模型融合

模型融合的方法

  1. 简单加权融合:

    • 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
    • 分类:投票(Voting)
    • 综合:排序融合(Rank averaging),log融合
  2. stacking/blending:

    • 构建多层模型,并利用预测结果再拟合预测。
  3. boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):

    • 多树的提升方法

stacking相关理论介绍

  1. 什么是 stacking

简单来说 stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wHQRdyI9-1586002387196)(stacking流程图.png)]

将个体学习器结合在一起的时候使用的方法叫做结合策略。对于分类问题,我们可以使用投票法来选择输出最多的类。对于回归问题,我们可以将分类器输出的结果求平均值。

上面说的投票法和平均法都是很有效的结合策略,还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。

在stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器或元学习器(meta-learner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。

  1. stacking的工作方式

引自西瓜书(机器学习)

  • 过程1-3 是训练出来个体学习器,也就是初级学习器。
  • 过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。
  • 过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。

3)Stacking的方法讲解

首先,我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。

Stacking模型本质上是一种分层的结构,这里简单起见,只分析二级Stacking.假设我们有2个基模型 Model1_1、Model1_2 和 一个次级模型Model2

Step 1. 基模型 Model1_1,对训练集train训练,然后用于预测 train 和 test 的标签列,分别是P1,T1

训练后的模型 Model1_1 分别在 train 和 test 上预测,得到预测标签分别是P1,T1

Step 2. 基模型 Model1_2 ,对训练集train训练,然后用于预测train和test的标签列,分别是P2,T2

训练后的模型 Model1_2 分别在 train 和 test 上预测,得到预测标签分别是P2,T2

Step 3. 分别把P1,P2以及T1,T2合并,得到一个新的训练集和测试集train2,test2.

再用 次级模型 Model2 以真实训练集标签为标签训练,以train2为特征进行训练,预测test2,得到最终的测试集预测的标签列 YPreY_{Pre}YPre​。

这就是我们两层堆叠的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。

Stacking本质上就是这么直接的思路,但是直接这样有时对于如果训练集和测试集分布不那么一致的情况下是有一点问题的,其问题在于用初始模型训练的标签再利用真实标签进行再训练,毫无疑问会导致一定的模型过拟合训练集,这样或许模型在测试集上的泛化能力或者说效果会有一定的下降,因此现在的问题变成了如何降低再训练的过拟合性,这里我们一般有两种方法。

    1. 次级模型尽量选择简单的线性模型
    1. 利用K折交叉验证

K-折交叉验证:
训练:

预测:

代码示例

回归\分类概率-融合:

1)简单加权平均,结果直接融合

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6]
import numpy as np
import pandas as pd## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)return Weighted_result
from sklearn import metrics
# 各模型的预测结果计算MAE
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))
Pred1 MAE: 0.1750000000000001
Pred2 MAE: 0.07499999999999993
Pred3 MAE: 0.10000000000000009
## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))
Weighted_pre MAE: 0.05750000000000027

可以发现加权结果相对于之前的结果是有提升的,这种我们称其为简单的加权平均。
还有一些特殊的形式,比如mean平均,median平均

## 定义结果的加权平均函数
def Mean_method(test_pre1,test_pre2,test_pre3):Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).mean(axis=1)return Mean_result
Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))
Mean_pre MAE: 0.06666666666666693
## 定义结果的加权平均函数
def Median_method(test_pre1,test_pre2,test_pre3):Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).median(axis=1)return Median_result
Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))
Median_pre MAE: 0.07500000000000007

2) Stacking融合(回归):

from sklearn import linear_modeldef Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)return Stacking_result
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]
# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6]
model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))
Stacking_pre MAE: 0.04213483146067476

可以发现模型结果相对于之前有进一步的提升,这是我们需要注意的一点是,对于第二层Stacking的模型不宜选取的过于复杂,这样会导致模型在训练集上过拟合,从而使得在测试集上并不能达到很好的效果。

分类模型融合:

对于分类,同样的可以使用融合方法,比如简单投票,Stacking…

from sklearn.datasets import make_blobs
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons
from sklearn.metrics import accuracy_score,roc_auc_score
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold

1)Voting投票机制:

Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。

iris = datasets.load_iris()x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,colsample_bytree=0.6, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1, gamma='auto')# 硬投票
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.95 (+/- 0.03) [SVM]
Accuracy: 0.95 (+/- 0.03) [Ensemble]
'''
软投票:和硬投票原理相同,增加了设置权重的功能,可以为不同模型设置不同权重,进而区别模型不同的重要度。
'''
x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.8,colsample_bytree=0.8, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1, probability=True, gamma='auto')# 软投票
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[4, 1, 1])
clf1.fit(x_train, y_train)for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.95 (+/- 0.03) [SVM]
Accuracy: 0.96 (+/- 0.02) [Ensemble]

2)分类的Stacking\Blending融合:

stacking是一种分层模型集成框架。

以两层为例,第一层由多个基学习器组成,其输入为原始训练集,第二层的模型则是以第一层基学习器的输出作为训练集进行再训练,从而得到完整的stacking模型, stacking两层模型都使用了全部的训练数据。

'''
5-Fold Stacking
'''
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier,GradientBoostingClassifier
import pandas as pd
#创建训练的数据集
data_0 = iris.data
data = data_0[:100,:]target_0 = iris.target
target = target_0[:100]#模型融合中使用到的各个单模型
clfs = [LogisticRegression(solver='lbfgs'),RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=0)dataset_blend_train = np.zeros((X.shape[0], len(clfs)))
dataset_blend_test = np.zeros((X_predict.shape[0], len(clfs)))#5折stacking
n_splits = 5
skf = StratifiedKFold(n_splits)
skf = skf.split(X, y)for j, clf in enumerate(clfs):#依次训练各个单模型dataset_blend_test_j = np.zeros((X_predict.shape[0], len(clfs)))for i, (train, test) in enumerate(skf):#5-Fold交叉训练,使用第i个部分作为预测,剩余的部分来训练模型,获得其预测的输出作为第i部分的新特征。X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]clf.fit(X_train, y_train)y_submission = clf.predict_proba(X_test)[:, 1]dataset_blend_train[test, j] = y_submissiondataset_blend_test_j[:, i] = clf.predict_proba(X_predict)[:, 1]#对于测试集,直接用这交叉验证训练的模型的预测值均值作为新的特征。dataset_blend_test[:, j] = dataset_blend_test_j.mean(1)print("val auc Score: %f" % roc_auc_score(y_predict, dataset_blend_test[:, j]))clf = LogisticRegression(solver='lbfgs')
clf.fit(dataset_blend_train, y)
y_submission = clf.predict_proba(dataset_blend_test)[:, 1]print("Val auc Score of Stacking: %f" % (roc_auc_score(y_predict, y_submission)))
val auc Score: 1.000000
val auc Score: 0.500000
val auc Score: 0.500000
val auc Score: 0.500000
val auc Score: 0.500000
Val auc Score of Stacking: 1.000000

Blending,其实和Stacking是一种类似的多层模型融合的形式

其主要思路是把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。

在第一层,我们在这70%的数据上训练多个模型,然后去预测那30%数据的label,同时也预测test集的label。

在第二层,我们就直接用这30%数据在第一层预测的结果做为新特征继续训练,然后用test集第一层预测的label做特征,用第二层训练的模型做进一步预测

其优点在于:

  • 1.比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)
  • 2.避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集

缺点在于:

  • 1.使用了很少的数据(第二阶段的blender只使用training set10%的量)
  • 2.blender可能会过拟合
  • 3.stacking使用多次的交叉验证会比较稳健
    ‘’’
'''
Blending
'''#创建训练的数据集
#创建训练的数据集
data_0 = iris.data
data = data_0[:100,:]target_0 = iris.target
target = target_0[:100]#模型融合中使用到的各个单模型
clfs = [LogisticRegression(solver='lbfgs'),RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),#ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)#切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=2020)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))for j, clf in enumerate(clfs):#依次训练各个单模型clf.fit(X_d1, y_d1)y_submission = clf.predict_proba(X_d2)[:, 1]dataset_d1[:, j] = y_submission#对于测试集,直接用这k个模型的预测值作为新的特征。dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))#融合使用的模型
clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
Val auc Score of Blending: 1.000000

