文章目录

  • 公式与符号说明
  • 几个性质及部分证明
  • 高斯白噪声中的直流电平
  • 卡尔曼滤波正式推导
  • 参考

本文从联合正态分布的一些性质出发推导标量和向量形式的卡尔曼滤波,以及重点推导了均值不为0的各个公式。下面的一些性质出于方便考虑给起了名字,不一定是正式的学术命名。
正式证明还没写完。

公式与符号说明

离散系统
x(k)=Ax(k−1)+Bu(k−1)+v(k−1)y(k)=Cx(k)+W(k)\begin{aligned} & x(k)=Ax(k-1)+Bu(k-1)+v(k-1) \\ & y(k)=Cx(k)+W(k) \end{aligned} ​x(k)=Ax(k−1)+Bu(k−1)+v(k−1)y(k)=Cx(k)+W(k)​
其中V,WV,WV,W为零均值高斯白噪声的协方差矩阵。
卡尔曼滤波器递推公式如下
x^(k∣k−1)=Ax^(k−1)+Bu(k−1)x^(k)=x^(k∣k−1)+K(k)[y(k)−Cx^(k∣k−1)]P(k∣k−1)=AP(k−1)AT+VP(k)=[I−K(k)C]P(k∣k−1)K(k)=P(k∣k−1)CT[CP(k∣k−1)CT+W]−1\begin{aligned} & \hat{x}(k|k-1)=A\hat{x}(k-1)+Bu(k-1) \\ & \hat{x}(k)=\hat{x}(k|k-1)+K(k)[y(k)-C\hat{x}(k|k-1)] \\ & P(k|k-1)=AP(k-1)A^{\text{T}}+V \\ & P(k)=[I-K(k)C]P(k|k-1) \\ & K(k)=P(k|k-1)C^{\text{T}}[CP(k|k-1)C^{\text{T}}+W]^{-1} \\ \end{aligned} ​x^(k∣k−1)=Ax^(k−1)+Bu(k−1)x^(k)=x^(k∣k−1)+K(k)[y(k)−Cx^(k∣k−1)]P(k∣k−1)=AP(k−1)AT+VP(k)=[I−K(k)C]P(k∣k−1)K(k)=P(k∣k−1)CT[CP(k∣k−1)CT+W]−1​

  • Y(k)=[y(0),y(1),⋯,y(k)]\mathbf{Y}(k)=[y(0),y(1),\cdots,y(k)]Y(k)=[y(0),y(1),⋯,y(k)]表示前kkk个时刻的观测数据
  • x^(k)=E[x(k)∣Y(k)]\hat{x}(k)=\text{E}[x(k)|Y(k)]x^(k)=E[x(k)∣Y(k)]表示根据前kkk个时刻的观测数据对第kkk时刻的实际状态x(k)x(k)x(k)的预测值
  • x^(k∣k−1)=E[x(k)∣Y(k−1)]\hat{x}(k|k-1)=\text{E}[x(k)|Y(k-1)]x^(k∣k−1)=E[x(k)∣Y(k−1)]表示根据前k−1k-1k−1个时刻的观测数据对第kkk时刻的实际状态x(k)x(k)x(k)的预测值
  • P(k∣k−1)=D[x(k)−x^(k∣k−1)]P(k|k-1)=\text{D}[x(k)-\hat{x}(k|k-1)]P(k∣k−1)=D[x(k)−x^(k∣k−1)]称预测方差,或预测协方差矩阵
  • P(k)=D[x(k)−x^(k)]P(k)=\text{D}[x(k)-\hat{x}(k)]P(k)=D[x(k)−x^(k)]称估计方差,或估计协方差矩阵
  • V=Dv(k)V=Dv(k)V=Dv(k)为状态噪声方差或协方差矩阵
  • W=Dw(k)W=Dw(k)W=Dw(k)为观测噪声方差或协方差矩阵

几个性质及部分证明

贝叶斯最小均方误差估计量(Bmse)
观测到xxx后θ\thetaθ的最小均方误差估计量θ^\hat{\theta}θ^为
θ^=E(θ∣x)\hat{\theta}=\text{E}(\theta|x)θ^=E(θ∣x)
证明的主要思路是求θ^\hat{\theta}θ^使得最小均方误差最小。证明:
