晓查 发自 凹非寺

量子位 报道 | 公众号 QbitAI

“我在网上看到过很多神经网络的实现方法,但这一篇是最简单、最清晰的。”

一位来自普林斯顿的华人小哥Victor Zhou,写了篇神经网络入门教程,在线代码网站Repl.it联合创始人Amjad Masad看完以后,给予如是评价。

这篇教程发布仅天时间,就在Hacker News论坛上收获了574赞。程序员们纷纷夸赞这篇文章的代码写得很好,变量名很规范,让人一目了然。

下面就让我们一起从零开始学习神经网络吧。

实现方法

搭建基本模块——神经元

在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子:

在这个神经元中,输入总共经历了3步数学运算,

先将两个输入乘以权重(weight):

x1→x1 × w1

x2→x2 × w2

把两个结果想加,再加上一个偏置(bias):

(x1 × w1)+(x2 × w2)+ b

最后将它们经过激活函数(activation function)处理得到输出:

y = f(x1 × w1 + x2 × w2 + b)

激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数:

sigmoid函数的输出介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。

举个例子,上面神经元里的权重和偏置取如下数值:

w=[0,1]

b = 4

w=[0,1]是w1=0、w2=1的向量形式写法。给神经元一个输入x=[2,3],可以用向量点积的形式把神经元的输出计算出来:

w·x+b =(x1 × w1)+(x2 × w2)+ b = 0×2+1×3+4=7

y=f(w⋅X+b)=f(7)=0.999

以上步骤的Python代码是:

import numpy as npdef sigmoid(x): # Our activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x))class Neuron: def __init__(self, weights, bias): self.weights = weights self.bias = bias def feedforward(self, inputs): # Weight inputs, add bias, then use the activation function total = np.dot(self.weights, inputs) + self.bias return sigmoid(total)weights = np.array([0, 1]) # w1 = 0, w2 = 1bias = 4 # b = 4n = Neuron(weights, bias)x = np.array([2, 3]) # x1 = 2, x2 = 3print(n.feedforward(x)) # 0.9990889488055994

我们在代码中调用了一个强大的Python数学函数库NumPy

搭建神经网络

神经网络就是把一堆神经元连接在一起,下面是一个神经网络的简单举例:

这个网络有2个输入、一个包含2个神经元的隐藏层(h1和h2)、包含1个神经元的输出层o1

隐藏层是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。

把神经元的输入向前传递获得输出的过程称为前馈(feedforward)。

我们假设上面的网络里所有神经元都具有相同的权重w=[0,1]和偏置b=0,激活函数都是sigmoid,那么我们会得到什么输出呢?

h1=h2=f(w⋅x+b)=f((0×2)+(1×3)+0)

=f(3)

=0.9526

o1=f(w⋅[h1,h2]+b)=f((0∗h1)+(1∗h2)+0)

=f(0.9526)

=0.7216

以下是实现代码:

import numpy as np# ... code from previous section hereclass OurNeuralNetwork: ''' A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1) Each neuron has the same weights and bias: - w = [0, 1] - b = 0 ''' def __init__(self): weights = np.array([0, 1]) bias = 0 # The Neuron class here is from the previous section self.h1 = Neuron(weights, bias) self.h2 = Neuron(weights, bias) self.o1 = Neuron(weights, bias) def feedforward(self, x): out_h1 = self.h1.feedforward(x) out_h2 = self.h2.feedforward(x) # The inputs for o1 are the outputs from h1 and h2 out_o1 = self.o1.feedforward(np.array([out_h1, out_h2])) return out_o1network = OurNeuralNetwork()x = np.array([2, 3])print(network.feedforward(x)) # 0.7216325609518421

训练神经网络

现在我们已经学会了如何搭建神经网络,现在我们来学习如何训练它,其实这就是一个优化的过程。

假设有一个数据集,包含4个人的身高、体重和性别:

现在我们的目标是训练一个网络,根据体重和身高来推测某人的性别。

为了简便起见,我们将每个人的身高、体重减去一个固定数值,把性别男定义为1、性别女定义为0。

在训练神经网络之前,我们需要有一个标准定义它到底好不好,以便我们进行改进,这就是损失(loss)。

比如用均方误差(MSE)来定义损失:

n是样本的数量,在上面的数据集中是4;

y代表人的性别,男性是1,女性是0;

ytrue是变量的真实值,ypred是变量的预测值。

顾名思义,均方误差就是所有数据方差的平均值,我们不妨就把它定义为损失函数。预测结果越好,损失就越低,训练神经网络就是将损失最小化。

如果上面网络的输出一直是0,也就是预测所有人都是男性,那么损失是:

MSE= 1/4 (1+0+0+1)= 0.5

计算损失函数的代码如下:

import numpy as npdef mse_loss(y_true, y_pred): # y_true and y_pred are numpy arrays of the same length. return ((y_true - y_pred) ** 2).mean()y_true = np.array([1, 0, 0, 1])y_pred = np.array([0, 0, 0, 0])print(mse_loss(y_true, y_pred)) # 0.5

减少神经网络损失

这个神经网络不够好,还要不断优化,尽量减少损失。我们知道,改变网络的权重和偏置可以影响预测值,但我们应该怎么做呢?

为了简单起见,我们把数据集缩减到只包含Alice一个人的数据。于是损失函数就剩下Alice一个人的方差:

预测值是由一系列网络权重和偏置计算出来的:

所以损失函数实际上是包含多个权重、偏置的多元函数:

(注意!前方高能!需要你有一些基本的多元函数微分知识,比如偏导数、链式求导法则。)

如果调整一下w1,损失函数是会变大还是变小?我们需要知道偏导数∂L/∂w1是正是负才能回答这个问题。

根据链式求导法则:

而L=(1-ypred)2,可以求得第一项偏导数:

接下来我们要想办法获得ypred和w1的关系,我们已经知道神经元h1、h2和o1的数学运算规则:

实际上只有神经元h1中包含权重w1,所以我们再次运用链式求导法则:

然后求∂h1/∂w1

我们在上面的计算中遇到了2次激活函数sigmoid的导数f′(x),sigmoid函数的导数很容易求得:

总的链式求导公式:

这种向后计算偏导数的系统称为反向传播(backpropagation)。

上面的数学符号太多,下面我们带入实际数值来计算一下。h1、h2和o1

h1=f(x1⋅w1+x2⋅w2+b1)=0.0474

h2=f(w3⋅x3+w4⋅x4+b2)=0.0474

o1=f(w5⋅h1+w6⋅h2+b3)=f(0.0474+0.0474+0)=f(0.0948)=0.524

神经网络的输出y=0.524,没有显示出强烈的是男(1)是女(0)的证据。现在的预测效果还很不好。

我们再计算一下当前网络的偏导数∂L/∂w1

这个结果告诉我们:如果增大w1,损失函数L会有一个非常小的增长。

随机梯度下降

下面将使用一种称为随机梯度下降(SGD)的优化算法,来训练网络。

经过前面的运算,我们已经有了训练神经网络所有数据。但是该如何操作?SGD定义了改变权重和偏置的方法:

η是一个常数,称为学习率(learning rate),它决定了我们训练网络速率的快慢。将w1减去η·∂L/∂w1,就等到了新的权重w1

当∂L/∂w1是正数时,w1会变小;当∂L/∂w1是负数 时,w1会变大。

如果我们用这种方法去逐步改变网络的权重w和偏置b,损失函数会缓慢地降低,从而改进我们的神经网络。

训练流程如下:

1、从数据集中选择一个样本;

2、计算损失函数对所有权重和偏置的偏导数;

3、使用更新公式更新每个权重和偏置;

