columnOffset = copyMatrixA.columns;  else  rowOffset = copyMatrixA.rows;  rows    = copyMatrixA.rows    + rowOffset;  columns = copyMatrixA.columns + columnOffset;  // Allocate memory for new matrix.  allocate( rows, columns );  for ( unsigned row = 0; row < copyMatrixA.rows; ++row )  for ( unsigned column = 0; column < copyMatrixA.columns; ++column )  matrix[ row ][ column ] = copyMatrixA.matrix[ row ][ column ];  for ( unsigned row = 0; row < copyMatrixB.rows; ++row )  for ( unsigned column = 0; column < copyMatrixB.columns; ++column )  matrix[ row + rowOffset ][ column + columnOffset ] =  copyMatrixB.matrix[ row ][ column ];  }  //-------------------------------------------------------------  // Destructor.  //-------------------------------------------------------------  ~Matrix()  {  // Release memory.  deallocate( rows, columns );  }  };  //=============================================================================
// Class for identity matrix.
//=============================================================================
template< class TYPE >  class IdentityMatrix : public Matrix< TYPE >  {  public:  IdentityMatrix  (  unsigned rowsParameter,  unsigned columnsParameter  )  :  Matrix< TYPE >( rowsParameter, columnsParameter )  {  TYPE const ZERO = static_cast< TYPE >( 0 );  TYPE const ONE  = static_cast< TYPE >( 1 );  for ( unsigned row = 0; row < Matrix< TYPE >::rows; ++row )  {  for ( unsigned column = 0; column < Matrix< TYPE >::columns; ++column )  if ( row == column )  Matrix< TYPE >::matrix[ row ][ column ] = ONE;  else  Matrix< TYPE >::matrix[ row ][ column ] = ZERO;  }  }  };  //-----------------------------------------------------------------------------
// Stream operator used to convert matrix class to a string.
//-----------------------------------------------------------------------------
template< class TYPE >  std::ostream & operator<<  (  // Stream data to place string.  std::ostream & stream,  // A matrix.  Matrix< TYPE > const & matrix  )  {  for ( unsigned row = 0; row < matrix.getRows(); ++row )  {  for ( unsigned column = 0; column < matrix.getColumns(); ++column )  stream << "\t" << matrix.get( row , column );  stream << std::endl;  }  return stream;  }  #endif // _MATRIX_H_  
#include <string.h>
#include <fstream>
#include <stdio.h>
#include <math.h>  #include "matrix.h"
#define Type double
#define Vector vector  using namespace std;  /** 定义数据集结构体 */
struct Data
{  Vector<Type> x;  Type y;
};  /** 预处理数据给data */
void PreProcessData(Vector<Data>& data, string path)
{  string filename = path;  ifstream file(filename.c_str());  char s[1024];  if(file.is_open())  {  while(file.getline(s, 1024))  {  Data tmp;  Type x1, x2, x3, x4, x5, x6, x7;  sscanf(s,"%lf %lf %lf %lf %lf %lf %lf", &x1, &x2, &x3, &x4, &x5, &x6, &x7);  tmp.x.push_back(1);  tmp.x.push_back(x2);  tmp.x.push_back(x3);  tmp.x.push_back(x4);  tmp.x.push_back(x5);  tmp.x.push_back(x6);  tmp.y = x7;  data.push_back(tmp);  }  }
}  void Init(Vector<Data> &data, Vector<Type> &w)
{  w.clear();  data.clear();  PreProcessData(data, "TrainData.txt");  for(int i = 0; i < data[0].x.size(); i++)  w.push_back(0);
}  Type WX(const Vector<Type>& w, const Data& data)
{  Type ans = 0;  for(int i = 0; i < w.size(); i++)  ans += w[i] * data.x[i];  return ans;
}  Type Sigmoid(const Vector<Type>& w, const Data& data)
{  Type x = WX(w, data);  Type ans = exp(x) / (1 + exp(x));  return ans;