3)分类的Stacking融合(利用mlxtend):

import warnings
warnings.filterwarnings('ignore')
import itertools
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspecfrom sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifierfrom sklearn.model_selection import cross_val_score
from mlxtend.plotting import plot_learning_curves
from mlxtend.plotting import plot_decision_regions# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.targetclf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], meta_classifier=lr)label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))clf_cv_mean.append(scores.mean())clf_cv_std.append(scores.std())clf.fit(X, y)ax = plt.subplot(gs[grd[0], grd[1]])fig = plot_decision_regions(X=X, y=y, clf=clf)plt.title(label)plt.show()
Accuracy: 0.91 (+/- 0.01) [KNN]
Accuracy: 0.93 (+/- 0.05) [Random Forest]
Accuracy: 0.92 (+/- 0.03) [Naive Bayes]
Accuracy: 0.95 (+/- 0.03) [Stacking Classifier]

可以发现 基模型 用 ‘KNN’, ‘Random Forest’, ‘Naive Bayes’ 然后再这基础上 次级模型加一个 ‘LogisticRegression’,模型测试效果有着很好的提升。

一些其它方法:

将特征放进模型中预测,并将预测结果变换并作为新的特征加入原有特征中再经过模型预测结果 (Stacking变化)

(可以反复预测多次将结果加入最后的特征中)

def Ensemble_add_feature(train,test,target,clfs):# n_flods = 5# skf = list(StratifiedKFold(y, n_folds=n_flods))train_ = np.zeros((train.shape[0],len(clfs*2)))test_ = np.zeros((test.shape[0],len(clfs*2)))for j,clf in enumerate(clfs):'''依次训练各个单模型'''# print(j, clf)'''使用第1个部分作为预测,第2部分来训练模型,获得其预测的输出作为第2部分的新特征。'''# X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]clf.fit(train,target)y_train = clf.predict(train)y_test = clf.predict(test)## 新特征生成train_[:,j*2] = y_train**2test_[:,j*2] = y_test**2train_[:, j+1] = np.exp(y_train)test_[:, j+1] = np.exp(y_test)# print("val auc Score: %f" % r2_score(y_predict, dataset_d2[:, j]))print('Method ',j)train_ = pd.DataFrame(train_)test_ = pd.DataFrame(test_)return train_,test_
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()data_0 = iris.data
data = data_0[:100,:]target_0 = iris.target
target = target_0[:100]x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.3)
x_train = pd.DataFrame(x_train) ; x_test = pd.DataFrame(x_test)#模型融合中使用到的各个单模型
clfs = [LogisticRegression(),RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]New_train,New_test = Ensemble_add_feature(x_train,x_test,y_train,clfs)clf = LogisticRegression()
# clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
clf.fit(New_train, y_train)
y_emb = clf.predict_proba(New_test)[:, 1]print("Val auc Score of stacking: %f" % (roc_auc_score(y_test, y_emb)))
Method  0
Method  1
Method  2
Method  3
Method  4
Val auc Score of stacking: 1.000000

stacking模型融合相关推荐

  1. 【机器学习-贷款用户逾期情况分析2】3.stacking模型融合

    3.0 任务说明 用你目前评分最高的模型作为基准模型,和其他模型进行stacking融合,得到最终模型及评分果. 3.1 stacking模型融合 Stacking(有时候也称之为stacked ge ...

  2. 机器学习 scikit-learn8 - 预测贷款用户是否会逾期 - Stacking模型融合【调包】

    Stacking模型融合 1 简介 2 模型融合的原理 2.1 StackingClassifier 概述 2.2 StackingCVClassifier 概述 3 代码使用方法 4 核心代码说明 ...

  3. stacking模型融合_算法实践七:模型融合

    模型融合 用目前评分最高的模型作为基准模型,和其他模型进行stacking融合,得到最终模型以及评分结果. 考虑到时间问题,最优分箱和IV值计算先过,直接利用随机森林筛选出来的特征进行训练,只是实现整 ...