4、回到第1步。

我们用Python代码实现这个过程:

import numpy as npdef sigmoid(x): # Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x))def deriv_sigmoid(x): # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x)) fx = sigmoid(x) return fx * (1 - fx)def mse_loss(y_true, y_pred): # y_true and y_pred are numpy arrays of the same length. return ((y_true - y_pred) ** 2).mean()class OurNeuralNetwork: ''' A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1) *** DISCLAIMER ***: The code below is intended to be simple and educational, NOT optimal. Real neural net code looks nothing like this. DO NOT use this code. Instead, read/run it to understand how this specific network works. ''' def __init__(self): # Weights self.w1 = np.random.normal() self.w2 = np.random.normal() self.w3 = np.random.normal() self.w4 = np.random.normal() self.w5 = np.random.normal() self.w6 = np.random.normal() # Biases self.b1 = np.random.normal() self.b2 = np.random.normal() self.b3 = np.random.normal() def feedforward(self, x): # x is a numpy array with 2 elements. h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1) h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2) o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3) return o1 def train(self, data, all_y_trues): ''' - data is a (n x 2) numpy array, n = # of samples in the dataset. - all_y_trues is a numpy array with n elements. Elements in all_y_trues correspond to those in data. ''' learn_rate = 0.1 epochs = 1000 # number of times to loop through the entire dataset for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): # --- Do a feedforward (we'll need these values later) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmoid(sum_o1) y_pred = o1 # --- Calculate partial derivatives. # --- Naming: d_L_d_w1 represents "partial L / partial w1" d_L_d_ypred = -2 * (y_true - y_pred) # Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) # Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1) # Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2) d_h2_d_b2 = deriv_sigmoid(sum_h2) # --- Update weights and biases # Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 # Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 # Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 # --- Calculate total loss at the end of each epoch if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) print("Epoch %d loss: %.3f" % (epoch, loss))# Define datasetdata = np.array([ [-2, -1], # Alice [25, 6], # Bob [17, 4], # Charlie [-15, -6], # Diana])all_y_trues = np.array([ 1, # Alice 0, # Bob 0, # Charlie 1, # Diana])# Train our neural network!network = OurNeuralNetwork()network.train(data, all_y_trues)

随着学习过程的进行,损失函数逐渐减小。

现在我们可以用它来推测出每个人的性别了:

# Make some predictionsemily = np.array([-7, -3]) # 128 pounds, 63 inchesfrank = np.array([20, 2]) # 155 pounds, 68 inchesprint("Emily: %.3f" % network.feedforward(emily)) # 0.951 - Fprint("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

更多

这篇教程只是万里长征第一步,后面还有很多知识需要学习:

1、用更大更好的机器学习库搭建神经网络,如Tensorflow、Keras、PyTorch

2、在浏览器中的直观理解神经网络:https://playground.tensorflow.org/

3、学习sigmoid以外的其他激活函数:https://keras.io/activations/

4、学习SGD以外的其他优化器:https://keras.io/optimizers/

5、学习卷积神经网络(CNN)

6、学习递归神经网络(RNN)

这些都是Victor给自己挖的“坑”。他表示自己未来“可能”会写这些主题内容,希望他能陆续把这些坑填完。如果你想入门神经网络,不妨去订阅他的博客。

关于这位小哥

Victor Zhou是普林斯顿2019级CS毕业生,已经拿到Facebook软件工程师的offer,今年8月入职。他曾经做过JS编译器,还做过两款页游,一个仇恨攻击言论的识别库。

最后附上小哥的博客链接:

https://victorzhou.com/

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

loss下降auc下降_从基本原理到梯度下降算法:零基础也能看懂的神经网络教程...相关推荐

  1. 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)

    http://blog.itpub.net/29829936/viewspace-2648775/ 2019-06-25 21:31:18 卷积神经网络 – CNN 最擅长的就是图片的处理.它受到人类 ...

  2. loss下降auc下降_梯度下降算法 线性回归拟合(附Python/Matlab/Julia源代码)

    梯度下降 梯度下降法的原理 梯度下降法(gradient descent)是一种常用的一阶(first-order)优化方法,是求解无约束优化问题最简单.最经典的方法之一. 梯度下降最典型的例子就是从 ...

  3. 语言线性拟合线对称_文科生都能看懂的机器学习教程:梯度下降、线性回归、逻辑回归...

    [新智元导读]虽然在Coursera.MIT.UC伯克利上有很多机器学习的课程,包括吴恩达等专家课程已非常经典,但都是面向有一定理科背景的专业人士.本文试图将机器学习这本深奥的课程,以更加浅显易懂的方 ...

