200.最大正方形

思路:与岛屿,水塘不同的是这个相对要规则得多,而不是求连通域,所以动态规划构造出状态转移方程即可

动态规划 if 0, dp[i][j] =0

if 1, dp[i][j] = min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1

class Solution:def maximalSquare(self, matrix):print('==np.array(matrix):\n', np.array(matrix))h = len(matrix)w = len(matrix[0])max_side = 0dp = [[0 for j in range(w)] for i in range(h)]print('==dp:', np.array(dp))for i in range(h):for j in range(w):if matrix[i][j] == '1' and i>0 and j>0:dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1max_side = max(max_side, dp[i][j])elif i==0:dp[i][j] = int(matrix[i][j])max_side = max(max_side, dp[i][j])elif j==0:dp[i][j] = int(matrix[i][j])max_side = max(max_side, dp[i][j])else:passprint('==dp:', np.array(dp))# print(max_side)return max_side**2matrix = [["1", "0", "1", "0", "0"], ["1", "0", "1", "1", "1"], ["1", "1", "1", "1", "1"], ["1", "0", "0", "1", "0"]]sol = Solution()
sol.maximalSquare(matrix)

201.统计全为 1 的正方形子矩阵

思路:动态规划 if 0, dp[i][j] =0

if 1, dp[i][j] = min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1

为1的时候 res自加1,再加上dp[i][j]增加的部分,也可以看成是dp的和

class Solution:def countSquares(self, matrix):print('==np.array(matrix)\n', np.array(matrix))h = len(matrix)w = len(matrix[0])dp = [[0 for i in range(w)] for j in range(h)]print('==np.array(dp):', np.array(dp))res = 0for i in range(h):for j in range(w):if matrix[i][j] == 1 and i > 0 and j > 0:res += 1dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1res += dp[i][j] - 1  # 减去1代表增加的矩形个数elif i==0:dp[i][j] = matrix[i][j]if matrix[i][j] == 1:res+=1elif j==0:dp[i][j] = matrix[i][j]if matrix[i][j] == 1:res+=1else:passprint('==np.array(dp):', np.array(dp))print('==after res:', res)return resmatrix = [[0, 1, 1, 1],[1, 1, 1, 1],[0, 1, 1, 1]
]
sol = Solution()
sol.countSquares(matrix)

202.平方数之和

思路:双指针 左右收缩即可

class Solution:def judgeSquareSum(self, c: int) -> bool:from math import sqrtright = int(sqrt(c))left = 0while(left <= right):sum_ = left**2 + right**2if (sum_ == c):return Trueelif sum_ > c:right -= 1else:left += 1return False

c++实现:

class Solution {
public:bool judgeSquareSum(int c) {long left = 0, right = sqrt(c);while(left <= right){long sum_ = left*left + right*right;if(sum_ == c){return true;}else if(sum_ > c){right--;}else{left++;}}return false;}
};

203.分发饼干

思路:排序加贪心 先给胃口小的饼干

#思路:排序加贪心 先让胃口小的孩子满足
class Solution:def findContentChildren(self, g, s):print('==g:', g)print('==s:', s)g = sorted(g)#孩子s = sorted(s)#饼干res = 0for j in range(len(s)):#遍历饼干 先给胃口小的分配if res<len(g):if g[res]<=s[j]:res+=1print('==res:', res)return resg = [1,2]
s = [1,2,3]
# g = [1, 2, 3]
# s = [1, 1]
sol = Solution()
sol.findContentChildren(g, s)

204.三角形最小路径和

思路:动态规划

class Solution:def minimumTotal(self, triangle: List[List[int]]) -> int:for i in range(1, len(triangle)):for j in range(len(triangle[i])):if j == 0:triangle[i][j] = triangle[i-1][j] + triangle[i][j]elif j == i:triangle[i][j] = triangle[i-1][j-1] + triangle[i][j]else:triangle[i][j] = min(triangle[i-1][j-1], triangle[i-1][j]) + triangle[i][j]return min(triangle[-1])

c++:

class Solution {
public:int minimumTotal(vector<vector<int>>& triangle) {int h = triangle.size();for(int i = 1; i < triangle.size(); i++){for(int j = 0; j < triangle[i].size(); j++){if(j == 0){triangle[i][j] = triangle[i-1][j] + triangle[i][j];}else if(j == i){triangle[i][j] = triangle[i-1][j-1] + triangle[i][j];}else{triangle[i][j] = min(triangle[i-1][j-1], triangle[i-1][j]) + triangle[i][j];}}}return *min_element(triangle[h - 1].begin(), triangle[h - 1].end());}
};

205.同构字符串

思路:hash  构造映射关系

class Solution:def isIsomorphic(self, s: str, t: str) -> bool:if len(s) != len(t):return Falsedic = {}for i in range(len(s)):if s[i] not in dic:#未出现过if t[i] in dic.values():#value已经出现过之前构造的dict中了return Falsedic[s[i]] = t[i]else:#出现过if dic[s[i]]!=t[i]:return Falsereturn True# s = "egg"
# t = "add"
s="ab"
t="aa"sol = Solution()
sol.isIsomorphic(s, t)

206.单词接龙 II

思路:构建图 然后bfs

class Solution:def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]:cost = {}for word in wordList:cost[word] = float("inf")cost[beginWord] = 0# print('==cost:', cost)# neighbors = collections.defaultdict(list)neighbors = {}ans = []#构建图for word in wordList:for i in range(len(word)):key = word[:i] + "*" + word[i + 1:]if key not in neighbors:neighbors[key] = []neighbors[key].append(word)else:neighbors[key].append(word)# print('==neighbors:', neighbors)q = collections.deque([[beginWord]])# q = [[beginWord]]# print('====q:', q)#bfswhile q:# path = q.popleft()path = q.pop()# print('===path:', path)cur = path[-1]if cur == endWord:ans.append(path.copy())else:for i in range(len(cur)):new_key = cur[:i] + "*" + cur[i + 1:]if new_key not in neighbors:continuefor neighbor in neighbors[new_key]:# print('==cost[cur] + 1, cost[neighbor]:', cost[cur] + 1, cost[neighbor])if cost[cur] + 1 <= cost[neighbor]:q.append(path + [neighbor])cost[neighbor] = cost[cur] + 1# print('==ans:', ans)return ans

208.最后一块石头的重量

思路1:while循环 排序从大到小 一直取前两块石头进行比较


class Solution:def lastStoneWeight(self, stones):while len(stones)>=2:stones = sorted(stones)[::-1]if stones[0]==stones[1]:stones=stones[2:]else:stones = [stones[0]-stones[1]]+stones[2:]print('===stones:', stones)return stones[-1] if len(stones) else 0stones = [2, 7, 4, 1, 8, 1]
# stones = [2, 2]
sol = Solution()
res= sol.lastStoneWeight(stones)
print('==res:', res)

更简洁写法:

class Solution:def lastStoneWeight(self, stones: List[int]) -> int:while len(stones) >= 2:stones = sorted(stones)stones.append(stones.pop() - stones.pop())return stones[0]

思路2:堆队列,也称为优先队列

import heapq
class Solution:def lastStoneWeight(self, stones):h = [-stone for stone in stones]heapq.heapify(h)print('==h:', h)while len(h) > 1:a, b = heapq.heappop(h), heapq.heappop(h)if a != b:heapq.heappush(h, a - b)print('==h:', h)return -h[0] if h else 0stones = [2, 7, 4, 1, 8, 1]
# stones = [2, 2]
sol = Solution()
res= sol.lastStoneWeight(stones)
print('==res:', res)

