卷积神经网络基础

  • 1. 二维卷积层
    • 1.1 二维互相关运算
    • 1.2 互相关运算与卷积运算
    • 1.3 特征图与感受野
  • 2. 填充与步幅
    • 2.1 填充
    • 2.2 步幅
  • 3. 多通道
    • 3.1 多输入通道
    • 3.2 多输出通道
    • 3.3 1x1卷积层
  • 4. 卷积层与全连接层的对比
  • 5. 卷积层的PyTorch实现
  • 6. 池化
    • 6.1 二维池化层
    • 6.2 池化层的PyTorch实现

1. 二维卷积层

二维卷积层是处理图像数据中最常见的卷积层结构。

1.1 二维互相关运算

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

图1. 二维互相关运算

1.2 互相关运算与卷积运算

卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

1.3 特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xxx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xxx的感受野(receptive field)

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×22 \times 22×2的输出记为YYY,将YYY与另一个形状为2×22 \times 22×2的核数组做互相关运算,输出单个元素zzz。那么,zzz在YYY上的感受野包括YYY的全部四个元素,在输入上的感受野包括其中全部9个元素。输入时输出的感受野,输出是输入的特征图。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

2. 填充与步幅

填充和步幅可以对给定形状的输入和卷积核改变输出形状。

2.1 填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。

图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算

如果原输入的高和宽是nhn_hnh​和nwn_wnw​,卷积核的高和宽是khk_hkh​和kwk_wkw​,在高的两侧一共填充php_hph​行,在宽的两侧一共填充pwp_wpw​列,则输出形状为:
(nh+ph−kh+1)×(nw+pw−kw+1)(n_h+p_h-k_h+1)\times(n_w+p_w-k_w+1) (nh​+ph​−kh​+1)×(nw​+pw​−kw​+1)

我们在卷积神经网络中使用奇数高宽的核,比如3×33 \times 33×3,5×55 \times 55×5的卷积核,对于高度(或宽度)为大小为2k+12 k + 12k+1的核,令步幅为1,在高(或宽)两侧选择大小为kkk的填充,便可保持输入与输出尺寸相同。

2.2 步幅

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

图3 高和宽上步幅分别为3和2的二维互相关运算

一般来说,当高上步幅为shs_hsh​,宽上步幅为sws_wsw​时,输出形状为:

⌊(nh+ph−kh+sh)/sh⌋×⌊(nw+pw−kw+sw)/sw⌋\lfloor(n_h+p_h-k_h+s_h)/s_h\rfloor \times \lfloor(n_w+p_w-k_w+s_w)/s_w\rfloor ⌊(nh​+ph​−kh​+sh​)/sh​⌋×⌊(nw​+pw​−kw​+sw​)/sw​⌋

如果ph=kh−1p_h=k_h-1ph​=kh​−1,pw=kw−1p_w=k_w-1pw​=kw​−1,那么输出形状将简化为⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋\lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor⌊(nh​+sh​−1)/sh​⌋×⌊(nw​+sw​−1)/sw​⌋。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是(nh/sh)×(nw/sw)(n_h / s_h) \times (n_w/s_w)(nh​/sh​)×(nw​/sw​)。

当ph=pw=pp_h = p_w = pph​=pw​=p时,我们称填充为ppp;当sh=sw=ss_h = s_w = ssh​=sw​=s时,我们称步幅为sss。

3. 多通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hhh和www(像素),那么它可以表示为一个3×h×w3 \times h \times w3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。

3.1 多输入通道

积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

图4 含2个输入通道的互相关计算

假设输入数据的通道数为cic_ici​,卷积核形状为kh×kwk_h\times k_wkh​×kw​,我们为每个输入通道各分配一个形状为kh×kwk_h\times k_wkh​×kw​的核数组,将cic_ici​个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把cic_ici​个核数组在通道维上连结,即得到一个形状为ci×kh×kwc_i\times k_h\times k_wci​×kh​×kw​的卷积核。

3.2 多输出通道

卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为cic_ici​和coc_oco​,高和宽分别为khk_hkh​和kwk_wkw​。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kwc_i\times k_h\times k_wci​×kh​×kw​的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kwc_o\times c_i\times k_h\times k_wco​×ci​×kh​×kw​。

对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kwc_i \times k_h \times k_wci​×kh​×kw​的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kwc_i \times k_h \times k_wci​×kh​×kw​的核数组,不同的核数组提取的是不同的特征。