Bmse(θ^)=E[(θ−θ^)2]=∬(θ−θ^)2p(x,θ)dxdθ=∫[∫(θ−θ^)2p(θ∣x)dθ]p(x)dxJ=∫(θ−θ^)2p(θ∣x)dθ∂J∂θ^=−2∫θp(θ∣x)dθ+2θ^∫p(θ∣x)dθ=0θ^=2∫θp(θ∣x)dθ2∫p(θ∣x)dθ=E(θ∣x)\begin{aligned} \text{Bmse}(\hat{\theta}) &= \text{E}[(\theta-\hat{\theta})^2] \\ &= \iint(\theta-\hat{\theta})^2p(x,\theta)\text{d}x\text{d}\theta \\ &=\int\left[\int(\theta-\hat{\theta})^2p(\theta|x)\text{d}\theta\right] p(x)\text{d}x \\ J &= \int(\theta-\hat{\theta})^2p(\theta|x)\text{d}\theta \\ \frac{\partial J}{\partial\hat{\theta}} &= -2\int\theta p(\theta|x)\text{d}\theta +2\hat{\theta}\int p(\theta|x)\text{d}\theta=0 \\ \hat{\theta} &= \frac{2\displaystyle\int\theta p(\theta|x)\text{d}\theta} {2\displaystyle\int p(\theta|x)\text{d}\theta}=\text{E}(\theta|x) \\ \end{aligned} Bmse(θ^)J∂θ^∂J​θ^​=E[(θ−θ^)2]=∬(θ−θ^)2p(x,θ)dxdθ=∫[∫(θ−θ^)2p(θ∣x)dθ]p(x)dx=∫(θ−θ^)2p(θ∣x)dθ=−2∫θp(θ∣x)dθ+2θ^∫p(θ∣x)dθ=0=2∫p(θ∣x)dθ2∫θp(θ∣x)dθ​=E(θ∣x)​
零均值应用定理(标量形式)
设xxx和yyy为联合正态分布的随机变量,则
E(y∣x)=Ey+Cov(x,y)Dx(x−Ex)D(y∣x)=Dy−Cov2(x,y)Dx\begin{aligned} & \text{E}(y|x)=\text{E}y+\frac{\text{Cov}(x,y)}{\text{D}x}(x-\text{E}x) \\ & \text{D}(y|x)=\text{D}y-\frac{\text{Cov}^2(x,y)}{\text{D}x} \\ \end{aligned} ​E(y∣x)=Ey+DxCov(x,y)​(x−Ex)D(y∣x)=Dy−DxCov2(x,y)​​
两式可另外写作
y^−EyDy=ρx−ExDxD(y∣x)=Dy(1−ρ2)\begin{aligned} & \frac{\hat{y}-\text{E}y}{\sqrt{\text{D}y}} =\rho\frac{x-\text{E}x}{\sqrt{\text{D}x}} \\ & \text{D}(y|x)=\text{D}y(1-\rho^2) \\ \end{aligned} ​Dy​y^​−Ey​=ρDx​x−Ex​D(y∣x)=Dy(1−ρ2)​
证明:
y^=ax+bJ=E(y−y^)2=E[y2−2y(ax+b)+(ax+b)2]=y2−2Exy⋅a−2bEy+Ex2⋅a2+2Ex⋅ab+b2dJ=(−2Exy+2aEx2+2bEx)da+(−2Ey+2aEx+2b)db∂J∂b=−2Ey+2aEx+2b=0b=Ey−aEx∂J∂a=−2Exy+2aEx2+2bEx=0aEx2=Exy−bEx=Exy−ExEy+a(Ex)2a=Cov(x,y)Dxy^=ax+b=ax+Ey−aEx=Ey+Cov(x,y)Dx(x−Ex)\begin{aligned} \hat{y} &= ax+b \\ J &= \text{E}(y-\hat{y})^2 \\ &= \text{E}[y^2-2y(ax+b)+(ax+b)^2] \\ &= y^2-2\text{E}xy\cdot a-2b\text{E}y +\text{E}x^2\cdot a^2+2\text{E}x\cdot ab+b^2 \\ \text{d}J &= (-2\text{E}xy+2a\text{E}x^2+2b\text{E}x)\text{d}a +(-2\text{E}y+2a\text{E}x+2b)\text{d}b \\ \frac{\partial J}{\partial