210.无重叠区间


class Solution:def eraseOverlapIntervals(self, intervals):n = len(intervals)if n<=0:return 0intervals = sorted(intervals, key=lambda x: x[-1])print('==intervals:', intervals)res = [intervals[0]]for i in range(1, n):if intervals[i][0] >= res[-1][-1]:res.append(intervals[i])print(res)return n - len(res)# intervals = [[1, 2], [2, 3], [3, 4], [1, 3]]
# intervals = [[1,100],[11,22],[1,11],[2,12]]
intervals = [[0, 2], [1, 3], [2, 4], [3, 5], [4, 6]]
sol = Solution()
sol.eraseOverlapIntervals(intervals)

212.种花问题

思路:判断是否是1或0,1就一种情况,0有两种情况

100 先判断1

01000,要判断i为0时,i+1是否为1,否则说明就是001这种情况


# 100 先判断1
# 01000,要判断i为0时,i+1是否为1,否则说明就是001这种情况
class Solution:def canPlaceFlowers(self, flowerbed, n):i = 0res = 0while i<len(flowerbed):if flowerbed[i]==1:i+=2else:if i+1<len(flowerbed) and flowerbed[i+1]==1:i+=3else:res+=1i+=2return True if res>=n else False# flowerbed = [1,0,0,0,1]
# n = 1# flowerbed = [1,0,0,0,1]
# n = 2# flowerbed = [1,0,0,0,0,0,1]
# n = 2
flowerbed = [1,0,0,0,1,0,0]
n = 2
sol = Solution()
res= sol.canPlaceFlowers(flowerbed, n)
print('==res:', res)

216.较大分组的位置

其实就是再求聚类

思路1:动态规划


class Solution:def largeGroupPositions(self, s):dp = [0] * len(s)for i in range(1, len(s)):if s[i] == s[i - 1]:dp[i] = 1dp.append(0)print('==dp:', dp)index = [j for j in range(len(dp)) if dp[j] == 0]print('index:', index)res = []for k in range(len(index) - 1):if index[k + 1] - index[k] >= 3:res.append([index[k], index[k + 1] - 1])print('=res:', res)return ress = "abbxxxxzzy"
sol = Solution()
sol.largeGroupPositions(s)

思路2:双指针


# 双指针
class Solution:def largeGroupPositions(self, s):res = []left, right = 0, 0while left < len(s):right = left + 1while right < len(s) and s[right] == s[left]:right += 1if right - left >= 3:res.append([left, right - 1])# 左指针跑到右指针位置left = rightprint('==res:', res)return ress = "abbxxxxzzy"
# s = "abcdddeeeeaabbbcd"
sol = Solution()
sol.largeGroupPositions(s)

217.省份数量

思路:

可以把 n 个城市和它们之间的相连关系看成图, #

城市是图中的节点,相连关系是图中的边,

给定的矩阵isConnected 即为图的邻接矩阵,省份即为图中的连通分量。

利用dfs将一个数组view遍历过的城市置位1。


# dfs
# 可以把 nn 个城市和它们之间的相连关系看成图,
# 城市是图中的节点,相连关系是图中的边,
# 给定的矩阵isConnected 即为图的邻接矩阵,省份即为图中的连通分量。
class Solution:def travel(self, isConnected, i, n):self.view[i] = 1  # 表示已经遍历过for j in range(n):if isConnected[i][j] == 1 and not self.view[j]:self.travel(isConnected, j, n)def findCircleNum(self, isConnected):n = len(isConnected)self.view = [0] * nres = 0for i in range(n):if self.view[i] != 1:res += 1self.travel(isConnected, i, n)print('==res:', res)return res# isConnected = [[1, 1, 0],
#                [1, 1, 0],
#                [0, 0, 1]]
isConnected = [[1,0,0],[0,1,0],[0,0,1]]
sol = Solution()
sol.findCircleNum(isConnected)

218.旋转数组

思路1:截断拼接,注意的是一些边界条件需要返回原数组

class Solution:def rotate(self, nums: List[int], k: int) -> None:if len(nums)<=1 or k==0 or k%len(nums)==0:return numsn = len(nums)k = k%n# print(nums[-k:]+nums[:n-k])nums[:] = nums[-k:]+nums[:n-k]return nums

思路2:先左翻转,在右翻转,在整体翻转


class Solution:def reverse(self, i, j, nums):#交换位置的while i < j:#nums[i], nums[j] = nums[j], nums[i]i += 1j -= 1def rotate(self, nums, k):"""Do not return anything, modify nums in-place instead."""n = len(nums)k %= n #有大于n的数self.reverse(0, n - k - 1, nums) #左翻self.reverse(n - k, n - 1, nums) #右翻self.reverse(0, n - 1, nums) #整体翻print(nums)return nums# nums = [1,2,3,4,5,6,7]
# k = 3
nums = [1,2,3,4,5,6]
k = 11
sol = Solution()
sol.rotate(nums, k)

219.汇总区间

思路:双指针


class Solution:def summaryRanges(self, nums):res = []left =0right = 0while right<len(nums):right = left+1while right<len(nums) and nums[right] - nums[right-1] == 1:right+=1if right -1>left:res.append(str(nums[left]) + "->" + str(nums[right-1]))else:res.append(str(nums[left]))left = rightprint(res)return res
nums = [0,1,2,4,5,7]
sol = Solution()
sol.summaryRanges(nums)

220.冗余连接

思路:并查集


#并查集:合并公共节点的,对相邻节点不是公共祖先的进行合并
class Solution:def find(self, index):  # 查询if self.parent[index] == index:  # 相等就返回return indexelse:return self.find(self.parent[index])  # 一直递归找到节点index的祖先def union(self, i, j):  # 合并self.parent[self.find(i)] = self.find(j)def findRedundantConnection(self, edges):nodesCount = len(edges)self.parent = list(range(nodesCount + 1))print('==self.parent:', self.parent)for node1, node2 in edges:print('==node1, node2:', node1, node2)if self.find(node1) != self.find(node2):#相邻的节点公共祖先不一样就进行合并print('===hahhaha===')self.union(node1, node2)print('=self.parent:', self.parent)else:return [node1, node2]return []edges = [[1, 2], [1, 3], [2, 3]]
sol = Solution()
res = sol.findRedundantConnection(edges)
print('=res:', res)

223.可被 5 整除的二进制前缀

思路:二进制移位 在和5求余

class Solution:def prefixesDivBy5(self, A: List[int]) -> List[bool]:res = [False]*len(A)value = 0for i in range(len(A)):value = (value<<1) + A[i]# print(value)if value%5==0:res[i]=Truereturn res

225.移除最多的同行或同列石头

思路1: 其实主要是算连通域的个数,当满足同行或者同列就算联通,
 输出的结果就是石头个数减去连通域个数,第一种解法超时


# 其实主要是算连通域的个数,当满足同行或者同列就算联通,
# 输出的结果就是石头个数减去连通域个数
#第一种直接dfs会超时
import numpy as np
class Solution:def dfs(self, rect, i, j, h, w):if i < 0 or i >= h or j < 0 or j >= w or rect[i][j] != 1:returnrect[i][j] = -1for i_ in range(h):self.dfs(rect, i_, j, h, w)for j_ in range(w):self.dfs(rect, i, j_, h, w)def removeStones(self, stones):n = 10rect = [[0 for _ in range(n)] for _ in range(n)]print(len(rect))for stone in stones:rect[stone[0]][stone[-1]] = 1print('before np.array(rect):', np.array(rect))h, w = n, ngraphs = 0for i in range(h):for j in range(w):if rect[i][j] == 1:graphs += 1self.dfs(rect, i, j, h, w)print('after np.array(rect):', np.array(rect))print(graphs)return len(stones) - graphsstones = [[0, 0], [0, 1], [1, 0], [1, 2], [2, 1], [2, 2]]
sol = Solution()
res = sol.removeStones(stones)
print('===res:', res)

