文章目录

  • 前言
  • 一、Serial收集器(标记-复制算法)
  • 二、ParNew收集器(标记-复制算法)
  • 三、Parallel Scavenge收集器(标记-复制算法)
  • 四、Serial Old收集器(标记-整理算法)
  • 五、Parallel Old收集器(标记-整理算法)
  • 六、CMS收集器(标记-清除算法)
  • 七、Garbage First(G1)收集器
  • 八、总结
  • 结尾

前言

如果说收集算法是内存回收的方法论,那垃圾收集器就是内存回收的实践者。本节标题中“经典”二字并非情怀,它其实是讨论范围的限定语,这里讨论的是在JDK 7 Update 4之后(在这个版本中正式提供了商用的G1收集器,此前G1仍处于实验状态)、 JDK 11正式发布之前, OracleJDK中的HotSpot虚拟机所包含的全部可用的垃圾收集器。


上图展示了七种作用于不同分代的收集器,两个收集器之间的连线,说明它们可以搭配使用,图中收集器所处的区域,表示它是属于新生代收集器抑或是老年代收集器。接下来将逐一介绍这些收集器的目标、特性、原理和使用场景,并重点分析CMS和G1这两款相对复杂而又广泛使用的收集器,深入了解它们的部分运作细节。

虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来,虽然垃圾收集器的技术在不断进步,但直到现在还没有最好的收集器出现,更加不存在“万能”的收集器,所以我们选择的只是对具体应用最合适的收集器。


一、Serial收集器(标记-复制算法)

Serial(串行)收集器是最基本、发展历史最悠久的收集器,它是采用复制算法的新生代收集器,曾经(JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。

它是一个单线程收集器,只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集时,必须暂停其他所有的工作线程,直至Serial收集器收集结束为止(“Stop The World”)。

这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说是难以接收的。

下图展示了Serial/Serial Old的运行过程:

为了消除或减少工作线程因内存回收而导致的停顿,HotSpot虚拟机开发团队在JDK 1.3之后的Java发展历程中研发出了各种其他的优秀收集器,这些将在稍后介绍。但是这些收集器的诞生并不意味着Serial收集器已经“老而无用”,实际上到现在为止,它依然是HotSpot虚拟机运行在Client模式下的默认的新生代收集器。

它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得更高的单线程收集效率。

在用户的桌面应用场景中,分配给虚拟机管理的内存一般不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本不会再大了),停顿时间完全可以控制在几十毫秒最多一百毫秒以内,只要不频繁发生,这点停顿时间可以接收。

所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。


二、ParNew收集器(标记-复制算法)

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如: -XX: SurvivorRatio、 -XX:PretenureSizeThreshold、 -XX: HandlePromotionFailure等)、收集算法、 Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。

ParNew/Serial Old收集器的工作过程如下图:

ParNew收集器除了支持多线程并行收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是不少运行在服务端模式下的HotSpot虚拟机,尤其是JDK 7之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。

在JDK 5发布时, HotSpot推出了一款在强交互应用中几乎可称为具有划时代意义的垃圾收集器——CMS收集器。这款收集器是HotSpot虚拟机中第一款真正意义上支持并发的垃圾收集器,它首次实现了让垃圾收集线程与用户线程(基本上)同时工作。

可惜的是, CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作[1],所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。 ParNew收集器是激活CMS后(使用-XX: +UseConcMarkSweepGC选项)的默认新生代收集器,也可以使用-XX: +/-UseParNewGC选项来强制指定或者禁用它。

可以说直到CMS的出现才巩固了ParNew的地位,但成也萧何败也萧何,随着垃圾收集器技术的不断改进,更先进的G1收集器带着CMS继承者和替代者的光环登场。 G1是一个面向全堆的收集器,不再需要其他新生代收集器的配合工作。所以自JDK 9开始, ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。官方希望它能完全被G1所取代,甚至还取消了ParNew加Serial Old以及Serial加CMS这两组收集器组合的支持(其实原本也很少人这样使用),并直接取消了-XX: +UseParNewGC参数,这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了。读者也可以理解为从此以后, ParNew合并入CMS,成为它专门处理新生代的组成部分。 ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。

ParNew收集器在单核心处理器的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程(Hyper-Threading)技术实现的伪双核处理器环境中都不能百分之百保证超越Serial收集器。当然,随着可以被使用的处理器核心数量的增加, ParNew对于垃圾收集时系统资源的高效利用还是很有好处的。它默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(例如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常普遍)的环境中,可以使用-XX: ParallelGCThreads参数来限制垃圾收集的线程数。


三、Parallel Scavenge收集器(标记-复制算法)

Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,Parallel Scavenge的诸多特性从表面上看和ParNew非常相似。

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同, CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值,
即:

  • 停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;
  • 高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX: MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX: GCTimeRatio参数。

  • -XX: MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过并不是把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

  • -XX: GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。例如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个参数之外, Parallel Scavenge收集器还有一个参数-XX: +UseAdaptiveSizePolicy。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、 Eden与Survivor区的比例(-XX: SurvivorRatio)、晋升老年代对象大小(-XX: PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)。如果对于收集器运作不太了解,手工优化存在困难的话,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成也许是一个很好的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用-XX: MaxGCPauseMillis参数(更关注最大停顿时间)或-XX: GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。


四、Serial Old收集器(标记-整理算法)

Serial Old 是 Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”(Mark-Compact)算法。

此收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,它还有两大用途:

  • 在JDK5 以及之前版本(Parallel Old诞生以前)中与Parallel Scavenge收集器搭配使用(Parallel Scavenge收集器架构中本身有PS MarkSweep收集器来进行老年代收集,并非直接调用Serial Old收集器,但是这个PS MarkSweep收集器与Serial Old的实现几乎是一样的,所以在官方的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解)。
  • 作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。

Serial/Serial Old收集器的工作过程如图:


五、Parallel Old收集器(标记-整理算法)

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。前面已经提到过,这个收集器是在JDK 1.6中才开始提供的,在此之前,如果新生代选择了Parallel Scavenge收集器。

老年代除了Serial Old以外别无选择,所以在Parallel Old诞生以后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。

Parallel Scavenge/Parallel Old收集器的工作过程如图:


六、CMS收集器(标记-清除算法)

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。 CMS收集器就非常符合这类应用的需求。

CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:

  • 1)初始标记(CMS initial mark)
  • 2)并发标记(CMS concurrent mark)
  • 3)重新标记(CMS remark)
  • 4)并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说, CMS收集器的内存回收过程是与用户线程一起并发执行的。通过下图可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的阶段。

Concurrent Mark Sweep收集器运行示意图:

优点:

  • CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,因此CMS收集器也被称为并发低停顿收集器(Concurrent Low Pause Collector)。

缺点:

  • CMS收集器对处理器资源非常敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。 CMS默认启动的回收线程数是(处理器核心数量+3) /4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。如果应用本来的处理器负载就很高,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然大幅降低。为了缓解这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,所做的事情和以前单核处理器年代PC机操作系统靠抢占式多任务来模拟多核并行多任务的思想一样,是在并发标记、清理的时候让收集器线程、用户线程交替运行,尽量减少垃圾收集线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得较少一些,直观感受是速度变慢的时间更多了,但速度下降幅度就没有那么明显。实践证明增量式的CMS收集器效果很一般,从JDK 7开始, i-CMS模式已经被声明为“deprecated”,即已过时不再提倡用户使用,到JDK 9发布后iCMS模式被完全废弃。

  • 由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但是这一部分垃圾对象是出现在标记过程结束以后, CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,所以CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK5的默认设置下, CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX: CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时, CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX: CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

  • CMS是一款基于“标记-清除”算法实现的收集器,收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题,CMS收集器提供了一个-XX: +UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX: CMSFullGCsBeforeCompaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。


七、Garbage First(G1)收集器

Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。JDK 8 Update 40版本以后的G1收集器被Oracle官方称为“全功能的垃圾收集器”。

G1是一款主要面向服务端应用的垃圾收集器。 HotSpot开发团队最初赋予它的期望是(在比较长期的)未来可以替换掉JDK 5中发布的CMS收集器。现在这个期望目标已经实现过半了, JDK 9发布之日, G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。

作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(Pause
Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。

在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异: G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、 Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。 G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中, G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。

G1收集器Region分区示意图:

虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。 G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX: MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作), G1收集器的运作过程大致可划分为以下四个步骤:

  • 初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。

  • 并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。

  • 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。

  • 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

从上述阶段的描述可以看出, G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,即,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。

通过G1收集器运行示意图可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。

由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。

相比CMS, G1的优点:

  • 可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集,从最传统的算法理论上看,与CMS的“标记-清除”算法不同, G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。

相比CMS, G1的缺点:

  • 在用户程序运行过程中, G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。

  • 就内存占用来说,G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间。

  • 在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,例如它们都使用到写屏障, CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

以上的优缺点对比仅仅是针对G1和CMS两款垃圾收集器单独某方面的实现细节的定性分析,按照实践经验,目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间,随着HotSpot的开发者对G1的不断优化,也会让对比结果继续向G1倾斜。


八、总结


结尾

  • 感谢大家的耐心阅读,如有建议请私信或评论留言。
  • 如有收获,劳烦支持,关注、点赞、评论、收藏均可,博主会经常更新,与大家共同进步

深入理解java虚拟机(五)GC垃圾回收-经典垃圾收集器相关推荐

  1. 深入理解java虚拟机(六)GC垃圾回收-低延迟垃圾收集器(Shenandoah、ZGC)

    文章目录 前言 一.Shenandoah收集器 1.Shenandoah介绍 2.Shenandoah与G1对比 3.Shenandoah工作原理 4.Shenandoah并行整理的核心概念-Broo ...