3.3 1x1卷积层

最后讨论形状为1×11 \times 11×1的卷积核,我们通常称这样的卷积运算为1×11 \times 11×1卷积,称包含这种卷积核的卷积层为1×11 \times 11×1卷积层。图5展示了使用输入通道数为3、输出通道数为2的1×11\times 11×1卷积核的互相关计算。

图5 1x1卷积核的互相关计算。输入和输出具有相同的高和宽

1×11 \times 11×1卷积核可在不改变高宽的情况下,调整通道数。1×11 \times 11×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×11\times 11×1卷积层的作用与全连接层等价。

4. 卷积层与全连接层的对比

二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

  • 一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

  • 二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)(c_i, c_o, h, w)(ci​,co​,h,w)的卷积核的参数量是ci×co×h×wc_i \times c_o \times h \times wci​×co​×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)(c_1, h_1, w_1)(c1​,h1​,w1​)和(c2,h2,w2)(c_2, h_2, w_2)(c2​,h2​,w2​),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2c_1 \times c_2 \times h_1 \times w_1 \times h_2 \times w_2c1​×c2​×h1​×w1​×h2​×w2​。使用卷积层可以以较少的参数数量来处理更大的图像。

5. 卷积层的PyTorch实现

我们使用Pytorch中的nn.Conv2d类来实现二维卷积层,主要关注以下几个构造函数参数:

  • in_channels (python:int) – Number of channels in the input imag
  • out_channels (python:int) – Number of channels produced by the convolution
  • kernel_size (python:int or tuple) – Size of the convolving kernel
  • stride (python:int or tuple, optional) – Stride of the convolution. Default: 1
  • padding (python:int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

forward函数的参数为一个四维张量,形状为(N,Cin,Hin,Win)(N, C_{in}, H_{in}, W_{in})(N,Cin​,Hin​,Win​),返回值也是一个四维张量,形状为(N,Cout,Hout,Wout)(N, C_{out}, H_{out}, W_{out})(N,Cout​,Hout​,Wout​),其中NNN是批量大小,C,H,WC, H, WC,H,W分别表示通道数、高度、宽度。

代码如下:

# 定义一个4*2*3*5维度的输入变量
# 即样本数为4,通道数为2,每个通道的维度为3*5
X = torch.rand(4, 2, 3, 5)
print(X.shape)
# 定义卷积层网络,输入通道数为2,输出通道数为3,卷积核尺寸为3*5,步幅为1,填充为上下填充1,左右填充2
conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 5), stride=1, padding=(1, 2))
# 输出结果
Y = conv2d(X)
# 打印输出结果的维度
print('Y.shape: ', Y.shape)
# 打印卷积层权重的维度
print('weight.shape: ', conv2d.weight.shape)
# 打印卷积层偏置的维度
print('bias.shape: ', conv2d.bias.shape)

输出结果:

6. 池化

6.1 二维池化层

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×22\times 22×2的最大池化。

图6 池化窗口形状为 2 x 2 的最大池化

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×qp \times qp×q的池化层称为p×qp \times qp×q池化层,其中的池化运算叫作p×qp \times qp×q池化。

池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

6.2 池化层的PyTorch实现

我们使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:

  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides

forward函数的参数为一个四维张量,形状为(N,C,Hin,Win)(N, C, H_{in}, W_{in})(N,C,Hin​,Win​),返回值也是一个四维张量,形状为(N,C,Hout,Wout)(N, C, H_{out}, W_{out})(N,C,Hout​,Wout​),其中NNN是批量大小,C,H,WC, H, WC,H,W分别表示通道数、高度、宽度。

代码如下:

# 生成随机输入变量X,维度为(1*2*4*4)
X = torch.arange(32, dtype=torch.float32).view(1, 2, 4, 4)# 调用最大池化函数,维度为3*3,填充1,步幅为横向为2,纵向为1
pool2d = nn.MaxPool2d(kernel_size=3, padding=1, stride=(2, 1))
Y = pool2d(X)# 打印X和Y
print(X)
print(Y)

输出结果为:


平均池化层使用的是nn.AvgPool2d,使用方法与nn.MaxPool2d相同。

动手学深度学习(PyTorch实现)(六)--卷积神经网络基础相关推荐

  1. 【动手学深度学习】之 现代卷积神经网络 AlexNet VGGNet NIN 习题解答

    动手学深度学习 7.1 AlexNet 试着增加迭代轮数.对比LeNet的结果有什么不同?为什么? 增加迭代次数,LeNet的准确率比AlexNet低,因为复杂的网络有着更强的学习能力. LeNet ...