思路2:并查集


class Solution:# 并查集查找def find(self, x):if self.parent[x] == x:return xelse:return self.find(self.parent[x])#合并def union(self,i, j):self.parent[self.find(i)] = self.find(j)def removeStones(self, stones):# 因为x,y所属区间为[0,10^4]# n = 10001n = 10self.parent = list(range(2 * n))for i, j in stones:self.union(i, j + n)print('==self.parent:', self.parent)# 获取连通区域的根节点res = []for i, j in stones:res.append(self.find(i))print('=res:', res)return len(stones) - len(set(res))stones = [[0, 0], [0, 1], [1, 0], [1, 2], [2, 1], [2, 2]]
sol = Solution()
res = sol.removeStones(stones)
print('===res:', res)

226..缀点成线

思路:判断斜率 将除换成加


class Solution:def checkStraightLine(self, coordinates):n = len(coordinates)for i in range(1, n-1):if (coordinates[i+1][1]-coordinates[i][1])*(coordinates[i][0]-coordinates[i-1][0])=(coordinates[i][1]-coordinates[i-1][1])*(coordinates[i+1][0]-coordinates[i][0]):return Falsereturn Truecoordinates = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]]
sol = Solution()
sol.checkStraightLine(coordinates)

227.账户合并

思路:并查集

#思想是搜索每一行的每一个邮箱,如果发现某一行的某个邮箱在之前行出现过,那么把该行的下标和之前行通过并查集来合并,
class Solution(object):def find(self, x):if x == self.parents[x]:return xelse:return self.find(self.parents[x])def union(self,i, j):self.parents[self.find(i)] = self.find(j)def accountsMerge(self, accounts):# 用parents维护每一行的父亲节点# 如果parents[i] == i, 表示当前节点为根节点self.parents = [i for i in range(len(accounts))]print('==self.parents:', self.parents)dict_ = {}# 如果发现某一行的某个邮箱在之前行出现过,那么把该行的index和之前行合并(union)即可for i in range(len(accounts)):for email in accounts[i][1:]:if email in dict_:self.union(dict_[email], i)else:dict_[email] = iprint('===self.parents:', self.parents)print('=== dict_:', dict_)import collectionsusers = collections.defaultdict(set)print('==users:', users)res = []# 1. users:表示每个并查集根节点的行有哪些邮箱# 2. 使用set:避免重复元素# 3. 使用defaultdict(set):不用对每个没有出现过的根节点在字典里面做初始化for i in range(len(accounts)):for account in accounts[i][1:]:users[self.find(i)].add(account)print('==users:', users)# 输出结果的时候注意结果需按照字母顺序排序(虽然题目好像没有说)for key, val in users.items():res.append([accounts[key][0]] + sorted(list(val)))return resaccounts = [["John", "johnsmith@mail.com", "john00@mail.com"],["John", "johnnybravo@mail.com"],["John", "johnsmith@mail.com", "john_newyork@mail.com"],["Mary", "mary@mail.com"]]# [["John", 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com'],
#  ["John", "johnnybravo@mail.com"],
#  ["Mary", "mary@mail.com"]]sol = Solution()
res= sol.accountsMerge(accounts)
print(res)

228.连接所有点的最小费用

思路1: 其实就是求最小生成树,首先想到的是kruskal 但是时间复杂度较高,超时


# 其实就是求最小生成树:采用kruskal 但是时间复杂度较高,超时
class Solution:def minCostConnectPoints(self, points):edge_list = []nodes = len(points)for i in range(nodes):for j in range(i):dis = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1])edge_list.append([i, j, dis])print('==edge_list:', edge_list)edge_list = sorted(edge_list, key=lambda x: x[-1])print('==edge_list:', edge_list)group = [[i] for i in range(nodes)]print('==group:', group)res = 0for edge in edge_list:for i in range(len(group)):if edge[0] in group[i]:m = i  # 开始节点if edge[1] in group[i]:n = i  # 结束节点if m != n:# res.append(edge)res += edge[-1]group[m] = group[m] + group[n]group[n] = []print(group)print('==res:', res)return respoints = [[0, 0], [2, 2], [3, 10], [5, 2], [7, 0]]
sol = Solution()
sol.minCostConnectPoints(points)

思路2: 其实就是求最小生成树,首先想到的是prim 但是时间复杂度较高,超时


# prim算法 超出时间限制
class Solution:def minCostConnectPoints(self, points):# edge_list = []nodes = len(points)Matrix = [[0 for i in range(nodes)] for j in range(nodes)]for i in range(nodes):for j in range(nodes):dis = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1])# edge_list.append([i, j, dis])Matrix[i][j] = dis# print('===edge_list:', edge_list)print('==Matrix:', Matrix)selected_node = [0]candidate_node = [i for i in range(1, nodes)]  # 候选节点print('==candidate_node:', candidate_node)# res = []res = 0while len(candidate_node):begin, end, minweight = 0, 0, float('inf')for i in selected_node:for j in candidate_node:if Matrix[i][j] < minweight:minweight = Matrix[i][j]begin = i  # 存储开始节点end = j  # 存储终止节点# res.append([begin, end, minweight])print('==end:', end)res += minweightselected_node.append(end)  # 找到权重最小的边 加入可选节点candidate_node.remove(end)  # 候选节点被找到 进行移除print('==res:', res)return respoints = [[0, 0], [2, 2], [3, 10], [5, 2], [7, 0]]
# points = [[-1000000, -1000000], [1000000, 1000000]]
sol = Solution()
sol.minCostConnectPoints(points)

思路3:并查集


class Solution:def find(self, x):if self.parents[x] == x:return xelse:return self.find(self.parents[x])  # 一直找到帮主def union(self, i, j):  # 替换为帮主 站队self.parents[self.find(i)] = self.find(j)def minCostConnectPoints(self, points):costs_list = []n = len(points)for i in range(n):for j in range(i + 1, n):dis = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1])costs_list.append([dis, i, j])# print('==costs_list:', costs_list)costs_list = sorted(costs_list, key=lambda x: x[0])print('==costs_list:', costs_list)self.parents = [i for i in range(n)]print('==init self.parents:', self.parents)res = 0for i in range(len(costs_list)):dis, x, y = costs_list[i]if self.find(x) != self.find(y):self.union(x, y)print('==x,y:', x, y)print('==self.parents:', self.parents)res += disprint('==res:', res)return respoints = [[0, 0], [2, 2], [3, 10], [5, 2], [7, 0]]
sol = Solution()
sol.minCostConnectPoints(points)

229.正则表达式匹配

思路:字符串的匹配问题,自然想到用dp,做成二维矩阵方便进行状态方程的转移

f[i][j]:s的前i个字符和p的前j个字符是否相等
p的第j个字符是字母:p[j]==s[i]时 ,f[i][j]=f[i-1][j-1]
p的第j个字符是字母:p[j]!=s[i]时 ,f[i][j]=False

p的第j个字符是*:s[i]==p[j-1],f[i][j]=f[i-1][j] or f[i][j-2]
p的第j个字符是*:s[i]!=p[j-1],f[i][j]=f[i][j-2]


