在linux内核中,有很多同步机制。比较经典的有原子操作、spin_lock(忙等待的锁)、mutex(互斥锁)、semaphore(信号量)等。并且它们几乎都有对应的rw_XXX(读写锁),以便在能够区分读与写的情况下,让读操作相互不互斥(读写、写写依然互斥)。而seqlock和rcu应该可以不算在经典之列,它们是两种比较有意思的同步机制。

1.atomic(原子操作):

所谓原子操作,就是该操作绝不会在执行完毕前被任何其他任务或事件打断,也就说,它的最小的执行单位,不可能有比它更小的执行单位,因此这里的原子实际是使用了物理学里的物质微粒的概念。
原子操作需要硬件的支持,因此是架构相关的,其API和原子类型的定义都定义在内核源码树的include/asm/atomic.h文件中,它们都使用汇编语言实现,因为C语言并不能实现这样的操作。

原子操作主要用于实现资源计数,很多引用计数(refcnt)就是通过原子操作实现的。

2.mutex(互斥锁)

互斥锁主要用于实现内核中的互斥访问功能。内核互斥锁是在原子API之上实现的,但这对于内核用户是不可见的。对它的访问必须遵循一些规则:同一时间只能有一个任务持有互斥锁,而且只有这个任务可以对互斥锁进行解锁。互斥锁不能进行递归锁定或解锁。一个互斥锁对象必须通过其API初始化,而不能使用memset或复制初始化。一个任务在持有互斥锁的时候是不能结束的。互斥锁所使用的内存区域是不能被释放的。使用中的互斥锁是不能被重新初始化的。并且互斥锁不能用于中断上下文。但是互斥锁比当前的内核信号量选项更快,并且更加紧凑,因此如果它们满足您的需求,那么它们将是您明智的选择。

3.Spinlock(自旋锁)

自旋锁与互斥锁有点类似,只是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名。由于自旋锁使用者一般保持锁时间非常短,因此选择自旋而不是睡眠是非常必要的,自旋锁的效率远高于互斥锁。

信号量和读写信号量适合于保持时间较长的情况,它们会导致调用者睡眠,因此只能在进程上下文使用(_trylock的变种能够在中断上下文使用),而自旋锁适合于保持时间非常短的情况,它可以在任何上下文使用。如果被保护的共享资源只在进程上下文访问,使用信号量保护该共享资源非常合适,如果对共巷资源的访问时间非常短,自旋锁也可以。但是如果被保护的共享资源需要在中断上下文访问(包括底半部即中断处理句柄和顶半部即软中断),就必须使用自旋锁。

自旋锁保持期间是抢占失效的,而信号量和读写信号量保持期间是可以被抢占的。自旋锁只有在内核可抢占或SMP的情况下才真正需要,在单CPU且不可抢占的内核下,自旋锁的所有操作都是空操作。

跟互斥锁一样,一个执行单元要想访问被自旋锁保护的共享资源,必须先得到锁,在访问完共享资源后,必须释放锁。如果在获取自旋锁时,没有任何执行单元保持该锁,那么将立即得到锁;如果在获取自旋锁时锁已经有保持者,那么获取锁操作将自旋在那里,直到该自旋锁的保持者释放了锁。

无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。

4.semaphore(信号量)

Linux内核的信号量在概念和原理上与用户态的SystemV的IPC机制信号量是一样的,但是它绝不可能在内核之外使用,因此它与SystemV的IPC机制信号量毫不相干。

信号量在创建时需要设置一个初始值,表示同时可以有几个任务可以访问该信号量保护的共享资源,初始值为1就变成互斥锁(Mutex),即同时只能有一个任务可以访问信号量保护的共享资源。一个任务要想访问共享资源,首先必须得到信号量,获取信号量的操作将把信号量的值减1,若当前信号量的值为负数,表明无法获得信号量,该任务必须挂起在该信号量的等待队列等待该信号量可用;若当前信号量的值为非负数,表示可以获得信号量,因而可以立刻访问被该信号量保护的共享资源。当任务访问完被信号量保护的共享资源后,必须释放信号量,释放信号量通过把信号量的值加1实现,如果信号量的值为非正数,表明有任务等待当前信号量,因此它也唤醒所有等待该信号量的任务。