b} &= -2\text{E}y+2a\text{E}x+2b = 0 \\ b &= \text{E}y-a\text{E}x \\ \frac{\partial J}{\partial a} &= -2\text{E}xy+2a\text{E}x^2+2b\text{E}x = 0 \\ a\text{E}x^2 &= \text{E}xy-b\text{E}x = \text{E}xy-\text{E}x\text{E}y+a(\text{E}x)^2 \\ a &= \frac{\text{Cov}(x,y)}{\text{D}x} \\ \hat{y} &= ax+b = ax+\text{E}y-a\text{E}x = \text{E}y+\frac{\text{Cov}(x,y)}{\text{D}x}(x-\text{E}x) \\ \end{aligned} y^​JdJ∂b∂J​b∂a∂J​aEx2ay^​​=ax+b=E(y−y^​)2=E[y2−2y(ax+b)+(ax+b)2]=y2−2Exy⋅a−2bEy+Ex2⋅a2+2Ex⋅ab+b2=(−2Exy+2aEx2+2bEx)da+(−2Ey+2aEx+2b)db=−2Ey+2aEx+2b=0=Ey−aEx=−2Exy+2aEx2+2bEx=0=Exy−bEx=Exy−ExEy+a(Ex)2=DxCov(x,y)​=ax+b=ax+Ey−aEx=Ey+DxCov(x,y)​(x−Ex)​
该定理只对包括正态分布在内的满足线性关系的随机变量有效(具体什么地方满足线性暂时没搞清楚)。例如,对两个联合均匀分布
f(x,y)=2,0<x<1,0<y<xf(x,y)=3,0<x<1,x2<y<x\begin{aligned} & f(x,y)=2,\quad 0<x<1,0<y<x \\ & f(x,y)=3,\quad 0<x<1,x^2<y<\sqrt{x} \end{aligned} ​f(x,y)=2,0<x<1,0<y<xf(x,y)=3,0<x<1,x2<y<x​​
第一个成立,第二个由于非线性的存在而不成立,也就是说yyy在数据xxx下的线性贝叶斯估计量不是最佳估计量,线性贝叶斯估计量和最佳贝叶斯估计量分别为
y^=Ey+Cov(x,y)Dx(x−Ex)=133x+9153y^=E(y∣x)=x+x22\begin{aligned} & \hat{y}=\text{E}y+\frac{\text{Cov}(x,y)}{\text{D}x}(x-\text{E}x) =\frac{133x+9}{153} \\ & \hat{y}=\text{E}(y|x)=\frac{\sqrt{x}+x^2}{2} \\ \end{aligned} ​y^​=Ey+DxCov(x,y)​(x−Ex)=153133x+9​y^​=E(y∣x)=2x​+x2​​
零均值应用定理(向量形式)
x\boldsymbol{x}x和y\boldsymbol{y}y为联合正态分布的随机向量,x\boldsymbol{x}x是m×1,y\boldsymbol{y}y是n×1,分块协方差矩阵
C=[CxxCxyCyxCyy]\mathbf{C}=\left[\begin{matrix} \mathbf{C}_{xx} & \mathbf{C}_{xy} \\ \mathbf{C}_{yx} & \mathbf{C}_{yy} \end{matrix}\right] C=[Cxx​Cyx​​Cxy​Cyy​​]

E(y∣x)=E(y)+CyxCxx−1(x−E(x))\text{E}(\boldsymbol{y}|\boldsymbol{x})=\text{E}(\boldsymbol{y}) +\mathbf{C}_{yx}\mathbf{C}_{xx}^{-1}(\boldsymbol{x}-\text{E}(\boldsymbol{x})) E(y∣x)=E(y)+Cyx​Cxx−1​(x−E(x))
其中CxyC_{xy}Cxy​表示Cov(x,y)\text{Cov}(x,y)Cov(x,y)。证明:
(其中省略的步骤见下文)
