左侧6种垃圾收集器之间存在连线,就说明他们可以搭配使用,上半部分为年轻代使用,下半部分为老年代使用,右侧G1开始逐步抛离分代年龄的概念

虽然垃圾收集器的技术在不断的进步,但直到现在还没有最好的收集器出现,更加不存在“万能”的收集器,所以我们选择的只是对具体应用最合适的收集器

JDK8时将 Serial+CMS、ParNew+Serial Old这两个组合声明为废弃,并且在JDK9中完全取消了这两个组合的支持
JDK8默认使用 Parallel Scavenge + Parallel Old

1.1、Serial收集器(-XX:+UseSerialGC -XX:+UseSerialOldGC)

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。

新生代采用复制算法,老年代采用标记-整理算法。

虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。

但是Serial收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。

Serial Old收集器是Serial收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备方案。

1.2、Parallel Scavenge收集器(-XX:+UseParallelGC(年轻代),-XX:+UseParallelOldGC(老年代))

Parallel收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和Serial收集器类似。默认的收集线程数跟cpu核数相同,当然也可以用参数(-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改。

Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。 Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。

新生代采用复制算法,老年代采用标记-整理算法。

  • jdk1.8 默认垃圾收集器Parallel Scavenge(新生代)+Parallel Old(老年代)(在JDK 7U4之前UserParallelGC用的是ParallelScavenge+SerialOld,在这个版本后Parallel已经很成熟了,所以直接替换了旧的收集器,所以JDK 7u4后的7和JDK8默认使用的都是ParallelScavenge+ParallelOld,JDK源码commit记录说明)

1.3、ParNew收集器(-XX:+UseParNewGC)

ParNew收集器其实跟Parallel收集器很类似,区别主要在于它可以和CMS收集器配合使用。
新生代采用复制算法,老年代采用标记-整理算法。

它是许多运行在Server模式下的虚拟机的首要选择,除了Serial收集器外,只有它能与CMS收集器(真正意义上的并发收集器,后面会介绍到)配合工作。

1.4、CMS收集器(-XX:+UseConcMarkSweepGC(old))

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  1. 初始标记: 暂停所有的其他线程(STW),并记录下GC Roots直接能引用的对象,速度很快。
  2. 并发标记: 并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程, 这个过程耗时较长但是不需要停顿用户线程, 可以与垃圾收集线程一起并发运行。因为用户程序继续运行,可能会有导致已经标记过的对象状态发生改变。
  3. 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短。主要用到三色标记里的增量更新算法做重新标记。
    • 增量更新算法:“插入了一条或多条从黑色对象到白色对象的引用”,当有黑色对象指向白色对象时,就把该黑色对象变成灰色对象,回头再重新扫描一次,这样就可以保证指向的白色对象一定会扫描到。
  4. 并发清理: 开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理(三色标记算法详解)。
  5. 并发重置:重置本次GC过程中的标记数据。


从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:

  • 对CPU资源敏感(会和服务抢资源,默认启动的线程数是 (处理器核心数量+3)/4,如果处理器核心数超过4个时,收集线程占用不超过25%的资源,当少于4个时对用户线程影响很大);

  • 无法处理浮动垃圾(在并发标记和并发清理阶段又产生垃圾,这种浮动垃圾只能等到下一次gc再清理了);

  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生,当然通过参数-XX:+UseCMSCompactAtFullCollection可以让jvm在执行完标记清除后再做整理

  • 执行过程中的不确定性,会存在上一次垃圾回收还没执行完,然后垃圾回收又被触发的情况,特别是在并发标记和并发清理阶段会出现,一边回收,系统一边运行,也许没回收完就再次触发full gc,也就是"concurrent mode failure",此时会进入stop the world,用serial old(单线程)垃圾收集器来回收,特别慢