  4. 一文看懂计算机神经网络与梯度下降

    1. 计算机神经网络与神经元 要理解神经网络中的梯度下降算法,首先我们必须清楚神经元的定义.如下图所示,每一个神经元可以由关系式y=f(∑i=1nwixi+b)y = f(\sum_{i=1}^nw_ ...

  5. 春节充电 | 文科生都能看懂的机器学习教程:梯度下降、线性回归、逻辑回归(附动图解释)...

    来源:新智元 本文约4200字,建议阅读10+分钟. 本文浅显易懂的方式讲解机器学习,力求让没有理科背景的读者都能看懂. [ 导读 ]虽然在Coursera.MIT.UC伯克利上有很多机器学习的课程, ...

  6. 文科生都能看懂的机器学习教程:梯度下降、线性回归、逻辑回归

    来源:新智元 本文约4200字,建议阅读10+分钟. 本文浅显易懂的方式讲解机器学习,力求让没有理科背景的读者都能看懂. [ 导读 ]虽然在Coursera.MIT.UC伯克利上有很多机器学习的课程, ...

  7. loss下降auc下降_随机梯度下降法介绍及其参数讲解

    算法介绍 简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方.但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点.如图所示,黑线标注的路线所指的方向并不是真正的地方. 既然是选择 ...

  8. loss下降auc下降_比较两个疾病模型的预测能力,AUC和NRI了解一下?

    在上一期内容中,我们介绍了当考察一个疾病预测模型好坏的时候,常常会关注到2个维度,一个是预测模型的区分度(Discrimination),它反映了该模型是否能够将患者和非患者区分开来的能力:另一个维度 ...

  9. 区域转换为二值图像_零基础一文读懂AI深度学习图像识别

    #寻找真知派# #科学思维看百态# #深度学习 图像识别# 人工智能大常识(2):图像识别(以手写字符识别为例) 近期写一组关于人工智能的科普帖子.第一帖介绍了AI自动诊断的方法,本帖之后准备继续推出 ...

  10. java里有没有 0的使用_请问有没有人有零基础Java基础习题?

    第一组: 1.下面哪些是合法的变量名? A(2variable //不能以数字开头 B. (variable2 //不能用点和空格 //不能用点和空格 C. (_whatavariable D(_3_ ...

最新文章

  1. MySQL 单表优化
  2. Blender中的多平面动画学习教程
  3. 【Codeforces】401C Team (01010110...)
  4. 五、线程的概念和特点
  5. 3.1.7 封装的应用
  6. 为什么我不再推荐使用 MVC 框架?
  7. 字母出现频率c语言,统计字母的使用频率c语言实现
  8. jsonp react 获取返回值_谈谈对 React 新旧生命周期的理解
  9. Graph + AI 2021全球峰会圆满落幕 TigerGraph企业版3.2发布
  10. C编译: 使用gdb调试
  11. ie浏览器在线使用_关于登录深圳市住房公积金管理中心网站在线办理平台的温馨提示...
  12. 八皇后(N皇后)问题算法程序(回溯法)
  13. 开源进销存管理系统学习教程
  14. win的反义词_小学英语常用近义词、反义词、同音词汇总 ~~~ 赶紧转给孩子
  15. TensorFlow 人脸识别网络与对抗网络搭建
  16. github问题之Unable to retrieve your user info from the server
  17. “开源是一个自我实现的预言”,Shifu创始人陈永立说道
  18. xp计算机u盘重装系统,处理a豆电脑u盘重装系统xp步骤
  19. 微信公众号服务器端脑图,微信公众号中隐藏的思维导图工具,帮你随时随地高效思考...
  20. 卖油条年入三十万,大学还有必要去上吗?

热门文章

  1. django静态页面
  2. GNU汇编器——.syntax
  3. dubbo学习之本地存根实践
  4. PS cc 2018安装教程
  5. python scipy拟合曲线optimize.curve_fit 50例
  6. 互联网人年底加薪指南
  7. U盘和移动硬盘不能安全删除问题及解决方案
  8. mysql外码参照_mysql外键约束的参照我是来充字数的
  9. 51单片机汇编编程--16位拉幕灯
  10. Jquery中fadein() fadeout()方法的使用