y^=Ax+BJ=E(y−y^)⊤(y−y^)=E(y⊤y−2y⊤y^+y^⊤y^)K=y⊤y−2y⊤y^+y^⊤y^dK=d(−2y⊤(Ax+B)+(Ax+B)⊤(Ax+B))=−2y⊤(dAx+dB)+d(x⊤A⊤Ax+2B⊤Ax+B⊤B)=−2xy⊤dA−2y⊤dB+2xx⊤A⊤dA+2x⊤A⊤dB+2xB⊤dA+2B⊤dB=(−2xy⊤+2xx⊤A⊤+2xB⊤)dA+(−2y⊤+2x⊤A⊤+2B⊤)dB∂J∂B=−2y+2Ax+2B=0B=Ey−AEx∂J∂A=−2yx⊤+2Axx⊤+2Bx⊤=0E(Axx⊤)=E(yx⊤−Bx⊤)=E(yx⊤−(Ey−AEx)x⊤)=Eyx⊤−EyEx⊤+AExEx⊤A=(Eyx⊤−EyEx⊤)(E(xx⊤)−ExEx⊤)−1=CyxCxx−1y^=CyxCxx−1x+Ey−CyxCxx−1Ex=Ey+CyxCxx−1(x−Ex)\begin{aligned} \hat{y} &= Ax+B \\ J &= \text{E}(y-\hat{y})^\top(y-\hat{y}) \\ &= \text{E}(y^\top y-2y^\top\hat{y}+\hat{y}^\top\hat{y}) \\ K &= y^\top y-2y^\top\hat{y}+\hat{y}^\top\hat{y} \\ \text{d}K &= \text{d}(-2y^\top(Ax+B)+(Ax+B)^\top(Ax+B)) \\ &= -2y^\top(\text{d}Ax+\text{d}B) +\text{d}(x^\top A^\top Ax+2B^\top Ax+B^\top B) \\ &= -2xy^\top\text{d}A-2y^\top\text{d}B+2xx^\top A^\top\text{d}A \\ &+ 2x^\top A^\top\text{d}B+2xB^\top\text{d}A+2B^\top\text{d}B \\ &= (-2xy^\top+2xx^\top A^\top+2xB^\top)\text{d}A +(-2y^\top+2x^\top A^\top+2B^\top)\text{d}B \\ \frac{\partial J}{\partial B} &= -2y+2Ax+2B =0\\ B &= \text{E}y-A\text{E}x \\ \frac{\partial J}{\partial A} &= -2yx^\top+2Axx^\top+2Bx^\top =0\\ \text{E}(Axx^\top) &= \text{E}(yx^\top-Bx^\top) \\ &= \text{E}(yx^\top-(\text{E}y-A\text{E}x)x^\top) \\ &= \text{E}yx^\top-\text{E}y\text{E}x^\top+A\text{E}x\text{E}x^\top \\ A &= (\text{E}yx^\top-\text{E}y\text{E}x^\top) (\text{E}(xx^\top)-\text{E}x\text{E}x^\top)^{-1} =C_{yx}C_{xx}^{-1} \\ \hat{y} &= C_{yx}C_{xx}^{-1}x+\text{E}y-C_{yx}C_{xx}^{-1}\text{E}x \\ &= \text{E}y+C_{yx}C_{xx}^{-1}(x-\text{E}x) \\ \end{aligned} y^​JKdK∂B∂J​B∂A∂J​E(Axx⊤)Ay^​​=Ax+B=E(y−y^​)⊤(y−y^​)=E(y⊤y−2y⊤y^​+y^​⊤y^​)=y⊤y−2y⊤y^​+y^​⊤y^​=d(−2y⊤(Ax+B)+(Ax+B)⊤(Ax+B))=−2y⊤(dAx+dB)+d(x⊤A⊤Ax+2B⊤Ax+B⊤B)=−2xy⊤dA−2y⊤dB+2xx⊤A⊤dA+2x⊤A⊤dB+2xB⊤dA+2B⊤dB=(−2xy⊤+2xx⊤A⊤+2xB⊤)dA+(−2y⊤+2x⊤A⊤+2B⊤)dB=−2y+2Ax+2B=0=Ey−AEx=−2yx⊤+2Axx⊤+2Bx⊤=0=E(yx⊤−Bx⊤)=E(yx⊤−(Ey−AEx)x⊤)=Eyx⊤−EyEx⊤+AExEx⊤=(Eyx⊤−EyEx⊤)(E(xx⊤)−ExEx⊤)−1=Cyx​Cxx−1​=Cyx​Cxx−1​x+Ey−Cyx​Cxx−1​Ex=Ey+Cyx​Cxx−1​(x−Ex)​
