本文为《Linear algebra and its applications》的读书笔记

目录

  • Linearly independent sets
  • 基 / 极大线性无关组 / 极小生成集
  • The Spanning Set Theorem
  • Two Views of a Basis
  • Bases for N u l A Nul\ A Nul A and C o l A Col\ A Col A
  • In this section we identify and study the subsets that span a vector space V V V or a subspace H H H as “efficiently” as possible. The key idea is that of linear independence.

Linearly independent sets

  • The definition of linear independence in a vector space is just the same as in R n \mathbb R^n Rn.

  • The main difference between linear dependence in R n \mathbb R^n Rn and in a general vector space is that when the vectors are not n n n-tuples, the homogeneous equation
    usually cannot be written as a system of n n n linear equations. That is, the vectors cannot be made into the columns of a matrix A A A in order to study the equation A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0. We must rely instead on the definition of linear dependence and on Theorem 4.

EXAMPLE 1

  • Let p 1 ( t ) = 1 , p 2 ( t ) = t \boldsymbol p_1(t)= 1, \boldsymbol p_2(t)= t p1​(t)=1,p2​(t)=t , and p 3 ( t ) = 4 − t \boldsymbol p_3(t)= 4 - t p3​(t)=4−t. Then { p 1 , p 2 , p 3 } \{\boldsymbol p_1,\boldsymbol p_2,\boldsymbol p_3\} {p1​,p2​,p3​} is linearly dependent in P \mathbb P P because p 3 = 4 p 1 − p 2 \boldsymbol p_3 = 4\boldsymbol p_1 - \boldsymbol p_2 p3​=4p1​−p2​.

基 / 极大线性无关组 / 极小生成集

Observe that when H ≠ V H \neq V H​=V , condition ( i i ) (ii) (ii) includes the requirement that each of the vectors { b 1 , . . . , b p } \{\boldsymbol b_1,...,\boldsymbol b_p\} {b1​,...,bp​} must belong to H H H


EXAMPLE 3

  • Let A A A be an invertible n × n n \times n n×n matrix. Then the columns of A A A form a basis for R n \mathbb R^n Rn.

EXAMPLE 4

  • Let { e 1 , . . . , e n } \{\boldsymbol e_1,...,\boldsymbol e_n\} {e1​,...,en​} be the columns of the n × n n \times n n×n identity matrix, I n I_n In​. The set { e 1 , . . . , e n } \{\boldsymbol e_1,...,\boldsymbol e_n\} {e1​,...,en​} is called the standard basis (标准基) for R n \mathbb R^n Rn (Figure 1).

EXAMPLE 6

  • Let S = { 1 , t , t 2 , . . . , t n } S = \{1, t, t^2,..., t^n\} S={1,t,t2,...,tn}. S S S is is called the standard basis for P n \mathbb P^n Pn.

The Spanning Set Theorem

生成集定理

  • As we will see, a basis is an “efficient” spanning set that contains no unnecessary vectors.
  • In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

Two Views of a Basis

  • When the Spanning Set Theorem is used, the deletion of vectors from a spanning set must stop when the set becomes linearly independent. Thus a basis is a spanning set that is as small as possible.
  • A basis is also a linearly independent set that is as large as possible. If S S S is a basis for V V V, and if S S S is enlarged by one vector—say, w \boldsymbol w w—from V V V , then the new set cannot be linearly independent, because S S S spans V V V , and w \boldsymbol w w is therefore a linear combination of the elements in S S S.

Bases for N u l A Nul\ A Nul A and C o l A Col\ A Col A

  • We already know how to find vectors that span the null space of a matrix A A A. The discussion in Section 4.2 pointed out that our method always produces a linearly independent set when N u l A Nul\ A Nul A contains nonzero vectors. So, in this case, that method produces a basis for N u l A Nul\ A Nul A.
  • The next two examples describe a simple algorithm for finding a basis for the column space.

EXAMPLE 8

  • Find a basis for C o l B Col\ B Col B, where

SOLUTION

  • Each nonpivot column of B B B is a linear combination of the pivot columns. By the Spanning Set Theorem, we may discard b 2 \boldsymbol b_2 b2​ and b 4 \boldsymbol b_4 b4​, and S = { b 1 , b 3 , b 5 } S=\{\boldsymbol b_1,\boldsymbol b_3,\boldsymbol b_5\} S={b1​,b3​,b5​} will still span C o l B Col\ B Col B. S S S is a basis for C o l B Col\ B Col B.

  • What about a matrix A A A that is not in reduced echelon form? Recall that any linear dependence relationship among the columns of A A A can be expressed in the form A x = 0 A\boldsymbol x =\boldsymbol 0 Ax=0, where x \boldsymbol x x is a column of weights. When A A A is row reduced to a matrix B B B, the columns of B B B are often totally different from the columns of A A A. However, the equations A x = 0 A\boldsymbol x =\boldsymbol 0 Ax=0 and B x = 0 B\boldsymbol x =\boldsymbol 0 Bx=0 have exactly the same set of solutions. Then the vector equations
    also have the same set of solutions.
  • That is, the columns of A A A have exactly the same linear dependence relationships as the columns of B B B.