#f[i][j]:s的前i个字符和p的前j个字符是否相等
#p的第j个字符是字母:p[j]==s[i]时 ,f[i][j]=f[i-1][j-1]
#p的第j个字符是字母:p[j]!=s[i]时 ,f[i][j]=False#p的第j个字符是*:s[i]==p[j-1],f[i][j]=f[i-1][j] or f[i][j-2]
#p的第j个字符是*:s[i]!=p[j-1],f[i][j]=f[i][j-2]
class Solution:def match(self, i, j, s, p):if i == 0:return Falseif p[j - 1] == '.':return Truereturn s[i - 1] == p[j - 1]def isMatch(self, s, p):m, n = len(s), len(p)f = [[False] * (n + 1) for _ in range(m + 1)]f[0][0] = Truefor i in range(m + 1):for j in range(1, n + 1):if p[j - 1] == '*':# f[i][j] = f[i][j] or f[i][j - 2]if self.match(i, j - 1, s, p):f[i][j] = f[i - 1][j] or f[i][j-2]else:f[i][j] = f[i][j - 2]else:if self.match(i, j, s, p):f[i][j] = f[i - 1][j - 1]else:f[i][j] = Falseprint('==f:', f)return f[m][n]s = "aa"
p = "a"
sol = Solution()
sol.isMatch(s, p)

230.最长回文子串

思路:中心枚举,双指针,需要注意的是有上述两种情况,左右指针的索引有两种


class Solution:def help(self, left, right, s, n):while left >= 0 and right < n:if s[left] == s[right]:left -= 1right += 1else:breaktemp = s[left+1:right]self.res = max(self.res, temp, key=len)def longestPalindrome(self, s):self.res = s[0]n = len(s)for i in range(1, n):self.help(i-1, i+1, s, n)#针对"babad"self.help(i - 1, i, s, n)#针对"cbbd"print('==self.res:', self.res)return self.res# s = "babad"
s = "cbbd"
sol = Solution()
sol.longestPalindrome(s)

231.寻找两个正序数组的中位数

思路:双指针,走完剩下的在进行合并


class Solution:def findMedianSortedArrays(self, nums1, nums2):res = []i, j = 0, 0m, n = len(nums1), len(nums2)while i < m and j < n:if nums1[i] < nums2[j]:res.append(nums1[i])i += 1else:res.append(nums2[j])j += 1print('==res:', res)print('==i:', i)print('==j:', j)if i < m:res.extend(nums1[i:])if j < n:res.extend(nums2[j:])print('==res:', res)if (m+n)%2==0:#偶数return (res[(m+n)//2]+res[(m+n)//2-1])/2else:#奇数return res[(m+n)//2]# nums1 = [1, 1, 3]
# nums2 = [2]
nums1 = [1,2]
nums2 = [3,4]
sol = Solution()
res = sol.findMedianSortedArrays(nums1, nums2)
print(res)

232.连通网络的操作次数

思路:并查集 其实就是求当前的联通量个数减去一个联通量的值,对于n个节点,要给n-1条边才会满足都能连上,采用并查集去做聚类,否则就不满足了


class Solution:def find(self, x):if x==self.parent[x]:return xelse:return self.find(self.parent[x])def union(self,x,y):#将x的老大换成y的老大self.parent[self.find(x)] = self.find(y)def makeConnected(self, n, connections):if len(connections) < n - 1:return -1self.parent = [i for i in range(n)]clusters = nfor connection in connections:x, y = connectionif self.find(x)!=self.find(y):clusters-=1self.union(x, y)print('==x,y', x, y)print('==self.parent:', self.parent)print(clusters)return clusters-1n = 4
connections = [[0,1],[0,2],[1,2]]
sol = Solution()
sol.makeConnected(n, connections)

234.最长连续递增序列

思路:栈


class Solution:def findLengthOfLCIS(self, nums):stack = []res = 0for i in range(len(nums)):if stack and nums[i]<=stack[-1]:stack=[]stack.append(nums[i])res = max(len(stack), res)# print('==stack:', stack)# print(res)return res
nums = [1, 3, 5, 4, 7]
sol = Solution()
sol.findLengthOfLCIS(nums)

235.由斜杠划分区域

思路;把斜线换成3*3网格,就变成水域问题了

import numpy as npclass Solution:def dfs(self, i, j, h, w, matrix):if i < 0 or j < 0 or i >= h or j >= w or matrix[i][j] != 0:returnmatrix[i][j] = -1self.dfs(i - 1, j, h, w, matrix)self.dfs(i, j - 1, h, w, matrix)self.dfs(i + 1, j, h, w, matrix)self.dfs(i, j + 1, h, w, matrix)def regionsBySlashes(self, grid):n = len(grid)matrix = [[0 for _ in range(3 * n)] for _ in range(3 * n)]print(np.array(matrix))for i in range(n):for j in range(len(grid[i])):if grid[i][j] == '/':matrix[i * 3][j * 3 + 2] = matrix[i * 3 + 1][j * 3 + 1] = matrix[i * 3 + 2][j * 3] = 1elif grid[i][j] == '\\':matrix[i * 3 + 2][j * 3 + 2] = matrix[i * 3 + 1][j * 3 + 1] = matrix[i * 3][j * 3] = 1print(np.array(matrix))res = 0for i in range(3 * n):for j in range(3 * n):if matrix[i][j] == 0:res+=1self.dfs(i, j, 3 * n, 3 * n, matrix)print('==res:', res)return res# grid = [" /", "/ "]
grid = ["/\\", "/\\"]
sol = Solution()
sol.regionsBySlashes(grid)

要注意的是如果格子用2*2,会出现这种0不会挨着的,会出错

236.等价多米诺骨牌对的数量

思路1;

两层循环 超时

class Solution:def numEquivDominoPairs(self, dominoes):#两层循环 超时n = len(dominoes)left, right = 0, 0res=0while left<n:right=left+1while right<n:if dominoes[right]==dominoes[left][::-1] or dominoes[right]==dominoes[left]:res+=1right+=1left+=1print('==res:', res)return res

思路2:做成字典,记录相同的个数,两两之间相互组合为n*(n-1)/2


class Solution:def numEquivDominoPairs(self, dominoes):# 字典法ans = 0dict_ = {}for d1, d2 in dominoes:# 排序后加入字典index = tuple(sorted((d1, d2)))if index in dict_:dict_[index] += 1else:dict_[index] = 1print('==dict_:', dict_)# 计算答案for i in dict_:#n*n(-1)/2ans += dict_[i] * (dict_[i] - 1) // 2return ans

思路3:桶计数,两两之间相互组合为n*(n-1)/2


class Solution:def numEquivDominoPairs(self, dominoes):      #桶装法nums = [0]*100res = 0for dominoe in dominoes:x,y = dominoeif x>y:nums[x*10+y] +=1else:nums[y * 10 + x] += 1for num in nums:if num>=2:res += num*(num-1)//2print(res)return res

239.寻找数组的中心索引

class Solution:def pivotIndex(self, nums):n = len(nums)for i in range(n):left_sum = sum(nums[:i])right_sum = sum(nums[i+1:])if left_sum == right_sum:return ireturn -1nums = [1, 7, 3, 6, 5, 6]
sol = Solution()
res = sol.pivotIndex(nums)
print(res)

240.最小体力消耗路径

思路1:咋一眼看过去,以为直接用dp就行,但是真正在写的过程中,发现消耗的最小体力没有状态转移方程,所以可不可以看成先初始化给一个体力值,如果能达到右下脚,将体力值减少,而这个减少的过程采用二分法这样减少更快