CMS收集器不像其他收集器一样,等到老年代几乎被填满再触发,所以必须预留一部分空间供并发收集时的程序运作使用,JDK6以后默认为92%

CMS的优化目的就是防止出现"concurrent mode failure"。

CMS的相关核心参数

  1. -XX:+UseConcMarkSweepGC:启用cms
  2. -XX:ConcGCThreads:并发的GC线程数
  3. -XX:+UseCMSCompactAtFullCollection:FullGC之后做压缩整理(减少碎片)
  4. -XX:CMSFullGCsBeforeCompaction:多少次FullGC之后压缩一次,默认是0,代表每次FullGC后都会压缩一次
  5. -XX:CMSInitiatingOccupancyFraction: 当老年代使用达到该比例时会触发FullGC(默认是92,这是百分比)
  6. -XX:+UseCMSInitiatingOccupancyOnly:只使用设定的回收阈值(-XX:CMSInitiatingOccupancyFraction设定的值),如果不指定,JVM仅在第一次使用设定值,后续则会自动调整
  7. -XX:+CMSScavengeBeforeRemark:在CMS GC前启动一次minor gc,降低CMS GC标记阶段(也会对年轻代一起做标记,如果在minor gc就干掉了很多对垃圾对象,标记阶段就会减少一些标记时间)时的开销,一般CMS的GC耗时 80%都在标记阶段
  8. -XX:+CMSParallellnitialMarkEnabled:表示在初始标记的时候多线程执行,缩短STW
  9. -XX:+CMSParallelRemarkEnabled:在重新标记的时候多线程执行,缩短STW;

CMS优化

-Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:SurvivorRatio=8
-XX:MaxTenuringThreshold=5 -XX:PretenureSizeThreshold=1M

  • 对于JDK8默认的垃圾回收器是-XX:+UseParallelGC(年轻代)和-XX:+UseParallelOldGC(老年代),如果内存较大(超过4个G,只是经验值),系统对停顿时间比较敏感,我们可以使用ParNew+CMS(-XX:+UseParNewGC -XX:+UseConcMarkSweepGC)
  • 对于老年代CMS的参数如何设置我们可以思考下,首先我们想下当前这个系统有哪些对象可能会长期存活躲过5次以上minor gc最终进入老年代。
    无非就是那些Spring容器里的Bean,线程池对象,一些初始化缓存数据对象等,这些加起来充其量也就几十MB。
  • 还有就是某次minor gc完了之后还有超过一两百M的对象存活,那么就会直接进入老年代,比如突然某一秒瞬间要处理五六百次请求,那么每秒生成的对象可能有一百多M,再加上整个系统可能压力剧增,一次请求要好几秒才能处理完,下一秒可能又有很多订单过来。
  • 假如秒杀每隔五六分钟出现一次这样的情况,那么大概半小时到一小时之间就可能因为老年代满了触发一次Full GC,Full GC的触发条件还有我们之前说过的老年代空间分配担保机制,历次的minor gc挪动到老年代的对象大小肯定是非常小的,所以几乎不会在minor gc触发之前由于老年代空间分配担保失败而产生full gc,其实在半小时后发生full gc,这时候已经过了抢购的最高峰期,后续可能几小时才做一次FullGC。
  • 对于碎片整理,因为都是1小时或几小时才做一次FullGC,是可以每做完一次就开始碎片整理,或者两到三次之后再做一次也行。
    综上,只要年轻代参数设置合理,老年代CMS的参数设置基本都可以用默认值,如下所示:

    -Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:SurvivorRatio=8
    -XX:MaxTenuringThreshold=5 -XX:PretenureSizeThreshold=1M -XX:+UseParNewGC -XX:+UseConcMarkSweepGC
    -XX:CMSInitiatingOccupancyFraction=92 -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=3

1.5、G1收集器(-XX:+UseG1GC)

G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足GC停顿时间要求的同时,还具备高吞吐量性能特征。(JDK9默认垃圾处理器,JDK8 update40以后相对稳定)

G1将Java堆划分为多个大小相等的独立区域(Region),JVM目标是不超过2048个Region(JVM源码里TARGET_REGION_NUMBER 定义),实际可以超过该值,但是不推荐。

