jieba

“结巴”中文分词:做最好的 Python 中文分词组件

“Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module.

  • Scroll down for English documentation.

特点

  • 支持三种分词模式:

    • 精确模式,试图将句子最精确地切开,适合文本分析;
    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
  • 支持繁体分词

  • 支持自定义词典

  • MIT 授权协议

友情链接

  • https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统
  • https://github.com/baidu/AnyQ 百度FAQ自动问答系统
  • https://github.com/baidu/Senta 百度情感识别系统

安装说明

代码对 Python 2/3 均兼容

  • 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba
  • 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
  • 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
  • 通过 import jieba 来引用

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

主要功能

  1. 分词

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。

代码示例

# encoding=utf-8
import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))

输出:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
  1. 添加自定义词典

载入词典

  • 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
  • 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  • 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
  • 词频省略时使用自动计算的能保证分出该词的词频。

例如:

创新办 3 i
云计算 5
凱特琳 nz
台中
  • 更改分词器(默认为 jieba.dt)的 tmp_dircache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。

  • 范例:

    • 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt

    • 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py

      • 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /

      • 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /

调整词典

  • 使用 add_word(word, freq=None, tag=None)del_word(word) 可在程序中动态修改词典。

  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。

  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
  • “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14
  1. 关键词提取

基于 TF-IDF 算法的关键词抽取

import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())

    • sentence 为待提取的文本
    • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
    • withWeight 为是否一并返回关键词权重值,默认值为 False
    • allowPOS 仅包括指定词性的词,默认值为空,即不筛选
  • jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 (关键词提取)

https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径

  • 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
  • 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
  • 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py

关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径

  • 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
  • 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
  • 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py

关键词一并返回关键词权重值示例

  • 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py

基于 TextRank 算法的关键词抽取

  • jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。
  • jieba.analyse.TextRank() 新建自定义 TextRank 实例

算法论文: TextRank: Bringing Order into Texts

基本思想:

  1. 将待抽取关键词的文本进行分词
  2. 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
  3. 计算图中节点的PageRank,注意是无向带权图

使用示例:

见 test/demo.py

  1. 词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
  • 用法示例
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word, flag in words:
...    print('%s %s' % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns
  1. 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
    • jieba.disable_parallel() # 关闭并行分词模式
  • 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

  • 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

  • 注意:并行分词仅支持默认分词器 jieba.dtjieba.posseg.dt

  1. Tokenize:返回词语在原文的起止位置

  • 注意,输入参数只接受 unicode
  • 默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10
  • 搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10
  1. ChineseAnalyzer for Whoosh 搜索引擎

  • 引用: from jieba.analyse import ChineseAnalyzer
  • 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
  1. 命令行分词

使用示例:python -m jieba news.txt > cut_result.txt

命令行选项(翻译):

使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename              输入文件可选参数:-h, --help            显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT  使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all         全模式分词(不支持词性标注)-n, --no-hmm          不使用隐含马尔可夫模型-q, --quiet           不输出载入信息到 STDERR-V, --version         显示版本信息并退出如果没有指定文件名,则使用标准输入。

--help 选项输出:

$> python -m jieba --help
Jieba command line interface.positional arguments:filename              input fileoptional arguments:-h, --help            show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT  use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all         full pattern cutting (ignored with POS tagging)-n, --no-hmm          don't use the Hidden Markov Model-q, --quiet           don't print loading messages to stderr-V, --version         show program's version number and exitIf no filename specified, use STDIN instead.

延迟加载机制

jieba 采用延迟加载,import jiebajieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。

import jieba
jieba.initialize()  # 手动初始化(可选)

在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py

其他词典

  1. 占用内存较小的词典文件
    https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

  2. 支持繁体分词更好的词典文件
    https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')

其他语言实现

结巴分词 Java 版本

作者:piaolingxue
地址:https://github.com/huaban/jieba-analysis

结巴分词 C++ 版本

作者:yanyiwu
地址:https://github.com/yanyiwu/cppjieba

结巴分词 Rust 版本

作者:messense, MnO2
地址:https://github.com/messense/jieba-rs

结巴分词 Node.js 版本

作者:yanyiwu
地址:https://github.com/yanyiwu/nodejieba

结巴分词 Erlang 版本

作者:falood
地址:https://github.com/falood/exjieba

结巴分词 R 版本

作者:qinwf
地址:https://github.com/qinwf/jiebaR

结巴分词 iOS 版本

作者:yanyiwu
地址:https://github.com/yanyiwu/iosjieba

结巴分词 PHP 版本

作者:fukuball
地址:https://github.com/fukuball/jieba-php

结巴分词 .NET(C#) 版本

作者:anderscui
地址:https://github.com/anderscui/jieba.NET/

结巴分词 Go 版本

  • 作者: wangbin 地址: https://github.com/wangbin/jiebago
  • 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba

结巴分词Android版本

  • 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android

系统集成

  1. Solr: https://github.com/sing1ee/jieba-solr

分词速度

  • 1.5 MB / Second in Full Mode
  • 400 KB / Second in Default Mode
  • 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt

常见问题

1. 模型的数据是如何生成的?