}  void PreMatrix(Matrix<Type> &H, Matrix<Type> &U, const Vector<Data> &data, Vector<Type> &w)
{  int ROWS = data[0].x.size();  int COLS = data.size();  Matrix<Type> A(COLS, COLS), P(ROWS, COLS), Q(COLS, 1), X(COLS, ROWS);  for(int i = 0; i < COLS; i++)  {  Type t = Sigmoid(w, data[i]);  A.put(i, i, t *(1 - t));  Q.put(i, 0, data[i].y - t);  }  for(int i = 0; i < ROWS; i++)  {  for(int j = 0; j < COLS; j++)  P.put(i, j, data[j].x[i]);  }  X = P.getTranspose();  /** 计算矩阵U和矩阵H的值 */  U = P * Q;  H = X.getTranspose() * A * X;
}  Vector<Type> Matrix2Vector(Matrix<Type> &M)
{  Vector<Type> X;  X.clear();  int ROWS = M.getRows();  for(int i = 0; i < ROWS; i++)  X.push_back(M.get(i, 0));  return X;
}  Matrix<Type> Vector2Matrix(Vector<Type> &X)
{  int ROWS = X.size();  Matrix<Type> matrix(ROWS, 1);  for(int i = 0; i < ROWS; i++)  matrix.put(i, 0, X[i]);  return matrix;
}  /** Cholesky分解得到矩阵L和矩阵D */
void Cholesky(Matrix<Type> &H, Matrix<Type> &L, Matrix<Type> &D)
{  Type t = 0;  int n = H.getRows();  for(int k = 0; k < n; k++)  {  for(int i = 0; i < k; i++)  {  t = H.get(i, i) * H.get(k, i) * H.get(k, i);  H.put(k, k, H.get(k, k) - t);  }  for(int j = k + 1; j < n; j++)  {  for(int i = 0; i < k; i++)  {  t = H.get(j, i) * H.get(i, i) * H.get(k, i);  H.put(j, k, H.get(j, k) - t);  }  t = H.get(j, k) / H.get(k, k);  H.put(j, k, t);  }  }  for(int i = 0; i < n; i++)  {  D.put(i, i, H.get(i, i));  L.put(i, i, 1);  for(int j = 0; j < i; j++)  L.put(i, j, H.get(i, j));  }
}  /** 回带求出线性方程组的解 */
void Solve(Matrix<Type> &H, Vector<Type> &X)
{  int ROWS = H.getRows();  int COLS = H.getColumns();  Matrix<Type> L(ROWS, COLS), D(ROWS, COLS);  Cholesky(H, L, D);  int n = ROWS;  for(int k = 0; k < n; k++)  {  for(int i = 0; i < k; i++)  X[k] -= X[i] * L.get(k, i);  X[k] /= L.get(k, k);  }  L = D * L.getTranspose();  for(int k = n - 1; k >= 0; k--)  {  for(int i = k + 1; i < n; i++)  X[k] -= X[i] * L.get(k, i);  X[k] /= L.get(k, k);  }
}  /** 打印迭代步骤 */
void Display(int cnt, Type error, Vector<Type> w)
{  cout<<"第"<<cnt<<"次迭代前后的目标差为: "<<error<<endl;  cout<<"参数w为: ";  for(int i = 0; i < w.size(); i++)  cout<<w[i]<<" ";  cout<<endl;  cout<<endl;
}  Type StopFlag(Vector<Type> w1, Vector<Type> w2)
{  Type ans = 0;  int size = w1.size();  for(int i = 0; i < size; i++)  ans += 0.5 * (w1[i] - w2[i]) * (w1[i] - w2[i]);  return ans;
}  /** 牛顿迭代步骤 */
void NewtonIter(Vector<Data> &data, Vector<Type> &w)
{  int cnt = 0;  Type delta = 0.0001;  int ROWS = data[0].x.size();  int COLS = data.size();  while(1)  {  Matrix<Type> H(ROWS, ROWS), U(ROWS, 1), W(ROWS, 1);  PreMatrix(H, U, data, w);  Vector<Type> X = Matrix2Vector(U);  Solve(H, X);  Matrix<Type> x = Vector2Matrix(X);  W = Vector2Matrix(w);  W += x;  Vector<Type> _w = Matrix2Vector(W);  Type error = StopFlag(_w, w);  w = _w;  cnt++;  Display(cnt, error, w);  if(error < delta) break;  }
}  /** 训练数据得到w数组,构造分类器 */
void TrainData(Vector<Data> &data, Vector<Type> &w)
{  Init(data, w);  NewtonIter(data, w);
}  /** 根据构造好的分类器对数据进行分类 */
void Separator(Vector<Type> w)
{  vector<Data> data;  PreProcessData(data, "TestData.txt");  cout<<"预测分类结果:"<<endl;  for(int i = 0; i < data.size(); i++)  {  Type p0 = 0;  Type p1 = 0;  Type x = WX(w, data[i]);  p1 = exp(x) / (1 + exp(x));  p0 = 1 - p1;  cout<<"实例: ";  for(int j = 0; j < data[i].x.size(); j++)  cout<<data[i].x[j]<<" ";  cout<<"所属类别为:";  if(p1 >= p0) cout<<1<<endl;  else cout<<0<<endl;  }
}  int main()
{  Vector<Type> w;  Vector<Data> data;  TrainData(data, w);  Separator(w);  return 0;
}  