5.rw_semaphore (读写信号量)

读写信号量对访问者进行了细分,或者为读者,或者为写者,读者在保持读写信号量期间只能对该读写信号量保护的共享资源进行读访问,如果一个任务除了需要读,可能还需要写,那么它必须被归类为写者,它在对共享资源访问之前必须先获得写者身份,写者在发现自己不需要写访问的情况下可以降级为读者。读写信号量同时拥有的读者数不受限制,也就说可以有任意多个读者同时拥有一个读写信号量。如果一个读写信号量当前没有被写者拥有并且也没有写者等待读者释放信号量,那么任何读者都可以成功获得该读写信号量;否则,读者必须被挂起直到写者释放该信号量。如果一个读写信号量当前没有被读者或写者拥有并且也没有写者等待该信号量,那么一个写者可以成功获得该读写信号量,否则写者将被挂起,直到没有任何访问者。因此,写者是排他性的,独占性的。

读写信号量有两种实现,一种是通用的,不依赖于硬件架构,因此,增加新的架构不需要重新实现它,但缺点是性能低,获得和释放读写信号量的开销大;另一种是架构相关的,因此性能高,获取和释放读写信号量的开销小,但增加新的架构需要重新实现。在内核配置时,可以通过选项去控制使用哪一种实现。

6.seqlock(顺序锁)

用于能够区分读与写的场合,并且是读操作很多、写操作很少,写操作的优先权大于读操作。
seqlock的实现思路是,用一个递增的整型数表示sequence。写操作进入临界区时,sequence++;退出临界区时,sequence再++。写操作还需要获得一个锁(比如mutex),这个锁仅用于写写互斥,以保证同一时间最多只有一个正在进行的写操作。
当sequence为奇数时,表示有写操作正在进行,这时读操作要进入临界区需要等待,直到sequence变为偶数。读操作进入临界区时,需要记录下当前sequence的值,等它退出临界区的时候用记录的sequence与当前sequence做比较,不相等则表示在读操作进入临界区期间发生了写操作,这时候读操作读到的东西是无效的,需要返回重试。

seqlock写写是必须要互斥的。但是seqlock的应用场景本身就是读多写少的情况,写冲突的概率是很低的。所以这里的写写互斥基本上不会有什么性能损失。
而读写操作是不需要互斥的。seqlock的应用场景是写操作优先于读操作,对于写操作来说,几乎是没有阻塞的(除非发生写写冲突这一小概率事件),只需要做sequence++这一附加动作。而读操作也不需要阻塞,只是当发现读写冲突时需要retry。

seqlock的一个典型应用是时钟的更新,系统中每1毫秒会有一个时钟中断,相应的中断处理程序会更新时钟(见《linux时钟浅析》)(写操作)。而用户程序可以调用gettimeofday之类的系统调用来获取当前时间(读操作)。在这种情况下,使用seqlock可以避免过多的gettimeofday系统调用把中断处理程序给阻塞了(如果使用读写锁,而不用seqlock的话就会这样)。中断处理程序总是优先的,而如果gettimeofday系统调用与之冲突了,那用户程序多等等也无妨。

7.rwlock(读写锁)

读写锁实际是一种特殊的自旋锁,它把对共享资源的访问者划分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。这种锁相对于自旋锁而言,能提高并发性,因为在多处理器系统中,它允许同时有多个读者来访问共享资源,最大可能的读者数为实际的逻辑CPU数。写者是排他性的,一个读写锁同时只能有一个写者或多个读者(与CPU数相关),但不能同时既有读者又有写者。

在读写锁保持期间也是抢占失效的。

如果读写锁当前没有读者,也没有写者,那么写者可以立刻获得读写锁,否则它必须自旋在那里,直到没有任何写者或读者。如果读写锁没有写者,那么读者可以立即获得该读写锁,否则读者必须自旋在那里,直到写者释放该读写锁。

Linux中各种锁原理概述相关推荐

  1. Java中的锁原理、锁优化、CAS、AQS详解!

    阅读本文大概需要 2.8 分钟. 来源:jianshu.com/p/e674ee68fd3f 一.为什么要用锁? 锁-是为了解决并发操作引起的脏读.数据不一致的问题. 二.锁实现的基本原理 2.1.v ...