其中矩阵求导的部分见 矩阵求导术(上),其中的推导过程省略了迹的符号tr\text{tr}tr,注意分辨。另外因为3个符号d\text{d}d、E\text{E}E、tr\text{tr}tr均为线性算符,因此可交换计算顺序,推导中也省略了E\text{E}E。
上面推导中用到的一些矩阵微分与求迹公式详细推导如下:
d(B⊤B)=tr(dB⊤B+B⊤dB)=tr(dB⊤B)+tr(B⊤dB)=tr(B⊤dB)+tr(B⊤dB)=tr(2B⊤dB)d(x⊤A⊤Ax)=tr(x⊤d(A⊤A)x)=tr(x⊤2A⊤dAx)=tr(2xx⊤A⊤dA)d(B⊤Ax)=tr(dB⊤Ax+B⊤dAx)=tr(x⊤A⊤dB+xB⊤dA)\begin{aligned} \text{d}(B^\top B) &= \text{tr}(\text{d}B^\top B+B^\top\text{d}B) \\ &= \text{tr}(\text{d}B^\top B)+\text{tr}(B^\top\text{d}B) \\ &= \text{tr}(B^\top\text{d}B)+\text{tr}(B^\top\text{d}B) \\ &= \text{tr}(2B^\top\text{d}B) \\ \text{d}(x^\top A^\top Ax) &= \text{tr}(x^\top\text{d}(A^\top A)x) \\ &= \text{tr}(x^\top2A^\top\text{d}Ax) \\ &= \text{tr}(2xx^\top A^\top\text{d}A) \\ \text{d}(B^\top Ax) &= \text{tr}(\text{d}B^\top Ax+B^\top\text{d}Ax) \\ &= \text{tr}(x^\top A^\top\text{d}B+xB^\top\text{d}A) \\ \end{aligned} d(B⊤B)d(x⊤A⊤Ax)d(B⊤Ax)​=tr(dB⊤B+B⊤dB)=tr(dB⊤B)+tr(B⊤dB)=tr(B⊤dB)+tr(B⊤dB)=tr(2B⊤dB)=tr(x⊤d(A⊤A)x)=tr(x⊤2A⊤dAx)=tr(2xx⊤A⊤dA)=tr(dB⊤Ax+B⊤dAx)=tr(x⊤A⊤dB+xB⊤dA)​

投影定理(正交原理)

  当利用数据样本的线性组合来估计一个随机变量的时候,当估计值与真实值的误差和每一个数据样本正交时,该估计值是最佳估计量,即数据样本xxx与最佳估计量y^\hat{y}y^​满足
E[(y−y^)x⊤(n)]=0n=0,1,⋯,N−1\text{E}[(y-\hat{y})x^\top(n)]=0\quad n=0,1,\cdots,N-1 E[(y−y^​)x⊤(n)]=0n=0,1,⋯,N−1
  零均值的随机变量满足内积空间中的性质。定义变量的长度∣∣x∣∣=Ex2||x||=\sqrt{\text{E}x^2}∣∣x∣∣=Ex2​,变量xxx和yyy的内积(x,y)(x,y)(x,y)定义为E(xy)\text{E}(xy)E(xy),两个变量的夹角定义为相关系数ρ\rhoρ。当E(xy)=0\text{E}(xy)=0E(xy)=0时称变量xxx和yyy正交。
  均值不为零时,定义变量的长度∣∣x∣∣=Dx||x||=\sqrt{\text{D}x}∣∣x∣∣=Dx​,变量xxx和yyy的内积(x,y)(x,y)(x,y)定义为Cov(xy)\text{Cov}(xy)Cov(xy),两个变量的夹角定义为相关系数ρ\rhoρ。均值不为零的情况是我自己的猜测,很多资料都没有详细说明,但卡尔曼滤波的推导里全是均值非零的。
  将xxx和yyy对应成数据的形式,即x(0)x(0)x(0)是xxx,x(1)x(1)x(1)是yyy,x^(1∣0)\hat{x}(1|0)x^(1∣0)是y^\hat{y}y^​,得到
E[(x(1)−x^(1∣0))⊤x(0)]=0\text{E}[(x(1)-\hat{x}(1|0))^\top x(0)]=0 E[(x(1)−x^(1∣0))⊤x(0)]=0
其中
x~(k∣k−1)=x(k)−x^(k∣k−1)\widetilde{x}(k|k-1) = x(k)-\hat{x}(k|k-1) x(k∣k−1)=x(k)−x^(k∣k−1)