一般Region大小等于堆大小除以2048,比如堆大小为4096M,则Region大小为2M,当然也可以用参数"-XX:G1HeapRegionSize"手动指定Region大小,但是推荐默认的计算方式。

G1保留了年轻代和老年代的概念,但不再是物理隔阂了,它们都是(可以不连续)Region的集合。

默认年轻代对堆内存的占比是5%,如果堆大小为4096M,那么年轻代占据200MB左右的内存,对应大概是100个Region,可以通过“-XX:G1NewSizePercent”设置新生代初始占比,在系统运行中,JVM会不停的给年轻代增加更多的Region,但是最多新生代的占比不会超过60%,可以通过“-XX:G1MaxNewSizePercent”调整。年轻代中的Eden和Survivor对应的region也跟之前一样,默认8:1:1,假设年轻代现在有1000个region,eden区对应800个,s0对应100个,s1对应100个。

一个Region可能之前是年轻代,如果Region进行了垃圾回收,之后可能又会变成老年代,也就是说Region的区域功能可能会动态变化。

G1垃圾收集器对于对象什么时候会转移到老年代跟之前讲过的原则一样,唯一不同的是对大对象的处理,G1有专门分配大对象的Region叫Humongous区,而不是让大对象直接进入老年代的Region中。在G1中,大对象的判定规则就是一个大对象超过了一个Region大小的50%,比如按照上面算的,每个Region是2M,只要一个大对象超过了1M,就会被放入Humongous中,而且一个大对象如果太大,可能会横跨多个连续Region来存放

Humongous区专门存放短期巨型对象,不用直接进老年代,可以节约老年代的空间,避免因为老年代空间不够的GC开销。
Full GC的时候除了收集年轻代和老年代之外,也会将Humongous区一并回收。

G1收集器一次GC(主要值Mixed GC)的运作过程大致分为以下几个步骤:

  • 初始标记(initial mark,STW):暂停所有的其他线程,并记录下gc roots直接能引用的对象,速度很快 ;
  • 并发标记(Concurrent Marking):同CMS的并发标记
  • 最终标记(Remark,STW):同CMS的重新标记
  • 筛选回收(Cleanup,STW):筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿STW时间(可以用JVM参数 -XX:MaxGCPauseMillis指定)来制定回收计划,比如说老年代此时有1000个Region都满了,但是因为根据预期停顿时间,本次垃圾回收可能只能停顿200毫秒,那么通过之前回收成本计算得知,可能回收其中800个Region刚好需要200ms,那么就只会回收800个Region(Collection Set,要回收的集合),尽量把GC导致的停顿时间控制在我们指定的范围内。这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。不管是年轻代或是老年代,回收算法主要用的是复制算法,将一个region中的存活对象复制到另一个region中,这种不会像CMS那样回收完因为有很多内存碎片还需要整理一次,G1采用复制算法回收几乎不会有太多内存碎片。(注意:CMS回收阶段是跟用户线程一起并发执行的,G1因为内部实现太复杂暂时没实现并发回收,不过到了ZGC,Shenandoah就实现了并发收集,Shenandoah可以看成是G1的升级版本)


G1收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的Region(这也就是它的名字Garbage-First的由来),比如一个Region花200ms能回收10M垃圾,另外一个Region花50ms能回收20M垃圾,在回收时间有限情况下,G1当然会优先选择后面这个Region回收。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限时间内可以尽可能高的收集效率。

被视为JDK1.7以上版本Java虚拟机的一个重要进化特征。它具备以下特点:

  • 并行与并发:G1能充分利用CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿时间。部分其他收集器原本需要停顿Java线程来执行GC动作,G1收集器仍然可以通过并发的方式让java程序继续执行。

  • 分代收集:虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但是还是保留了分代的概念。
    空间整合:与CMS的“标记–清理”算法不同,G1从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
    可预测的停顿:这是G1相对于CMS的另一个大优势,降低停顿时间是G1 和 CMS 共同的关注点,但G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段(通过参数"-XX:MaxGCPauseMillis"指定)内完成垃圾收集。