  2. 动手学深度学习(文本预处理+语言模型+循环神经网络基础)

    文本预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 读入文本 分词 建立字典,将每个词映射到一个唯一的索引(index) ...

  3. 动手学深度学习PyTorch版--Task7--目标检测基础;图像风格迁移

    一.目标检测基础 1.目标检测和边界框 %matplotlib inline from PIL import Imageimport sys sys.path.append('/home/kesci/ ...

  4. 【动手学深度学习PyTorch版】12 卷积层

    上一篇移步[动手学深度学习PyTorch版]11 使用GPU_水w的博客-CSDN博客 目录 一.卷积层 1.1从全连接到卷积 ◼ 回顾单隐藏层MLP ◼ Waldo在哪里? ◼ 原则1-平移不变性 ...

  5. 【动手学深度学习PyTorch版】13 卷积层的填充和步幅

    上一篇移步[动手学深度学习PyTorch版]12 卷积层_水w的博客-CSDN博客 目录 一.卷积层的填充和步幅 1.1 填充 1.2 步幅 1.3 总结 二.代码实现填充和步幅(使用框架) 一.卷积 ...

  6. 伯禹公益AI《动手学深度学习PyTorch版》Task 05 学习笔记

    伯禹公益AI<动手学深度学习PyTorch版>Task 05 学习笔记 Task 05:卷积神经网络基础:LeNet:卷积神经网络进阶 微信昵称:WarmIce 昨天打了一天的<大革 ...

  7. 伯禹公益AI《动手学深度学习PyTorch版》Task 06 学习笔记

    伯禹公益AI<动手学深度学习PyTorch版>Task 06 学习笔记 Task 06:批量归一化和残差网络:凸优化:梯度下降 微信昵称:WarmIce 批量归一化和残差网络 BN和Res ...

  8. 【动手学深度学习PyTorch版】19 网络中的网络 NiN

    上一篇请移步[动手学深度学习PyTorch版]18 使用块的网络 VGG_水w的博客-CSDN博客 目录 一.网络中的网络 NiN 1.1 NiN ◼ 全连接层的问题 ◼ 大量的参数会带来很多问题 ◼ ...

  9. 【动手学深度学习PyTorch版】27 数据增强

    上一篇请移步[动手学深度学习PyTorch版]23 深度学习硬件CPU 和 GPU_水w的博客-CSDN博客 目录 一.数据增强 1.1 数据增强(主要是关于图像增强) ◼ CES上的真实的故事 ◼ ...

最新文章

  1. 03 Java程序员面试宝典视频课程之常用类
  2. 清北顶会学霸:“表情”与“认知”引发的科学思辨 | 清华AI Time PHD
  3. 基于TLD2331完成动态LED显示驱动
  4. java web学习笔记-jsp篇
  5. 计算机考试一年有肌肉,阅卷老师最想看到什么样的字体?电脑阅卷时代,这种字体很吃香...
  6. 分享实录 | 单人开发场景下的测试环境实践
  7. 面试官问:跨域请求如何携带cookie?
  8. 采用EntityFramework.Extended 对EF进行扩展(Entity Framework 延伸系列2)
  9. Oracle 日常开发记录
  10. Web压力测试工具 - Siege
  11. 显示隐藏-display(HTML、CSS)
  12. python和java先学哪个-java和python先学哪个
  13. 15优秀免费JQuery 图片 滑动效果
  14. python的数值类型和运算符_Python全栈工程师(数值类型、运算符)
  15. android开发完全退出activity
  16. python snownlp了解_python snownlp情感分析简易demo
  17. MMC-HVDC仿真模型,pscad柔性直流输电仿真mmc仿真模型
  18. Unity3D射击游戏的准心
  19. 【大咖有约】子衿技术团队徐戟:DBA职场进阶之路
  20. PHP利用ImageMagick实现PDF、PPT转图片

热门文章

  1. android开发常用技术,[转载]Android开发常用调试技术记录
  2. php远程读取几行文件,PHP读取远程文件的三种方法
  3. 渗透测试入门3之隐匿攻击
  4. 2017年15佳Android黑客应用
  5. 计算机考试交互,2017计算机等级考试HTTP的基本概念与交互模型练习题
  6. zabbix4.2学习笔记系列
  7. 20135213 20135231 信息安全系统设计基础课程第三次实验报告
  8. MongoDB使用小结:一些不常见的经验分享
  9. Objective C 总结(十):Conventions
  10. Mr.J--Vue之v-for全解析