代码注释的部分使用list会超时,换成集合就好了,不会超时


# 思路:二分法,先给定一个初始体力值,能够走到的话,就减少体力,否则增加体力
class Solution:def minimumEffortPath(self, heights):h, w = len(heights), len(heights[0])left_value, right_value, res = 0, 10 ** 6 - 1, 0# 二分法while left_value <= right_value:  # 终止条件 找到合适的体力值mid = left_value + (right_value - left_value) // 2# start_point = [[0, 0]]# seen = [[0, 0]]start_point = [(0, 0)]seen = {(0, 0)}while start_point:x, y = start_point.pop(0)for x_, y_ in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]:# 不超过范围 也没见过 差值也小与给定的体力值# if 0 <= x_ < h and 0 <= y_ < w and [x_, y_] not in seen and abs(#         heights[x][y] - heights[x_][y_]) <= mid:#     start_point.append([x_, y_])#     seen.append([x_, y_])if 0 <= x_ < h and 0 <= y_ < w and (x_, y_) not in seen and abs(heights[x][y] - heights[x_][y_]) <= mid:start_point.append((x_, y_))seen.add((x_, y_))print('==seen:', seen)if (h - 1, w - 1) in seen:  # 足够到底右下角,说明体力足够,那么继续减少体力res = midright_value = mid - 1else:  # 到不了右下角,说明体力不够,需要增加体力left_value = mid + 1return resheights = [[1, 2, 2],[3, 8, 2],[5, 3, 5]]
sol = Solution()
res = sol.minimumEffortPath(heights)
print('==res:', res)

思路2:并查集
将节点与节点之间的边与权重构建出来
按权重从小到大 不断合并 只要出现从起始点到终止点能够到达 说明找到了 此时的值就是最大消耗体力值


#思路:并查集
#将节点与节点之间的边与权重构建出来
#按权重从小到大 不断合并 只要出现从起始点到终止点能够到达 说明找到了 此时的值就是最大消耗体力值
class Solution:def find(self, x):if x==self.parent[x]:return xelse:return self.find(self.parent[x])def union(self, x, y):#将y的老大换成x的老大x = self.find(x)y = self.find(y)if x == y:return Falseif self.size[x]<self.size[y]:x, y = y, xself.parent[y] = xself.size[x] += self.size[y]#x的老大进行计数 看哪边人多 那边人多 就归属def connect(self,x, y):x,y = self.find(x),self.find(y)return x==ydef minimumEffortPath(self, heights):h, w = len(heights), len(heights[0])self.parent = [i for i in range(h*w)]self.size = [1 for _ in range(h*w)]edges = []#构建 节点和节点之间的边和权重for i in range(h):for j in range(w):index = i*w+jif i>0:edges.append((index-w, index, abs(heights[i][j]-heights[i-1][j])))#减去一行的宽度 回到上一行 也就是竖线的边if j>0:edges.append((index-1,index,abs(heights[i][j]-heights[i][j-1])))#减去左边一格  回到左边 也就是横线的边print('==edges:', edges)print(len(edges))edges = sorted(edges, key=lambda x: x[2])#按权重重小到大排序print('==edges:', edges)res = 0for x, y, value in edges:self.union(x, y)#把y的老大换成x的老大print('==self.parent:', self.parent)print('==self.size:', self.size)if self.connect(0, h*w-1):res = valuebreakprint('==res:', res)return resheights = [[1, 2, 2],[3, 8, 2],[5, 3, 5]]
# heights  = [[4,3,4,10,5,5,9,2],
#             [10,8,2,10,9,7,5,6],
#             [5,8,10,10,10,7,4,2],
#             [5,1,3,1,1,3,1,9],
#             [6,4,10,6,10,9,4,6]]
sol = Solution()
res = sol.minimumEffortPath(heights)
print('==res:', res)

241.不用加减乘除做加法

思路:分为进位和 当前位的异或

class Solution:def add(self, a: int, b: int) -> int:add_flag = (a&b)<<1;#进位在左移sum_ = a^b;#异或 取值 相同为0 不同为1return sum_+add_flag

242.水位上升的泳池中游泳

堆队列 也称为优先队列 就是根节点的值最小

思路:采用bfs + 堆队列  保证能到达左下角的时候 需要最小的时间


# 堆队列 也称为优先队列 就是根节点的值最小
# 思路:采用dfs + 堆队列
import heapqclass Solution:def swimInWater(self, grid):h, w = len(grid), len(grid[0])res = 0heap = [(grid[0][0], 0, 0)]visited = {(0, 0)}while heap:print('===heap:', heap)height, x, y = heapq.heappop(heap)res = max(res, height)if x == w - 1 and y == h - 1:return resfor dx, dy in ((0, 1), (0, -1), (1, 0), (-1, 0)):new_x, new_y = x + dx, y + dyif 0 <= new_x < w and 0 <= new_y < h and (new_x, new_y) not in visited:visited.add((new_x, new_y))heapq.heappush(heap, (grid[new_x][new_y], new_x, new_y))return -1grid = [[0, 2],[1, 3]]
# grid = [[0, 1, 2, 3, 4],
#         [24, 23, 22, 21, 5],
#         [12, 13, 14, 15, 16],
#         [11, 17, 18, 19, 20],
#         [10, 9, 8, 7, 6]]
sol = Solution()
sol.swimInWater(grid)

243.从相邻元素对还原数组

思路:构建字典,进行bfs遍历 依次对出现过一次的字符 添加进列表即可

#bfs
class Solution():def restoreArray(self, adjacentPairs):""":type adjacentPairs: List[List[int]]:rtype: List[int]"""import collectionsmemory = collections.defaultdict(list)for x,y in adjacentPairs:memory[x].append(y)memory[y].append(x)print('==memory:', memory)res = []visited = set()queue = []for key, value in memory.items():if len(value) == 1:queue.append((key, value[0]))while queue:print('==queue:', queue)start, end = queue.pop()res.append(start)print('==res:', res)visited.add(start)for num in memory[end]:if num in visited:continuequeue.append((end, num))return resadjacentPairs = [[2,1],[3,4],[3,2]]
# # adjacentPairs = [[4,-2],
# #                  [1,4],
# #                  [-3,1]]
# # adjacentPairs = [[100000,-100000]]
# adjacentPairs =[[4,-10],
#                 [-1,3],
#                 [4,-3],
#                 [-3,3]]
sol = Solution()
ress= sol.restoreArray(adjacentPairs)
print(ress)

246.公平的糖果棒交换

#思路1:两层for循环 超时

#思路1:两层for循环 超时
class Solution:def fairCandySwap(self, A, B):sum_A = sum(A)sum_B = sum(B)target = (sum_A+sum_B)//2for i in range(len(A)):for j in range(len(B)):if sum(A[:i])+sum(A[i+1:])+B[j] == target:return [A[i], B[j]]return []# A = [1, 2]
# B = [2, 3]
A = [1 ,2, 5]
B = [2, 4]
sol = Solution()
res = sol.fairCandySwap(A, B)
print(res)

思路2:双指针 利用 sumA-x+y = sumB+x-y -->(sumA-sumB)/2 = x-y  转换为寻找两个元素

#思路1:#sumA-x+y = sumB+x-y -->(sumA-sumB)/2 = x-y
# 故用双指针 转换为二分查找 去查找两数之差
class Solution:def fairCandySwap(self, A, B):i = 0j = 0A = sorted(A)B = sorted(B)sum_A  = sum(A)sum_B = sum(B)target = (sum_A-sum_B)/2print('==target:', target)while i<len(A) and j<len(B):if (A[i] - B[j]) == target:return [A[i], B[j]]elif (A[i] - B[j])>target:j+=1else:i+=1return []# A = [1, 2]
# B = [2, 3]
A = [1,2,5]
B = [2,4]
sol = Solution()
res = sol.fairCandySwap(A, B)
print(res)

思路3:一层for循环 利用 sumA-x+y = sumB+x-y -->(sumA-sumB)/2 = x-y  转换为寻找两个元素

#思路2:#sumA-x+y = sumB+x-y -->(sumA-sumB)/2 = x-y
# 一层for循环走遍
class Solution:def fairCandySwap(self, A, B):sum_A = sum(A)sum_B = sum(B)target = (sum_A-sum_B)//2for num in B:if num+target in A:return [num+target, num]return []A = [1, 2]
B = [2, 3]
# A = [1 ,2, 5]
# B = [2, 4]
sol = Solution()
res = sol.fairCandySwap(A, B)
print(res)