训练数据

1 0 0 1 0 1
0 0 1 2 0 0
1 0 0 1 1 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 2 1 0
1 0 0 0 0 0
0 0 1 0 1 0
1 0 1 0 0 0
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 1 0
1 0 0 1 0 0
1 0 0 0 1 0
2 0 0 0 1 0
1 0 0 2 1 0
2 0 0 0 1 0
2 0 1 0 0 0
0 0 1 0 1 0
0 0 1 2 0 0
0 0 0 0 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 2 1 0
1 0 1 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
1 0 0 0 1 0
2 0 1 0 0 0
2 0 1 1 1 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 0 1 1 0
0 0 0 0 1 0
1 1 0 0 1 0
1 0 1 2 1 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 1 1 1 0
1 0 1 0 1 0
2 0 1 2 0 0
0 0 1 2 1 0
0 0 1 0 1 0
2 0 1 0 1 0
0 0 1 0 1 0
1 0 0 0 0 0
1 0 0 0 1 0
0 0 0 0 1 0
0 0 1 2 1 0
0 1 1 0 0 0
0 1 0 0 1 0
2 1 0 0 0 0
2 1 0 0 0 0
1 1 0 2 0 0
1 1 0 0 0 1
0 1 0 0 0 0
2 1 0 0 1 0
0 1 0 0 1 0
2 1 0 2 1 0
2 1 0 2 1 0
1 1 0 2 1 0
0 1 0 0 0 1
2 1 1 0 1 0
2 1 0 1 1 0
1 1 0 0 0 1
2 1 0 0 0 0
1 1 0 0 1 0
1 1 0 0 0 0
2 1 0 1 1 0
1 1 0 0 1 0
1 0 1 1 0 1
2 1 0 1 1 0
0 1 0 0 1 0
1 0 1 0 0 0
0 0 1 0 0 1
1 0 0 0 0 0
0 0 0 2 1 0
1 0 1 2 0 1
1 0 0 1 1 0
2 0 1 2 1 0
2 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
0 0 1 0 0 0
1 0 0 2 1 0
2 0 1 1 1 0
0 0 1 0 1 0
0 0 0 0 1 0
2 0 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 0
1 0 1 1 1 1
2 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 1 0
0 0 0 2 0 0
0 0 0 0 0 0
0 0 1 2 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 2 1 0
1 0 1 1 1 0
1 0 0 1 1 0
0 0 1 0 1 0
1 0 0 0 0 0
1 0 1 0 1 0
2 0 0 0 1 0
1 0 0 0 1 0
2 0 0 1 1 0
0 0 1 2 1 0
1 0 1 2 0 0
0 0 1 2 1 0
1 0 0 0 0 0
0 0 1 0 1 0
0 0 0 1 1 0
1 0 0 0 1 0
2 0 0 1 1 0
1 0 0 1 1 0
1 0 1 0 0 0
1 1 0 1 1 0
2 1 0 0 1 0
0 1 0 0 0 0
1 1 0 1 0 1
1 1 0 2 1 0
0 1 0 0 0 0
1 1 0 2 0 0
0 1 0 0 1 0
1 1 0 0 1 1
1 1 0 2 1 0
1 0 0 2 1 0
2 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
2 1 0 0 0 1
1 1 0 2 1 0
1 1 0 0 1 0
1 1 1 0 0 0
2 1 0 2 1 0
2 1 1 1 0 0
0 1 0 0 1 0
1 1 0 2 1 0
0 1 0 0 1 0
1 1 0 1 1 0
0 1 0 0 1 0
0 1 0 0 0 0