毫无疑问, 可以由用户指定期望的停顿时间是G1收集器很强大的一个功能, 设置不同的期望停顿时间, 可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。 不过, 这里设置的“期望值”必须是符合实际的, 不能异想天开, 毕竟G1是要冻结用户线程来复制对象的, 这个停顿时
间再怎么低也得有个限度。 它默认的停顿目标为两百毫秒, 一般来说, 回收阶段占到几十到一百甚至接近两百毫秒都很正常, 但如果我们把停顿时间调得非常低, 譬如设置为二十毫秒, 很可能出现的结果就是由于停顿目标时间太短, 导致每次选出来的回收集只占堆内存很小的一部分, 收集器收集的速度逐渐跟不上分配器分配的速度, 导致垃圾慢慢堆积。 很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间, 但应用运行时间一长就不行了, 最终占满堆引发Full GC反而降低性能, 所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。

G1垃圾收集分类

  • YoungGC
    YoungGC并不是说现有的Eden区放满了就会马上触发,G1会计算下现在Eden区回收大概要多久时间,如果回收时间远远小于参数 -XX:MaxGCPauseMills 设定的值,那么增加年轻代的region,继续给新对象存放,不会马上做Young GC,直到下一次Eden区放满,G1计算回收时间接近参数 -XX:MaxGCPauseMills 设定的值,那么就会触发Young GC
  • MixedGC
    不是FullGC,老年代的堆占有率达到参数(-XX:InitiatingHeapOccupancyPercent)设定的值则触发,回收所有的Young和部分Old(根据期望的GC停顿时间确定old区垃圾收集的优先顺序)以及大对象区,正常情况G1的垃圾收集是先做MixedGC,主要使用复制算法,需要把各个region中存活的对象拷贝到别的region里去,拷贝过程中如果发现没有足够的空region能够承载拷贝对象就会触发一次Full GC
  • Full GC(优化控制不触发)
    停止系统程序,然后采用单线程进行标记、清理和压缩整理,好空闲出来一批Region来供下一次MixedGC使用,这个过程是非常耗时的。(Shenandoah优化成多线程收集了)

G1收集器参数设置

  • -XX:+UseG1GC:使用G1收集器
  • -XX:ParallelGCThreads:指定GC工作的线程数量
  • -XX:G1HeapRegionSize:指定分区大小(1MB~32MB,且必须是2的N次幂),默认将整堆划分为2048个分区
  • -XX:MaxGCPauseMillis:目标暂停时间(默认200ms)
  • -XX:G1NewSizePercent:新生代内存初始空间(默认整堆5%,值配置整数,默认就是百分比)
  • -XX:G1MaxNewSizePercent:新生代内存最大空间
  • -XX:TargetSurvivorRatio:Survivor区的填充容量(默认50%),Survivor区域里的一批对象(年龄1+年龄2+年龄n的多个年龄对象)总和超过了Survivor区域的50%,此时就会把年龄n(含)以上的对象都放入老年代
  • -XX:MaxTenuringThreshold:最大年龄阈值(默认15)
  • -XX:InitiatingHeapOccupancyPercent:老年代占用空间达到整堆内存阈值(默认45%),则执行新生代和老年代的混合收集(MixedGC),比如我们之前说的堆默认有2048个region,如果有接近1000个region都是老年代的region,则可能就要触发MixedGC了
  • -XX:G1MixedGCLiveThresholdPercent(默认85%) region中的存活对象低于这个值时才会回收该region,如果超过这个值,存活对象过多,回收的的意义不大。
  • -XX:G1MixedGCCountTarget:在一次回收过程中指定做几次筛选回收(默认8次),在最后一个筛选回收阶段可以回收一会,然后暂停回收,恢复系统运行,一会再开始回收,这样可以让系统不至于单次停顿时间过长。
  • -XX:G1HeapWastePercent(默认5%): gc过程中空出来的region是否充足阈值,在混合回收的时候,对Region回收都是基于复制算法进行的,都是把要回收的Region里的存活对象放入其他Region,然后这个Region中的垃圾对象全部清理掉,这样的话在回收过程就会不断空出来新的Region,一旦空闲出来的Region数量达到了堆内存的5%,此时就会立即停止混合回收,意味着本次混合回收就结束了。