称为新息(innovation),与旧数据x(0)x(0)x(0)正交。
  标量形式证明:
E[x(y^−y)]=E[xEy+Cov(x,y)Dx(x2−xEx)−xy]=ExEy+Cov(x,y)Dx(Ex2−(Ex)2)−Exy=Cov(x,y)+ExEy−Exy=0\begin{aligned} \text{E}[x(\hat{y}-y)] &= \text{E}[x\text{E}y +\frac{\text{Cov}(x,y)}{\text{D}x}(x^2-x\text{E}x)-xy] \\ &= \text{E}x\text{E}y +\frac{\text{Cov}(x,y)}{\text{D}x}(\text{E}x^2-(\text{E}x)^2)-\text{E}xy \\ &= \text{Cov}(x,y)+\text{E}x\text{E}y-\text{E}xy=0 \end{aligned} E[x(y^​−y)]​=E[xEy+DxCov(x,y)​(x2−xEx)−xy]=ExEy+DxCov(x,y)​(Ex2−(Ex)2)−Exy=Cov(x,y)+ExEy−Exy=0​
  向量形式证明:
E[(y^−y)x⊤]=E[Eyx⊤+CyxCxx−1(x−Ex)x⊤−yx⊤]=EyEx⊤+E[CyxCxx−1xx⊤]−CyxCxx−1ExEx⊤−Eyx⊤=−Cyx+CyxCxx−1(Exx⊤−ExEx⊤)=−Cyx+CyxCxx−1Cxx=0\begin{aligned} \text{E}[(\hat{y}-y)x^\top] &= \text{E}[\text{E}yx^\top+C_{yx}C_{xx}^{-1}(x-\text{E}x)x^\top-yx^\top] \\ &= \text{E}y\text{E}x^\top+\text{E}[C_{yx}C_{xx}^{-1}xx^\top] -C_{yx}C_{xx}^{-1}\text{E}x\text{E}x^\top-\text{E}yx^\top \\ &= -C_{yx}+C_{yx}C_{xx}^{-1}(\text{E}xx^\top-\text{E}x\text{E}x^\top) \\ &= -C_{yx}+C_{yx}C_{xx}^{-1}C_{xx} \\ &= 0 \end{aligned} E[(y^​−y)x⊤]​=E[Eyx⊤+Cyx​Cxx−1​(x−Ex)x⊤−yx⊤]=EyEx⊤+E[Cyx​Cxx−1​xx⊤]−Cyx​Cxx−1​ExEx⊤−Eyx⊤=−Cyx​+Cyx​Cxx−1​(Exx⊤−ExEx⊤)=−Cyx​+Cyx​Cxx−1​Cxx​=0​
  由于E(y−y^)=0\text{E}(y-\hat{y})=0E(y−y^​)=0,所以均值非零时正交条件也恰好成立。由图可得投影定理的另一个公式
E[(y−y^)y^]=0\text{E}[(y-\hat{y})\hat{y}]=0 E[(y−y^​)y^​]=0
证明:
E[y^(y^−y)]=E[(Ey+kx−kEx)(Ey+kx−kEx−y)]=(Ey)2+kExEy−kExEy−(Ey)2+kExEy+k2Ex2−k2(Ex)2−kExy−kExEy−k2(Ex)2+k2(Ex)2+kExEy=k2Dx−kCov(x,y)=[Cov(x,y)]2[Dx]2Dx−Cov(x,y)DxCov(x,y)=0\begin{aligned} & \text{E}[\hat{y}(\hat{y}-y)] \\ =& \text{E}[(\text{E} y+k x-k \text{E} x)(\text{E} y+k x-k \text{E} x-y)] \\ =& (\text{E}y)^{2}+k\text{E}x\text{E}y-k\text{E}x\text{E}y-(\text{E}y)^{2}\\ &+ k\text{E}x\text{E}y+k^{2}Ex^2-k^{2}(\text{E}x)^{2}-k\text{E}xy \\ &- k\text{E}x\text{E}y-k^{2}(\text{E}x)^{2}+k^{2}(\text{E}x)^{2}+k\text{E}x\text{E}y \\ =& k^{2}\text{D}x-k\text{Cov}(x,y) \\ =& \frac{[\text{Cov}(x,y)]^2}{[\text{D}x]^2}\text{D}x-\frac{\text{Cov}(x,y)}{\text{D}x}\text{Cov}(x,y) \\ =&0 \end{aligned} =====​E[y^​(y^​−y)]E[(Ey+kx−kEx)(Ey+kx−kEx−y)](Ey)2+kExEy−kExEy−(Ey)2+kExEy+k2Ex2−k2(Ex)2−kExy−kExEy−k2(Ex)2+k2(Ex)2+kExEyk2Dx−kCov(x,y)[Dx]2[Cov(x,y)]2​Dx−DxCov(x,y)​Cov(x,y)0​
期望可加性
E[y1+y2∣x]=E[y1∣x]+E[y2∣x]\text{E}[y_1+y_2|x]=\text{E}[y_1|x]+\text{E}[y_2|x]E[y1​+y2​∣x]=E[y1​∣x]+E[y2​∣x]
独立条件可加性
若x1x_1x1​和x2x_2x2​独立,则
E[y∣x1,x2]=E[y∣x1]+E[y∣x2]−Ey\text{E}[y|x_1,x_2]=\text{E}[y|x_1]+\text{E}[y|x_2]-\text{E}y E[y∣x1​,x2​]=E[y∣x1​]+E[y∣x2​]−Ey
证明:
令x=[x1⊤,x2⊤]⊤x=[x_1^\top,x_2^\top]^\topx=[x1⊤​,x2⊤​]⊤,则
Cxx−1=[Cx1x1Cx1x2Cx2x1Cx2x2]−1=[Cx1x1−1OOCx2x2−1]Cyx=[Cyx1Cyx2]E(y∣x)=Ey+CyxCxx−1(x−Ex)=Ey+[Cyx1Cyx2][Cx1x1−1OOCx2x2−1][x1−Ex1x2−Ex2]=E[y∣x1]+E[y∣x2]−Ey\begin{aligned} C_{xx}^{-1} &= \left[\begin{matrix} C_{x_1x_1} & C_{x_1x_2} \\ C_{x_2x_1} & C_{x_2x_2} \end{matrix}\right]^{-1} = \left[\begin{matrix} C_{x_1x_1}^{-1} & O \\ O & C_{x_2x_2}^{-1} \end{matrix}\right] \\ C_{yx} &= \left[\begin{matrix} C_{yx_1} & C_{yx_2} \end{matrix}\right] \\ \text{E}(y|x) &= \text{E}y+C_{yx}C_{xx}^{-1}(x-\text{E}x) \\ &= \text{E}y+\left[\begin{matrix} C_{yx_1} & C_{yx_2} \end{matrix}\right] \left[\begin{matrix} C_{x_1x_1}^{-1} & O \\ O & C_{x_2x_2}^{-1} \end{matrix}\right] \left[\begin{matrix} x_1-\text{E}x_1 \\ x_2-\text{E}x_2 \end{matrix}\right] \\ &= \text{E}[y|x_1]+\text{E}[y|x_2]-\text{E}y \end{aligned} Cxx−1​Cyx​E(y∣x)​=[Cx1​x1​​Cx2​x1​​​Cx1​x2​​Cx2​x2​​​]−1=[Cx1​x1​−1​O​OCx2​x2​−1​​]=[Cyx1​​​Cyx2​​​]=Ey+Cyx​Cxx−1​(x−Ex)=Ey+[Cyx1​​​Cyx2​​​][Cx1​x1​−1​O​OCx2​x2​−1​​][x1​−Ex1​x2​−Ex2​​]=E[y∣x1​]+E[y∣x2​]−Ey​
非独立条件可加性(新息定理)
若x1x_1x1​和x2x_2x2​不独立,则根据投影定理取x2x_2x2​与x1x_1x1​独立的分量x~2\widetilde{x}_2x2​,满足