1 1 0 0 0 0
1 1 0 2 1 0
1 1 0 0 0 0
0 1 1 2 0 0
2 1 0 0 1 0
2 0 1 0 0 1
0 0 1 0 1 0
1 0 1 0 0 0
0 0 1 2 1 0
0 0 1 0 0 0
1 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 1 0
1 0 1 0 1 0
0 0 0 0 0 1
0 0 1 2 1 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 0 1
0 0 1 2 1 0
2 0 1 2 1 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 1 0
1 0 0 0 0 0
2 0 1 1 1 0
0 0 1 0 0 1
1 0 1 0 0 0
1 0 1 1 1 0
1 0 1 1 0 0
0 0 1 0 0 0
1 0 1 1 1 0
1 0 1 2 0 0
2 0 0 0 1 0
0 0 1 0 0 1
0 0 1 0 1 0
0 0 1 0 1 0
1 0 1 0 0 0
0 0 1 0 0 0
2 0 1 1 0 0
0 0 1 2 0 0
1 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 1 0
2 0 1 2 1 0
1 0 0 1 0 0
0 0 1 0 0 0
2 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
2 0 1 0 1 0
0 0 1 0 1 0
2 0 0 0 1 0
1 0 1 0 1 0
1 0 0 0 1 0
0 0 1 0 0 1
2 0 0 0 0 0
2 0 0 1 1 0
0 0 1 0 1 0
0 0 0 0 1 0
2 0 1 0 0 0
1 0 1 0 1 0
0 0 0 0 1 0
1 0 1 0 1 0
0 0 1 0 0 0
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 1 0
0 0 1 2 0 0
2 0 1 0 1 1
0 0 1 0 1 0
0 0 1 2 1 0
0 0 0 0 0 0
0 0 1 0 1 0
1 0 1 0 1 0
0 0 1 0 1 0
1 0 1 0 0 0
0 0 1 0 1 0
0 0 1 0 0 0
1 0 1 0 0 0
0 0 1 0 1 0
0 0 1 0 1 0
1 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 1 1 1 0
0 0 0 2 0 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 1 0
1 0 0 1 1 0
2 0 0 0 1 0
1 0 0 0 0 0
2 0 0 2 1 0
0 0 1 2 1 0
1 0 1 0 0 1
0 0 1 2 1 0
0 0 1 2 1 0
0 0 1 0 1 0
1 0 1 2 1 0
0 0 0 2 0 0
1 0 0 0 0 0
0 0 0 2 1 0
0 0 1 0 1 0
2 0 0 0 1 0
1 0 0 0 0 0
1 0 0 1 1 0
1 0 1 1 1 0
1 0 1 0 1 1
0 0 1 0 1 0
1 1 0 2 1 0
1 1 0 1 0 0
2 1 0 2 1 0
1 1 1 0 0 0
0 1 1 0 0 0
0 1 1 0 0 1
0 1 0 0 1 0
1 1 1 0 0 0
1 1 1 0 1 0
0 1 0 0 1 0
0 1 1 0 0 1
1 1 1 1 1 0
1 1 0 2 1 0
0 1 0 2 0 0
1 1 0 2 1 0
0 0 1 2 1 0
2 1 1 1 1 0
0 1 0 0 1 0
0 0 1 0 1 0
2 1 0 1 1 0
0 1 0 0 1 0
1 1 0 0 0 0
1 1 0 0 1 0
0 1 0 0 0 0
0 1 1 0 0 0
2 1 0 0 1 0
2 1 0 0 0 0
1 1 0 0 1 0
2 1 0 1 1 0

Logistic回归:牛顿迭代法相关推荐

  1. Logistic回归与牛顿迭代法

    在上一篇文章中,我讲述了Logistic回归的原理以及它的梯度上升法实现.现在来研究Logistic回归的另一种 实现,即牛顿迭代法. 在上篇文章中,我们求出Logistic回归的似然函数的偏导数为 ...