G1垃圾收集器优化建议

假设参数 -XX:MaxGCPauseMills 设置的值很大,导致系统运行很久,年轻代可能都占用了堆内存的60%了,此时才触发年轻代gc。
那么存活下来的对象可能就会很多,此时就会导致Survivor区域放不下那么多的对象,就会进入老年代中。
或者是你年轻代gc过后,存活下来的对象过多,导致进入Survivor区域后触发了动态年龄判定规则,达到了Survivor区域的50%,也会快速导致一些对象进入老年代中。
所以这里核心还是在于调节 -XX:MaxGCPauseMills 这个参数的值,在保证他的年轻代gc别太频繁的同时,还得考虑每次gc过后的存活对象有多少,避免存活对象太多快速进入老年代,频繁触发mixed gc.

什么场景适合使用G1

  • 50%以上的堆被存活对象占用
  • 对象分配和晋升的速度变化非常大
  • 垃圾回收时间特别长,超过1秒
  • 8GB以上的堆内存(建议值)
  • 停顿时间是500ms以内

每秒几十万并发的系统如何优化JVM

Kafka类似的支撑高并发消息系统大家肯定不陌生,对于kafka来说,每秒处理几万甚至几十万消息时很正常的,一般来说部署kafka需要用大内存机器(比如64G),也就是说可以给年轻代分配个三四十G的内存用来支撑高并发处理,这里就涉及到一个问题了,我们以前常说的对于eden区的young gc是很快的,这种情况下它的执行还会很快吗?很显然,不可能,因为内存太大,处理还是要花不少时间的,假设三四十G内存回收可能最快也要几秒钟,按kafka这个并发量放满三四十G的eden区可能也就一两分钟吧,那么意味着整个系统每运行一两分钟就会因为young gc卡顿几秒钟没法处理新消息,显然是不行的。那么对于这种情况如何优化了,我们可以使用G1收集器,设置 -XX:MaxGCPauseMills 为50ms,假设50ms能够回收三到四个G内存,然后50ms的卡顿其实完全能够接受,用户几乎无感知,那么整个系统就可以在卡顿几乎无感知的情况下一边处理业务一边收集垃圾。
G1天生就适合这种大内存机器的JVM运行,可以比较完美的解决大内存垃圾回收时间过长的问题。

JVM 垃圾收集器Serial、Parallel Scavenge、ParNew、CMS、G1相关推荐

  1. HotSpot VM垃圾收集器——Serial Parallel CMS G1垃圾收集器的JVM参数、使用说明、GC分析

    目录 HotspotVM的垃圾收集器简介 1. Serial Collector 2. Parallel Collector(throughput collector) 3. Concurrent M ...

  2. 【Java 虚拟机原理】垃圾收集器 ( Serial | ParNew | Parallel Scavenge | CMS | Serial Old - MSC | Parallel Old )

    文章目录 前言 一.HotSpot 虚拟机的垃圾收集器 二.年轻代垃圾收集器 1. 串行收集器 ( Serial ) 2. ParNew 收集器 3. Parallel Scavenge 收集器 二. ...

  3. JVM老年代垃圾收集器Serial Old和Parallel Old

    Serial Old垃圾收集器 老年代垃圾收集器,与Serial一样,是一个单线程垃圾收集器,不同的是用的算法不一样(标记-整理) 根据老年代的特点,有人设计了标记-整理(Mark Compact)算 ...

  4. JVM垃圾收集器详解 CMS、G1、Shenandoah、ZGC

    上一篇我们讲解了一些垃圾回收的理论和一些基础的算法和思想,这一篇主要是jvm从古至今垃圾收集器的实现. 各垃圾回收器 注:有连线的代表他们可以互相配合使用. Serial和Serial Old收集器 ...