详见: https://github.com/fxsjy/jieba/issues/7

2. “台中”总是被切成“台 中”?(以及类似情况)

P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低

解决方法:强制调高词频

jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True)

3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况)

解决方法:强制调低词频

jieba.suggest_freq(('今天', '天气'), True)

或者直接删除该词 jieba.del_word('今天天气')

4. 切出了词典中没有的词语,效果不理想?

解决方法:关闭新词发现

jieba.cut('丰田太省了', HMM=False)
jieba.cut('我们中出了一个叛徒', HMM=False)

更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed

修订历史

https://github.com/fxsjy/jieba/blob/master/Changelog

jieba 中文分词使用教程相关推荐

  1. jieba分词_Jieba.el – 在Emacs中使用jieba中文分词

    jieba.el 在Emacs中使用jieba中文分词 众所周知, Emacs并没有内置中文分词系统, 以至于 forward-word 和 backward-word 以及 kill-word 等以 ...

  2. Jieba中文分词下如何画词云图?

    配置:anaconda3 + Pycharm 文章目录 WordCloud 关于Jieba分词 Jieba中文分词 +绘制词云图 案例 WordCloud 英文文本 导入第三方模块 from word ...

  3. jieba —— 中文分词工具 (一)

    jieba 中文分词工具包 (一) 01 简介 "结巴" 中文分词:做最好的 Python 中文分词组件: "Jieba" (Chinese for " ...

  4. 文本分析--jieba中文分词

    分词技术可以分为英文分词和中文分词:       对于英文分词而言,由于英文单词之间以空格来分隔,所以在进行英文分词的过程中,只需要针对空格进行划分就可以了.       对于中文分词而言,中文单词之 ...

  5. 简明Jieba中文分词教程(分词、关键词提取、词性标注、计算位置)

    目录 0 引言 1 分词 1.1 全模式和精确模式 1.2 搜索引擎模式 1.3 HMM 模型 2 繁体字分词 3 添加自定义词典 3.1 载入词典 3.2 调整词典 4 关键词提取 4.1 基于 T ...

  6. jieba中文分词组件

    目录 jieba简介 组件特点 安装方法 算法 使用jieba 分词 添加自定义词典 载入词典 调整词典 关键词提取 基于 TF-IDF 算法的关键词抽取 基于 TextRank 算法的关键词抽取 词 ...

  7. Lucene bm25 结合 jieba中文分词搜索

    ​​​​​2021.10.20:​​增加依赖包,防止版本问题导致代码不可用 <dependencies><!--核心包--><dependency><grou ...

  8. 【pyspark】jieba 中文分词

    :jieba分词包 https://github.com/fxsjy/jieba :python安装 pip install jieba :测试 import jieba seg_list = jie ...

  9. Ansj中文分词使用教程

    摘要: ansj是一个基于n-Gram+CRF+HMM的中文分词的java实现. ansj分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上 Ansj目前实现了.中文 ...

  10. 【NLP】Jieba中文分词

    [GitHub地址]https://github.com/fxsjy/jieba 特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描 ...

最新文章

  1. python中文昵称-官方出品 Python 中文文档!拜托,别再说看不懂了
  2. 响应式网页布局 - W3Schools How-Tos 01
  3. [ZJOI2016]大森林
  4. 达内 Java 全套教材 PDF 格式
  5. 特斯拉皮卡,会大卖吗?
  6. win7 OEM设置工具
  7. 【论文笔记】Learning Deep Face Representation
  8. 飞腾服务器虚拟化,基于飞腾平台的容器虚拟化技术研究
  9. arm linux开机第一屏,小白求助大神T1刷机提示成功,但开机卡在斐讯白屏界面。...
  10. 学会Python开发的第一步:写一个桌面小程序
  11. 科海思苯酚吸附树脂ADS600详情 参数
  12. JavaScript SheetJS将 Html 表转换为 Excel 文件
  13. NI-​DAQmx​的​定​时​和​同步​特性
  14. Windows 优质软件
  15. 果汁机器人传销_独家调查|“洋果汁治百病”?然健环球涉嫌传销大起底
  16. python打造记账本,记账本-简单的python脚本
  17. 别被速成忽悠了,速成绝不可能。
  18. java 反编译 下载_java反编译工具
  19. 免费PR片头模板 多彩星星(粒子)特效PR片头模板
  20. zzuli:1115数组最小值

热门文章

  1. 使用COOC软件绘制复杂网络
  2. springboot快速搭建文件管理系统
  3. Lora如何组网?有哪些简单的Lora组网协议?
  4. 23----JS基础-----Unicode编码表
  5. PADS2007教程(三)——原理图和PCB封装建立关联
  6. 网络/命令行抓包工具tcpdump详解
  7. PJzhang:QQ输入法用户许可协议和隐私政策阅读
  8. 计算机三级数据库技术笔记
  9. Excel常用统计分析函数分享
  10. 蓝电电池测试系统工步编辑软件,蓝电电池测试系统