247.替换后的最长重复字符

思路:如果k==0其实就是求最长字符串 ,k大于0,那么采用滑动窗口的方式 对左右指针求最少字符(也可能是不同字符)个数

如果最少字符个数大于k说明 左指针该右移动了,否则右指针一直在右移

# 思路:如果k==0其实就是求最长字符串 ,k大于0,那么采用滑动窗口的方式 对左右指针求最少字符个数
# 如果最少字符个数大于k说明 左指针改右移动了,否则右指针一直在右移
class Solution:def characterReplacement(self, s, k):left, right = 0, 0nums = [0] * 26# max_num = 0res = 0while right < len(s):nums[ord(s[right]) - ord('A')] += 1max_num = max(nums)#减去max_num 就是 求左右指针内最少字符(也可能是不同字符)个数while right - left + 1 - max_num > k:nums[ord(s[left]) - ord('A')] -= 1left += 1right += 1res = max(right - left, res)print('==res:', res)return res# s = "ABAB"
# k = 2
s = "AABABBA"
k = 1
sol = Solution()
res = sol.characterReplacement(s, k)
print('==res:', res)

250.子数组最大平均数 I

思路1:采用list和 ,超时

class Solution:def findMaxAverage(self, nums, k):res = float('-inf')for i in range(len(nums)-k+1):res = max(sum(nums[i:i+k]), res)print(res)return res/knums = [1, 12, -5, -6, 50, 3]
k = 4
sol = Solution()
sol.findMaxAverage(nums, k)

思路2:采用前缀和,空间换时间

class Solution:def findMaxAverage(self, nums, k):length =len(nums)pre_sum = [0]*lengthpre_sum[0] = nums[0]for i in range(1, length):pre_sum[i] = pre_sum[i-1]+nums[i]print('===pre_sum:', pre_sum)res = float('-inf')for i in range(k-1, length):if i > k-1:res = max(res, pre_sum[i] - pre_sum[i-k])else:res = pre_sum[i]print('==res:', res)return res/knums = [1, 12, -5, -6, 50, 3]
k = 4
sol = Solution()
res = sol.findMaxAverage(nums, k)
print('==res:', res)

思路3:双指针

class Solution:def findMaxAverage(self, nums, k):length = len(nums)Sum = 0res = float('-inf')left,right=0,0while right<length:Sum += nums[right]if right>=k-1:res =max(res, Sum)print('==res:', res)Sum-=nums[left]left += 1right+=1return res/knums = [1, 12, -5, -6, 50, 3]
k = 4
sol = Solution()
res = sol.findMaxAverage(nums, k)
print('==res:', res)

251.尽可能使字符串相等

思路;转换成距离列表后进行双指针滑动窗口即可

#双指针
class Solution:def equalSubstring(self, s, t, maxCost):length = len(s)dist_cost = [0] * lengthfor i in range(length):dist_cost[i] = abs(ord(s[i]) - ord(t[i]))print('==dist_cost:', dist_cost)res = 0left,right =0,0Sum = 0while right<length:Sum+=dist_cost[right]if Sum>maxCost:Sum -= dist_cost[left]left+=1right+=1res = max(res, right - left)print(res)return res
# s = "abcd"
# t = "bcdf"
# cost = 3
# s = "abcd"
# t = "acde"
# cost = 0
s = "krrgw"
t = "zjxss"
cost = 19
# s = "abcd"
# t = "cdef"
# cost = 3
sol = Solution()
sol.equalSubstring(s, t, cost)

261.可获得的最大点数

思路:转换为求连续的和最小, 那么自然用滑动窗口解决即可以

class Solution:def maxScore(self, cardPoints, k):length = len(cardPoints)leaving_k = length - kprint('==leaving_k:', leaving_k)if leaving_k == 0:return sum(cardPoints)left, right = 0, 0min_res = float('inf')temp_res = 0while right < length:temp_res += cardPoints[right]if right >= leaving_k - 1:min_res = min(min_res, temp_res)print('==temp_res:', temp_res)left += 1temp_res -= cardPoints[left - 1]right += 1print('==min_res:', min_res)return sum(cardPoints) - min_rescardPoints = [1, 2, 3, 4, 5, 6, 1]
k = 3
# cardPoints = [9, 7, 7, 9, 7, 7, 9]
# k = 7
sol = Solution()
sol.maxScore(cardPoints, k)

262.非递减数列

思路:分别从左右两边判断是否递增

class Solution:def checkPossibility(self, nums: List[int]) -> bool:length = len(nums)# res = 0left,right = 0,length-1while left<length-1 and nums[left]<=nums[left+1]:left+=1if left==length-1:return Truewhile right>=0 and nums[right-1]<=nums[right]:right-=1if right - left>1:return Falseif left==0 or right==length-1:return Trueif nums[right+1]>=nums[left] or nums[left-1]<=nums[right]:return Truereturn False

264.最长湍流子数组

思路:双指针

满足山峰:arr[right]>arr[right-1] and arr[right]>arr[right+1]  right+=1

满足山谷:arr[right]

其他时候 left移动到right位置


class Solution:def maxTurbulenceSize(self, arr):left, right = 0, 0length = len(arr)res = 1while right<length-1:if left==right:if left+1<length and arr[left]==arr[left+1]:left+=1right+=1else:#山峰if right+1<length and arr[right]>arr[right-1] and arr[right]>arr[right+1]:right+=1# 山谷elif right+1<length and arr[right]<arr[right-1] and arr[right]<arr[right+1]:right+=1else:left=rightprint('==right:', right)res = max(res, right-left+1)print('==res:', res)return res# arr  = [9,4,2,10,7,8,8,1,9]
# arr = [100]
arr = [2,1]
sol = Solution()
sol.maxTurbulenceSize(arr)

267.数据流中的第 K 大元素

思路1:每个add进去 就sort取第k大,时间复杂度偏大k*log(k),对于这种取topk问题,用最小堆更合适

#k*O(logk)  超时
class KthLargest:def __init__(self, k, nums):self.k = kself.nums = numsdef add(self, val):self.nums.append(val)self.nums = sorted(self.nums)[::-1]return self.nums[self.k - 1]
k = 3
nums = [4, 5, 8, 2]
sol = KthLargest(k, nums)
res = sol.add(3)
print('=res:', res)
res = sol.add(5)
print('=res:', res)
res = sol.add(10)
print('=res:', res)
res = sol.add(9)
print('=res:', res)
res = sol.add(4)
print('=res:', res)

思路2:最小堆,保证最小堆中只有k个元素,那么堆顶自然就是第k大元素

时间复杂度为log(k),因为push和pop都是log(k).

python代码

# 最小堆 topk都用最小堆
import heapq
class KthLargest(object):def __init__(self, k, nums):""":type k: int:type nums: List[int]"""self.k = kself.que = numsheapq.heapify(self.que)def add(self, val):""":type val: int:rtype: int"""heapq.heappush(self.que, val)print('=====self.que====:', self.que)while len(self.que)>self.k:#保持最小堆中只有k个元素 则堆顶就是第k大元素heapq.heappop(self.que)print('clean self.que:', self.que)return self.que[0]k = 3
nums = [4, 5, 8, 2]
sol = KthLargest(k, nums)
res = sol.add(3)
print('=res:', res)
res = sol.add(5)
print('=res:', res)

c++代码:

#include <map>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;class KthLargest {
public:priority_queue<int, vector<int>, greater<int> > que;//最小堆int k;KthLargest(int k, vector<int>& nums) {this->k = k;for(int k=0;k<nums.size();k++){que.push(nums[k]);if (que.size()>this->k){que.pop();}}}int add(int val) {que.push(val);if(que.size()>this->k){que.pop();}return que.top();}
};int main()
{   int k=3;vector<int> nums;nums={4,5,8,2};KthLargest *p = new KthLargest(k, nums);int res = p->add(3);cout<<"res:"<<res<<endl;res = p->add(5);cout<<"res:"<<res<<endl;res = p->add(10);cout<<"res:"<<res<<endl;res = p->add(9);cout<<"res:"<<res<<endl;res = p->add(4);cout<<"res:"<<res<<endl;delete p;p=NULL;return 0;}

269.杨辉三角 II

思路:一层一层遍历出值即可

python代码:

class Solution:def getRow(self, rowIndex: int) -> List[int]:temp = [0]*(rowIndex+1)temp[0] = 1for i in range(1, rowIndex+1):for j in range(i, 0, -1):temp[j] += temp[j-1]# print('==temp:', temp)return temp

c++代码:

#include <map>
#include <vector>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
class Solution {
public:vector<int> getRow(int rowIndex) {vector<int> temp(rowIndex+1, 0);temp[0] = 1;for (int i=1;i<rowIndex+1;i++){for(int j=i;j>0;j--){temp[j]+=temp[j-1];} }return temp;}
};int main()
{   Solution *p = new Solution();int row_index = 3;vector <int> res;res = p->getRow(row_index);for(int k=0;k<res.size();k++){cout<<"res[k]"<<res[k]<<endl;}p=NULL;delete p;return 0;
}

271.找到所有数组中消失的数字

思路1:hash  空间复杂度 o(n) 时间复杂度o(n)

# 空间复杂度 o(n) 时间复杂度o(n)
class Solution:def findDisappearedNumbers(self, nums):dict_={}for i in range(len(nums)):dict_[nums[i]] = dict_.get(nums[i],0)+1res = []for i in range(len(nums)):if i+1 not in dict_:res.append(i+1)print(res)return res

思路2:求出索引在对应位置处 添加长度 如果没有的数字,则数字就小于等于长度

空间复杂度O(1) 时间复杂度O(n)

#空间复杂度O(1) 时间复杂度O(n)
class Solution:def findDisappearedNumbers(self, nums):length = len(nums)for i in range(len(nums)):index= (nums[i]-1)%lengthnums[index] +=lengthprint('==nums:', nums)res = [i+1 for i in range(length) if nums[i] <= length]print(res)return res# nums = [4,3,2,7,8,2,3,1]
nums = [1,2,2,3,3,4,7,8]
# nums = [1,2,3,3,5,6,7]
sol = Solution()
sol.findDisappearedNumbers(nums)

c++代码:

#include <map>
#include <vector>
#include <iostream>
#include <queue>
#include <string>
#include <algorithm>
using namespace std;
class Solution {
public:vector<int> findDisappearedNumbers(vector<int>& nums) {vector<int> res;for (int i=0;i<nums.size();i++){int index = (nums[i]-1)%nums.size();nums[index] += nums.size();}for (int i=0;i<nums.size();i++){if(nums[i]<=nums.size()){res.push_back(i+1);}}return res;}
};int main()
{Solution *p = new Solution();vector <int >nums;nums = {4,3,2,7,8,2,3,1};vector <int> res = p->findDisappearedNumbers(nums);for(int i=0;i<res.size();i++){cout<<"res:"<<res[i]<<endl;    }delete p;p = NULL;return 0;
}

272.情侣牵手

思路:其实就是将环拆开,0,1都看成第0对,2,3看成第1对

可看出要交换的座位就是环的边数减去1,对于这种去环问题,自然想到并查集

python代码:

class Solution:def find(self,x):if self.parent[x]==x:return xreturn self.find(self.parent[x])def union(self,i,j):#将i的老大变成j的老大self.parent[self.find(i)] = self.find(j)def get_count(self,n):for i in range(n):self.count[self.find(i)]+=1def minSwapsCouples(self, row):n = len(row)//2self.parent = [i for i in range(n)]self.count = [0 for i in range(n)]print('===init self.parent', self.parent)for i in range(0, len(row), 2):self.union(row[i]//2, row[i+1]//2)print('==self.parent:', self.parent)self.get_count(n)print('===self.count:', self.count)res = 0for i in range(n):res += max(self.count[i]-1, 0)print(res)return res# row = [0,2,2]
# row = [0, 2, 1, 3]
# row = [2,0,5,4,3,1]
row = [1,4,0,5,8,7,6,3,2,9]
# row = [0, 1, 2, 3]
sol = Solution()
sol.minSwapsCouples(row)

c++代码:

#include <map>
#include <vector>
#include <iostream>
#include <queue>
#include <string>
#include <algorithm>
using namespace std;class Solution {
public:vector<int> parent;vector<int> count;int find(int x){if(x==parent[x]){return x;}return find(parent[x]);}//把i的老大换成j的老大void merge(int i, int j){parent[find(i)]=find(j);}void get_count(int n){for (int i=0;i<n;i++){   count[find(i)]+=1;}}int minSwapsCouples(vector<int>& row) {int n = row.size()/2;cout<<n<<endl;int res=0;for(int i=0;i<n;i++){parent.push_back(i);count.push_back(0);}for(int i=0;i<row.size();i+=2){merge(row[i]/2,row[i+1]/2);}get_count(n);// // //debug // for (int i=0;i<parent.size();i++)// {//     cout<<"===parent[i]"<<parent[i]<<endl;// }//debug // for (int i=0;i<count.size();i++)// {//     cout<<"===count[i]"<<count[i]<<endl;// }for (int i=0;i<count.size();i++){res+=max(count[i]-1,0);}return res;}
};
int main()
{Solution *p = new Solution();vector<int> row;row = {0, 2, 1, 3};int res = p->minSwapsCouples(row);cout<<"==res:"<<res<<endl;delete p;p=NULL;return 0;
}

273.最大连续1的个数

思路1:直接数1个数

class Solution:def findMaxConsecutiveOnes(self, nums):count_one = 0res = 0for i in range(len(nums)):if nums[i]==1:count_one+=1else:count_one=0res = max(res, count_one)# print(res)return res

思路2:dp

class Solution:def findMaxConsecutiveOnes(self, nums):res = [-1]for i in range(len(nums)):if nums[i]==0:res.append(i)res.append(len(nums))print(res)if len(res)==1:return res[-1]max_length = 0for i in range(1, len(res)):max_length = max(res[i]-res[i-1]-1, max_length)print(max_length)return max_length

思路3:双指针滑动窗口

class Solution:def findMaxConsecutiveOnes(self, nums):left,right=0,0res = 0while right<len(nums):if nums[right]==1:right+=1else:right+=1left=rightprint('==left,right:', left, right)res = max(res, right - left)print('==res:', res)return res

c++双指针:

#include <vector>
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;class Solution {
public:int findMaxConsecutiveOnes(vector<int>& nums) {int left=0;int right = 0;int res = 0;while (right<nums.size()){if(nums[right]==1){right++;}else{                   right++;left=right;                }res = max(right-left, res);}return res;        }
};int main()
{Solution *p = new Solution();vector<int> nums;nums = {1,1,0,1,1,1};int res = p->findMaxConsecutiveOnes(nums);cout<<"==res:"<<res<<endl;delete p;p=NULL;return 0;
}