  5. JVM垃圾收集器与内存分配策略学习总结

    方法区: 1.线程共享 2.储存类信息,常量,静态变量,编译器编译后的代码 3.非堆(别名)用于区分Java堆 4.不需要连续的内存 5.可以固定或可扩张 6.选择不实现垃圾回收//这个区域很少进行垃 ...

  6. 直通BAT必考题系列:7种JVM垃圾收集器特点,优劣势、及使用场景

    直通BAT之JVM系列 直通BAT必考题系列:JVM的4种垃圾回收算法.垃圾回收机制与总结 直通BAT必考题系列:深入详解JVM内存模型与JVM参数详细配置 今天继续JVM的垃圾回收器详解,如果说垃圾 ...

  7. jvm垃圾收集器与内存分配策略

    2019独角兽企业重金招聘Python工程师标准>>> 垃圾收集器与内存分配策略: 以下参考周志明的<<深入理解jvm高级特性与最佳实践>>. 判断对象是否存 ...

  8. JVM 垃圾收集器 学习笔记(《深入理解java虚拟机》之六 垃圾收集)

    目录 新生代收集器 Serial收集器 ParNew收集器 Parallel Scavenge收集器 老年代收集器 Serial Old收集器 Parallel Old收集器 CMS收集器 Remov ...

  9. JVM垃圾收集器(三)

    JVM垃圾收集器(三) 垃圾回收(GC)线程与应用线程保持相对独立,当系统需要执行垃圾回收任务时,先停止工作线程,然后命令GC线程工作,以串行模式工作的收集器,称为Serial Collector,即 ...

  10. 7种JVM垃圾收集器特点,优劣势、及使用场景,Java-SSM框架相关面试题整理

    Serial 是一款用于新生代的单线程收集器,采用复制算法进行垃圾收集.Serial 进行垃圾收集时,不仅只用一条线程执行垃圾收集工作,它在收集的同时,所有的用户线程必须暂停(Stop The Wor ...

最新文章

  1. 【QT】Qtcreator的设计模式中将控件提升为自定义的控件
  2. 2018-3-24论文(Grey Wolf Optimizer)note1----------No Free Lunch Theorem
  3. APK 签名中应该注意的一些点 (未完待续)
  4. 周鸿祎:网络安全不是一门“卖货”的生意
  5. linux命令less
  6. DPDK support for vhost-user(十四)
  7. nginx访问控制:如何通过map来控制http_x_forwarded_for访问限制
  8. qunee for html5 api,Qunee for HTML5
  9. 《R语言数据挖掘:实用项目解析》——2.6 变量分段
  10. hadoop 权限错误 Permission denied: user=root, access=WRITE, inode=“/“:hdfs:super
  11. 软考程序员2017下半年真题含答案解析
  12. 忘记数据库密码,修改数据库密码(亲测有效)
  13. 怎么记住计算机快捷键,快速记忆电脑快捷键的方法
  14. 关于SSL认证的小坑 SSLPeerUnverifiedException
  15. 创建jsp文件时报8080端口被占用,解决办法
  16. c语言五子棋最简单的ai,C++简单五子棋的AI设计实现
  17. Qt For Android 屏幕常亮
  18. SpringBoot整合MybatisPlus实战动态SQL,java分布式架构
  19. android倒数计时器,Android倒计时(分钟)
  20. 鸿蒙系统运行内存为啥只有8g,明明8G内存,系统却显示只有4G!为啥会这样?

热门文章

  1. TNS-12555 permission denied
  2. linux 合并多个pdf,Linux 下合并 PDF
  3. 众智日照服务器无响应,众智日照分析常见问题解释
  4. uni-app开发模式中的选择图片(uni.chooseImage)、上传图片(uni.uploadFile)、图片预览(uni.previewImage)
  5. 他一定幸福地生活在那里
  6. 怎么下载lce_icesword下载
  7. KV杀毒软件创始人离世
  8. 硅谷火爆的云原生,你会玩吗?
  9. 头歌java 实训 答案 代码 java入门
  10. JS,统计图表大全--十一、甘特图