EXAMPLE 9

It can be shown that the matrix
is row equivalent to the matrix B B B in Example 8. Find a basis for C o l A Col\ A Col A.

SOLUTION

  • In Example 8 we saw that
    so we can expect that
    Thus { a 1 , a 3 , a 5 } \{\boldsymbol a_1,\boldsymbol a_3,\boldsymbol a_5\} {a1​,a3​,a5​} is a basis for C o l A Col\ A Col A. The columns we have used for this basis are the pivot columns of A A A.

Chapter 4 (Vector Spaces): Linearly independent sets; Bases (基)相关推荐

  1. Chapter 4 (Vector Spaces): Vector spaces and subspaces (向量空间和子空间)

    目录 Vector spaces 向量空间的定义 常见的向量空间 R n \R^n Rn 力空间 信号空间 P n \mathbb P^n Pn 实值函数空间 Subspaces A Subspace ...

  2. 双语矩阵论课程笔记(2)—— 【chapter 1】 Vector Spaces (Linear Spaces)

    双语矩阵论课程笔记 文章目录 1. Definitions and Examples 1.1 Number filed(数域) 1.2 Algebraic systems(代数系统) 1.3 Line ...

  3. Chapter 6 Vector Semantics

    Chapter 6 Vector Semantics Speech and Language Processing ed3 读书笔记 Words that occur in similar conte ...

  4. Gensim官方教程翻译(二)——语料库与向量空间(Corpora and Vector Spaces)

    仅供我自己学习方便,翻译了原教程,原文地址:http://radimrehurek.com/gensim/tut2.html ====================正==========文===== ...

  5. fields and vector spaces

    this material is from http://math.arizona.edu/~cais/223Page/hout/236w06fields.pdf

  6. 看论文时的几个数学术语

    互信息(Mutual information) 在概率论和信息论中,两个随机变量的互信息(MI)是用来测量两个变量之间的相互依赖.不限于类似于有实际数值的随机变量相关系数,MI更加通用,能够确定联合分 ...

  7. Vector space

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, oft ...

  8. Chapter 7 (Symmetric Matrices and Quadratic Forms): The Singular Value Decomposition (奇异值分解, SVD)

    目录 奇异值 奇异值的定义 非零奇异值 The Singular Value Decomposition (SVD) 奇异值分解 一些性质 几何解释 紧奇异值分解与截断奇异值分解 奇异值分解与矩阵近似 ...

  9. 【2019牛客暑期多校训练营(第五场)- E】independent set 1(最大独立集,状压dp)

    题干: 链接:https://ac.nowcoder.com/acm/contest/885/E 来源:牛客网 Note: For C++ languages, the memory limit is ...

最新文章

  1. ??? error using == times matlab,matlab错误 Error using 怎么办?
  2. 年增长率超50%,AI芯片竞争白热化
  3. 009_BeanUtils的使用
  4. input must have last dimension = k = 3 but is 2 for 'TopKV2_这种错误是怎么产生的
  5. 告别2019,写给2020:干好技术,要把握好时光里的每一步
  6. Haystack-全文搜索框架
  7. Output Arcade Utility Tool for Mac(Arcade音色库破解导入工具)
  8. css实现风车转动,纯CSS实现的风车转动效果特效演示
  9. 深圳小库科技招聘高级前端
  10. 动态ActionForm
  11. java xml 多层解析_多级xml解析方案
  12. matlab 将路径靠左,latex 图片位置靠左
  13. 2014腾讯校园招聘实习技术类笔试题目
  14. 开视界 创未来丨酷雷曼第十期合作商交流会圆满举办
  15. Princeton Algorithms, Boggle
  16. 我国工业自动化市场现状分析报告
  17. 浅谈企业拥有门户网站的重要性
  18. mysql 协议的OK包及解析
  19. MySQL——索引及调优篇
  20. 无线路由MAC地址过滤安全可靠性讨论

热门文章

  1. iOS UIScreen简介
  2. 数据库系统概论笔记(第一章 引言)—— 持续更新,争取每周更新一章
  3. metroui——win8风格网页ui
  4. vue.js定义全局变量
  5. 怎么用GaBi软件计算沥青路面的环境影响
  6. Template简介
  7. 华为OD机试题 - 密室逃生游戏(JavaScript)
  8. 计算机主机接通显示器位置发,电脑主机和显示器连接不上
  9. oracle分布式数据库搭建,ORACLE实现分布式数据库应用
  10. 龙珠激斗获取服务器信息中,龙珠激斗大量金币获取途径汇总的详细攻略说明及玩法介绍...