  4. 数据挖掘之stacking模型融合(以阿里妈妈广告点击率预估比赛为例)

    前面的特征工程部分参考大神操作,此代码非比赛真是代码,可以在特征工程方面多下功夫,这次比赛经过模型融合后的最好成绩为96名(5000队) #coding=utf-8 import pandas as ...

  5. stacking模型融合_【干货】比赛后期大招之stacking技术分享

    各位同学大家好,我是本次参赛选手李博,比赛ID是深蓝(DeePBluE).现在就读于北京邮电大学,是一名研一的在校生,研究方向是数据分析和机器学习. 是的,我又来分(na)享(li)东(wu)西了!这 ...

  6. Stacking 模型融合详解(附python代码)

    向AI转型的程序员都关注了这个号

  7. 关于模型融合Stacking的一些改进思路

    Stacking模型融合 Stacking是一种嵌套组合型的模型融合方法,其基本思路就是在第一层训练多个不同的基学习器,然后把第一层训练的各个基学习器的输出作为输入来训练第二层的学习器,从而得到一个最 ...

  8. 基于多模型融合的用户画像分析统计方法研究

    摘  要 随着信息技术的快速发展和大数据技术的广泛应用,企业的营销和产品的设计,对精细化.精准化的要求越来越高.主流的电商平台.搜索引擎以及短视频平台均推出了基于用户画像的个性化推荐服务,这其中相当一 ...

  9. kaggle点赞最多的 泰坦尼克号数据竞赛模型融合方法(附代码)

    听说很多大佬都是从kaggle上获取的知识, 加工整理成一套属于自己的竞赛体系 今年7月份我开始参加大数据竞赛, 现在差不多有10场比赛了, 都是结构化比赛. 小的比赛还能进Top名次, 大点的比赛就 ...

最新文章

  1. 又现“别人家的公司”!网曝腾讯和快手发“阳光普照奖”,给每个员工100股股票!...
  2. 使用docker安装Mongodb
  3. uml里的extend和include_用例图中包含(include)扩展(extend)和泛化(generalization)关系详解...
  4. android 交叉编译so,Android交叉编译htop和使用方法
  5. js删除数组中的某个对象
  6. 匿名管道和pipe函数
  7. python写一个crm系统_用Python打造一个CRM系统(四)
  8. C4D电商促销活动背景素材|设计提升,只差一个背景
  9. Jenkins 系列教程-史上最简单Jenkins教程,教你一天学会使用Jenkins利器
  10. 15000cd是多少流明_光通量(lm)发光强度(cd)照度单位(lux)之间的关系
  11. python解析FreeMind思维导图
  12. Python Train_使用隐马尔可夫模型进行音乐流派分类的Python实现
  13. 赵小楼《天道》《遥远的救世主》深度解析(111)人是需要社会认同感和存在感的
  14. Chrome 屏蔽https中访问http(不安全内容)
  15. jsp执行原理(详解)
  16. Java内存管理-Stackoverflow问答-Java是传值还是传引用?(十一)
  17. 从技术角度看“星闪“技术
  18. 解决Ubuntu20.04网络图标消失
  19. fms5序列号_FMS 开发 准备
  20. unity 物体移动到手机点击位置

热门文章

  1. isinstance用法
  2. win10计算机管理字体糊,Win10显示模糊糊 多级方案一次搞定-win10字体发虚
  3. iPhone短信删除了怎么恢复
  4. 端粒效应《The Telemere Effect》程序员的养生指南
  5. css:实现多行文本居中的五种方法
  6. epub电子书xml添加下着重号样式(二) 样式直接拿走
  7. 如何编写软件测试报告
  8. 2017 PTC Creo 4.0解决方案巡展宁波站圆满落幕
  9. 鸿蒙系统不是PC系统,【图片】华为鸿蒙系统的厉害之处在于 你可能非用不可 !【手机吧】_百度贴吧...
  10. 降本40%!Redis多租户集群的容器化实践