274.重塑矩阵

思路:对于h*w的元素个数,索引为h_index = i//rows,w_index = i%rows

python代码

class Solution:def matrixReshape(self, nums: List[List[int]], r: int, c: int) -> List[List[int]]:h = len(nums)w = len(nums[0])if h*w != r*c:return numsres = [[0 for _ in range(c)] for _ in range(r)]# print(res)for i in range(h*w):res[i//c][i%c] = nums[i//w][i%w]# print(res)return res

c++代码:

class Solution {
public:vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {int h = nums.size();int w = nums[0].size();// cout<<"==h:"<<h<<endl;vector<vector<int>> res(r ,vector<int>(c,0));  //初始化c*r元素为0的矩阵 // cout<<"==res.size():"<<res.size()<<endl;// cout<<"==res[0].size():"<<res[0].size()<<endl;if(h*w!=r*c){return nums;}for (int i=0;i<h*w;i++){   // cout<<"i/w:"<<i/w<<endl;// cout<<"i%w:"<<i%w<<endl;res[i/c][i%c] = nums[i/w][i%w];}return res;}
};

275.最大连续1的个数 III

思路:其实就是滑动窗口判断有大于K个0的则左指针右移动,之所以用大于K来判断是因为0后续可能会跟着很多1,所以大于K的话,会把这些包含进去,和https://leetcode-cn.com/problems/longest-substring-without-repeating-characters/ 思想一样

python:

class Solution:def longestOnes(self, A: List[int], K: int) -> int:left,right =0,0n = len(A)zero_count =0res = 0while right<n:if A[right]==0:zero_count+=1#left向右收缩while zero_count>K:#大于K个0的时候就说明找到符合条件的了if A[left]==0:zero_count-=1left+=1res = max(res, right - left + 1)# print('=left:', left)# print('==right:', right)# print('==res:', res)right+=1# print(res)return res

c++

class Solution {
public:int longestOnes(vector<int>& A, int K) {int left=0;int right =0;int res=0;int zero_count =0;int length = A.size();while(right<length){   if (A[right]==0){zero_count++;}while (zero_count>K){   if (A[left]==0){zero_count--;}left++;}res = max(res, right-left+1);right++;}return res;}
};

276.数组的度

思路:三个hash,一个计度,一个记录左索引,一个记录右索引

python:

class Solution:def findShortestSubArray(self, nums: List[int]) -> int:dict_ = {}left_index_dict = {}right_index_dict = {}for i in range(len(nums)):dict_[nums[i]] = dict_.get(nums[i], 0)+1if nums[i] not in left_index_dict:left_index_dict[nums[i]] = iright_index_dict[nums[i]] = i# print('==dict_:', dict_)# print('=left_index_dict:', left_index_dict)# print('==right_index_dict:', right_index_dict)dict_ = dict(sorted(dict_.items(), key=lambda x:x[1],reverse=True))# print(dict_)max_degree = 0res = float('inf')for key,value in dict_.items():max_degree = valuebreak# print(max_degree)for key, value in dict_.items():if value==max_degree:res = min(res, right_index_dict[key] - left_index_dict[key]+1)# print('===res:',res)return res

c++:

class Solution {
public:int findShortestSubArray(vector<int>& nums) {map<int, int>dict_;map<int, int>left_index_dict;map<int, int>right_index_dict;for(int i=0;i<nums.size();i++){dict_[nums[i]]++;if(left_index_dict.count(nums[i])==0){left_index_dict[nums[i]] = i;}right_index_dict[nums[i]] = i;}int max_degree=0;map<int,int>::iterator iter=dict_.begin();for (;iter!=dict_.end();iter++){max_degree = max(max_degree, iter->second);}int res=INT_MAX;map<int,int>::iterator iter_2=dict_.begin();for (;iter_2!=dict_.end();iter_2++){if (max_degree == iter_2->second){res = min(res, right_index_dict[iter_2->first] - left_index_dict[iter_2->first]+1);}}return res;}
};

python刷题+leetcode(第三部分)相关推荐

  1. python刷题+leetcode(第一部分)

    1. 设计前中后队列 思路:python代码直接利用list的insert特性 class FrontMiddleBackQueue:def __init__(self):self.queque = ...

  2. python刷题+leetcode(第二部分)

    100. 简化路径 思路:栈 class Solution:def simplifyPath(self, path: str) -> str:stack = []for path_ in pat ...

  3. python刷题用leet_GitHub - Yolymaker/leetcode-python: 利用python分类刷leetcode题目

    leetcode分类高效刷题 leetcode是一个很好的学习算法的一个online judge的网站,通过刷题能够快速提升自己的算法能力.但是令大家都头疼的就是,怎么能够高效的通过leetcode刷 ...

  4. LeetCode刷题笔记- 15.三数之和

    LeetCode刷题笔记- 15.三数之和 C语言 题目 注意点 C语言 /*** Return an array of arrays of size *returnSize.* The sizes ...

  5. Python 刷题常用语法与数据结构汇总-2022.01.30

    [笔试]python刷题笔记(基础)! https://blog.csdn.net/a_123456598/article/details/105420802 python语法刷题 https://b ...

  6. python刷题 NOI题库 python题解 洛谷、牛客网、AcWing 刷题等

    NOI题库 python题解-2022.01.07整理(1.1-1.3) NOI题库 python题解-2022.01.07整理(1.1-1.3)_dllglvzhenfeng的博客-CSDN博客 N ...

  7. 【Python刷题篇】Python从0到入门3|循环、条件复习、元组入门、字典入门

    Python从0到入门3目录 前言 Q1:团队分组 Q2:禁止重复注册 Q3:元组-牛客运动会 Q4:字典-遍历字典 Q5:字典-毕业生就业调查 Q6:姓名与学号 总结 前言 - 本期是Python从 ...

  8. Python刷题记录(81-90)

    Python刷题记录(81-90) 题目来源PTA平台 PAT (Basic Level) Practice (中文) @TOC 1081 检查密码 本题要求你帮助某网站的用户注册模块写一个密码合法性 ...

  9. [python刷题模板] 珂朵莉树 ODT (基于支持随机访问的跳表

    [python刷题模板] 珂朵莉树 ODT (基于支持随机访问的跳表) 一. 算法&数据结构 1. 描述 2. 复杂度分析 3. 常见应用 4. 常用优化 二. 模板代码 0. 区间推平(lg ...

最新文章

  1. 混合云存储开启企业上云新路径--阿里云混合云备份容灾方案发布
  2. shell 下的运算表达
  3. c++面向对象的程序设计
  4. 所有库在门不显示封装_COB全天候通透屏,在商业显示中的场景应用
  5. html天气插件iframe,分享常用7款天气预报代码iframe嵌入网页方式
  6. C语言中指针的使用方法
  7. 高职学生如何成为编程高手
  8. 「权威发布」2019年全国大学生电子设计竞赛获奖名单【涵盖国一、二等奖】
  9. 一个countDown在多线程调度下使用不当的分享
  10. 修复 IE 的文本3像素偏移Bug
  11. [导入]DataHelper
  12. unity如何得到所有子对象_Unity用户手册-Mesh合批
  13. Java算法中O(1),O(logn),O(n),O(nlogn),O(n2)是什么
  14. 贪心——Berserk And Fireball
  15. sqldbx连接Smartbi mysql知识库
  16. Istio-智能DNS
  17. OOA/OOD/OOP细讲
  18. 前端之HTML基础扫盲
  19. 2001中美黑客大战
  20. thinkPHP6.0项目搭建

热门文章

  1. 模型训练太慢?显存不够用?这个算法让你的GPU老树开新花
  2. 参加完阿里Java面试:一面+二面+三面+HR四面,后的复盘经验总结!
  3. 图谱实战 | 知识图谱构建的一站式平台gBuilder
  4. 论文浅尝 - IJCAI2020 | Mucko:基于事实的多层跨模态知识推理视觉问答
  5. python实现拆分、合并、删除pdf
  6. IJCAI 2018:中科院计算所:增强对话生成一致性的序列到序列模型
  7. 【Java】第一阶段练习题
  8. 第一阶段 07类与对象
  9. 动态代理Java实现
  10. windows使用python3.4生成二维码