  2. Java中的锁原理、锁优化、CAS、AQS详解

    点击上方"方志朋",选择"设为星标" 回复"666"获取新整理的面试文章 作者:景小财 www.jianshu.com/p/e674ee68 ...

  3. Java中的锁[原理、锁优化、CAS、AQS]

    点击上方 好好学java ,选择 星标 公众号 重磅资讯.干货,第一时间送达 今日推荐:用好Java中的枚举,真的没有那么简单!个人原创+1博客:点击前往,查看更多 作者:高广超 链接:https:/ ...

  4. Linux中的信号处理原理

          Linux中的信号来自Unix,在发展了30多年之后,许多方面都没有发生太大的变化.信号可以由内核产生,也可以由用户进程产生,并由内核传送给特定的进程或线程(组),若这个进程定义了自己的信 ...

  5. 【翻译】TCP backlog在Linux中的工作原理

    原文How TCP backlog works in Linux 水平有限,难免有错,欢迎指出! 以下为翻译: 当应用程序通过系统调用listen将一个套接字(socket)置为LISTEN状态时,需 ...

  6. linux 内存使用原理,linux中内存使用原理

    首先介绍一下linux中内存是如何使用的. 当有应用需要读写磁盘数据时,由系统把相关数据从磁盘读取到内存,如果物理内存不够,则把内存中的部分数据导入到磁盘,从而把磁盘的部分空间当作虚拟内存 来使用,也 ...

  7. linux中umask的原理和作用,Linux 的umask详解

    1.由权限得到umask的值 umask是一个系统变量,是一个由3个八进制数字组成的值,具体含义见表:每个数字都是八进制值1.2.4的OR操作结果. 作用:当文件被创建时,为文件的访问权限设定一个掩码 ...

  8. 传统的Linux中IPC通信原理

    在了解 Binder 跨进程通信原理之前, 我们先了解一下 Linux 传统的进程间通信的概念和基本原理, 这样有助于我们更好的理解 Binder 的通信原理. 这个部分基本都是理论, 基础不是很好的 ...

  9. Linux内核锁实现原理,linux 大内核锁原理

    大内核锁(BKL)的设计是在kernel hacker们对多处理器的同步还没有十足把握时,引入的大粒度锁. 他的设计思想是,一旦某个内核路径获取了这把锁,那么其他所有的内核路径都不能再获取到这把锁. ...

最新文章

  1. DSP中LOG_printf()和printf()区别
  2. php unlike,PHP结合jQuery实现的评论顶、踩功能
  3. 【NLP】如何在文本分类任务中Fine-Tune BERT
  4. ADF_Tutorials系列17_ADF Faces_使用布局组件
  5. SAP Spartacus运行时错误 - The pipe cxUrl could not be found!
  6. Swift 使用WebKit动态执行javascript脚本
  7. Linux中tty、pty、pts的概念区别
  8. 利用SMTP虚拟服务器实现不同邮件系统之间的通讯
  9. 苹果手机连接电脑一直噔噔蹬的响,而且没有反应
  10. OA系统中的HRM的发展和存在的误区,值得每一个HR学习
  11. 蓝桥杯真题:平方和(2019 年省赛)
  12. 如何在arcgis中制作土地利用转移矩阵
  13. 风口来了?关于电子信息工程专业的有关介绍
  14. 小白做shopee平台,怎么解决货源问题,这三点一定要掌握
  15. 不锈钢水处理过滤器在食品领域中的运用
  16. ubuntu16 坚果云不能打开
  17. [LOJ6515]「雅礼集训 2018 Day10」贪玩蓝月
  18. JDBC操作达梦数据库
  19. 沐风:做一个会自动赚钱的小程序
  20. Java使用aopse实现word转换pdf

热门文章

  1. Spring Boot核心注解讲解
  2. 解决windows update失败,正在还原的问题
  3. Linux常用命令——rsync
  4. win10 x64中 windbg x64 安装配置符号库
  5. 用函数指针控制排序的顺序
  6. android 用LruCache读取大图片并缓存(转)
  7. openCV播放视频的程序
  8. _如何在 Linux 上安装 Minecraft 服务器
  9. 解决github网站打开慢的问题
  10. Javascript第五章改变CSS样式节点两种方法,制作导航背景切换效果第十课