  2. 深入理解java虚拟机(三)GC垃圾回收-对象存活算法

    文章目录 前言 一.引用计数算法 二.可达性分析算法 三.了解引用 结尾 前言 在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还&qu ...

  3. 《深入理解Java虚拟机》阅读——垃圾回收机制

    <深入理解Java虚拟机>阅读--垃圾回收机制 前言 why--为什么需要垃圾回收 what--垃圾回收做些什么 where--去哪里回收垃圾 how--垃圾回收是怎么做的 垃圾是否要回收 ...

  4. 【一】深入理解Java虚拟机の内存与垃圾回收

    [深入理解java虚拟机](https://www.zybuluo.com/Yano/note/321063) 目录 1.走进Java 2.Java内存区域 2.1 对象创建过程: 2.2 对象的内存 ...

  5. 《深入理解Java虚拟机》笔记3——7种垃圾收集器

    如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现.**Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商.版本的虚拟机所提供的垃圾收集器都可能会有很大差别 ...

  6. 理解Java虚拟机(七)低延迟垃圾收集器-Shenandoah

      本系列均是周志明老师<深入理解Java虚拟机>第三版的学习笔记.   垃圾收集器有三项最重要的指标:内存占用(Footprint).吞吐量(Throughput)和延迟(Latency ...

  7. 【深入理解java虚拟机】 - JVM垃圾回收算法

    文章目录 对象是否存活? 引用计数法 可达性分析法 强.软.弱.虚 finalize() 垃圾收集算法 分代收集理论 标记-清除算法 标记-复制算法 标记-整理算法 其他 垃圾回收算法细节实现 根节点 ...

  8. JVM之(Shenandoah、ZGC收集器)(基于《深入理解Java虚拟机》之第三章垃圾收集器与内存分配策略)(下)

    上一篇丹丹学妹已经给我讲了七种经典的GC器,那到底怎么样的GC器才能称的上"完美"? asda这就涉及到了衡量GC器性能的三项最重要的指标:①.内存占用②.吞吐量 ③.低时延 ,有 ...

  9. 深入理解java虚拟机---读后笔记(垃圾回收)

    运行时数据区,主要包括方法区.虚拟机栈.本地方法栈.堆.程序计数器,该部分内存都是线程隔离的. 然后和其交互的有执行引擎.本地库接口,此部分线程之间是可以共享的. 1. 引用计数算法 给对象添加一个引 ...

最新文章

  1. python学习第一模块练习
  2. JavaScript 简史
  3. PowerDesigner显示mysql数据表注释
  4. 倒排索引优化 - 跳表求交集 空间换时间 贪心
  5. c 全局变量多线程调用_c语言局部变量 静态局部变量 全局变量与静态全局变量...
  6. 优化问题中的两个挑战是?
  7. C# 微支付退款申请接口 V3.3.6
  8. ASP.NET Core改进了.NET Framework中的字符串处理
  9. 各类锁(互斥锁,自旋锁,读写锁,乐观锁,悲观锁,死锁)
  10. python编写arcgis脚本教程_ArcGIS使用Python脚本工具
  11. mongodb mysql json数据类型_mongodb 数据格式补充
  12. excel服务器运行失败怎么办,解决勤哲EXCEL服务器启动失败的问题
  13. 计算机便签中字的大小,Windows便签字体怎么调整?电脑便签怎么改字体大小
  14. Python学习之UnitTest【使用,生成HTML测试报告】
  15. 现代天线设计——学习笔记(一)
  16. markdown中数学符号和公式总结
  17. 关于Oracle parallel(并行)的几个基本常识
  18. 【19周-星耀】FASTER!FASTER!FASTER!
  19. 指定gpu训练模型却依然使用了cpu问题解决
  20. 环境信息术语(HJ/T 416—2007)

热门文章

  1. css 实现div内显示一行、两行或三行,超出部分用省略号显示
  2. 基于python的火车票售票系统/基于django火车票务网站/火车购票系统
  3. Centos7(VPS)更改为中国时区并定期同步
  4. Python实现输出手写体图片
  5. 【GD32F310开发板试用】PWM+TMC5160驱动步进电机
  6. BUUCTF-Crypto-变异凯撒解题思路
  7. vue玩转移动端H5微信支付和支付宝支付
  8. KODI 电视版本以及字母插件的安装
  9. Zookeeper学习思维导图
  10. 平面设计学习之四(PS-计算磨皮法)