  2. 斯坦福《机器学习》Lesson4感想--1、Logistic回归中的牛顿方法

    在上一篇中提到的Logistic回归是利用最大似然概率的思想和梯度上升算法确定θ,从而确定f(θ).本篇将介绍还有一种求解最大似然概率ℓ(θ)的方法,即牛顿迭代法. 在牛顿迭代法中.如果一个函数是,求 ...

  3. 如何通过牛顿方法解决Logistic回归问题 By 机器之心2017年8月09日 16:30 本文介绍了牛顿方法(Newton's Method),以及如何用它来解决 logistic 回归。log

    如何通过牛顿方法解决Logistic回归问题 By 机器之心2017年8月09日 16:30 本文介绍了牛顿方法(Newton's Method),以及如何用它来解决 logistic 回归.logi ...

  4. 对线性回归,logistic回归和一般回归的认识

    作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中 ...

  5. 线性回归和logistic回归

    转自:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html 红字处是个人的理解 1 摘要 本报告是在学习斯坦福大学机器学习课 ...

  6. Pytorch深度学习实战1-6:图解牛顿迭代法,牛顿不止力学三定律

    目录 1 引例 2 牛顿迭代算法求根 3 牛顿迭代优化 4 代码实战:Logistic回归 1 引例 给定如图所示的某个函数,如何计算函数零点 x 0 x_0 x0​? 在数学上我们如何处理这个问题? ...

  7. 线性回归、logistic回归、广义线性模型——斯坦福CS229机器学习个人总结(一)

    纪念我第一个博客的碎碎念 先前我花了四五个月的业余时间学习了Ng的机器学习公开课,学习的过程中我就在想,如果我能把这个课程啃完,就开始写一些博客,把自己的所得记录下来,现在是实现的时候了.也如刘未鹏的 ...

  8. 线性回归、logistic回归、一般线性模型回归

    以下是转载JerryLead博主的,链接为http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html 对线性回归,logistic ...

  9. Python与logistic回归——理解与实践

    文章参考 https://www.cnblogs.com/chamie/p/4876149.html [Machine Learning in Action --5]逻辑回归(LogisticRegr ...

最新文章

  1. 多行文本注视 php,多行文本进行截断的奇淫巧技
  2. Cpp 对象模型探索 / 虚基类表作用
  3. Swift--数组和字典(二)
  4. IIC总线通讯协议、EEPROM芯片
  5. golang web php,GitHub - kai-xx/goWeb: golang web 接口实现 -- 类似PHP的laravel
  6. Java基础入门笔记-静态方法
  7. 自己搭建mysql服务要知道的二三事
  8. redis 关系数据库怎么转换 和_[转]mysql和redis的区别
  9. supermap试用许可过期如何重新申请
  10. 修改Google toolbar for firefox的默认语言
  11. Android——适配器其他组件(AutoCompleteTextView:自动完成文本编辑框;Spinner:下拉列表)...
  12. 翘首以盼Windows 8
  13. DaisyDisk for Mac磁盘清理
  14. python seaborn 散点图矩阵_初学pandas与seaborn(六)制作散点图矩阵,用python
  15. 十次方项目 请仔细查看
  16. Java项目前后端文件简体转换繁体
  17. pyqt项目——测温仪数据采集软件
  18. 我是如何在12周内由零基础成为一名程序员的——谨以此文激励自己!!!
  19. 《Java程序设计与数据结构教程(第二版)》学习指导
  20. CSS关于传统网页中的三大布局方式,手动码字+大白话

热门文章

  1. 人工智能轨道交通行业周刊-第46期(2023.5.22-5.28)
  2. ibe加密原理_解析基于身份加密IBE
  3. Android(三十九):Gestures 手势
  4. STM32单片机NVIC和中断
  5. python线性拟合误差分析_带误差线的线性拟合python
  6. pytorch中常用对张量shape的操作
  7. Ian Goodfellow《Deep Learning》读书笔记
  8. Python CheatSheet
  9. 新手上路,安全驾驶,做行车安全的第一责任人
  10. 新零售发展壮大,却也并不是没有缺点