E[y∣x1,x2]=E[y∣x1,x~2]=E[y∣x1]+E[y∣x~2]−Ey\text{E}[y|x_1,x_2] =\text{E}[y|x_1,\widetilde{x}_2] =\text{E}[y|x_1]+\text{E}[y|\widetilde{x}_2]-\text{E}y E[y∣x1​,x2​]=E[y∣x1​,x2​]=E[y∣x1​]+E[y∣x2​]−Ey
其中x~2=x2−x^2=x2−E(x2∣x1)\widetilde{x}_2=x_2-\hat{x}_2=x_2-\text{E}(x_2|x_1)x2​=x2​−x^2​=x2​−E(x2​∣x1​),由投影定理,x1x_1x1​与x~2\widetilde{x}_2x2​独立,x~2\widetilde{x}_2x2​称为新息
证明:
(下面的每个式子是先求部分后求整体,为便于理解可以从下往上看)
(标量情况下,Cx1x2=Cx2x1C_{x_1x_2}=C_{x_2x_1}Cx1​x2​​=Cx2​x1​​)
Cov(y,x^2)=E[y(Ex2+Cov(x2,x1)Dx1(x1−Ex1))]−EyEx^2=EyEx2+Cov(x2,x1)Dx1(Ex1y−Ex1Ey)−EyEx2=Cx1x2Cyx1Dx1Cov(x2,x^2)=Ex2x^2−Ex2Ex^2=E[x2(Ex2+Cov(x2,x1)Dx1(x1−Ex1))]−(Ex2)2=Cov(x2,x1)Dx1(Ex2x1−Ex2Ex1)=Cx1x22Dx1Dx^2=D(Ex2+Cov(x2,x1)Dx1(x1−Ex1))=Cx1x22(Dx1)2Dx1=Cx1x22Dx1Dx~2=Dx2+Dx^2−2Cov(x2,x^2)=Dx2−Cx1x22Dx1E[y∣x1]+E[y∣x~2]−Ey=Ey+Cx1yDx1(x1−Ex1)+Cov(y,x~2)Dx~2(x~2−Ex~2)=OMIT+Cov(y,x2)−Cov(y,x^2)Dx~2(x2−x^2)=OMIT+Cyx2−Cx1x2Cyx1Dx1Dx2−Cx1x22Dx1(x2−E2−Cov(x2,x1)Dx1(x1−E1))=OMIT+Cyx2Dx1−Cx1x2Cyx1Dx1Dx2−Cx1x22(x2−E2−Cx1x2Dx1(x1−E1))=Ey+A(x1−Ex1)+B(x2−E2)\begin{aligned} \text{Cov}(y,\hat{x}_2) &= \text{E}[y\left(\text{E}x_2 +\frac{\text{Cov}(x_2,x_1)}{\text{D}x_1}(x_1-\text{E}x_1)\right)] -\text{E}y\text{E}\hat{x}_2 \\ &= \text{E}y\text{E}x_2+\frac{\text{Cov}(x_2,x_1)}{\text{D}x_1} (\text{E}x_1y-\text{E}x_1\text{E}y)-\text{E}y\text{E}x_2 \\ &= \frac{C_{x_1x_2}C_{yx_1}}{\text{D}x_1} \\ \text{Cov}(x_2,\hat{x}_2) &= \text{E}x_2\hat{x}_2-\text{E}x_2\text{E}\hat{x}_2 \\ &= \text{E}[x_2(\text{E}x_2+\frac{\text{Cov}(x_2,x_1)}{\text{D}x_1} (x_1-\text{E}x_1))]-(\text{E}x_2)^2 \\ &= \frac{\text{Cov}(x_2,x_1)}{\text{D}x_1}(\text{E}x_2x_1-\text{E}x_2\text{E}x_1) \\ &= \frac{C_{x_1x_2}^2}{\text{D}x_1} \\ \text{D}\hat{x}_2 &= \text{D}(\text{E}x_2+\frac{\text{Cov}(x_2,x_1)}{\text{D}x_1} (x_1-\text{E}x_1)) \\ &= \frac{C_{x_1x_2}^2}{(\text{D}x_1)^2}\text{D}x_1 =\frac{C_{x_1x_2}^2}{\text{D}x_1} \\ \text{D}\widetilde{x}_2 &= \text{D}x_2+\text{D}\hat{x}_2 -2\text{Cov}(x_2,\hat{x}_2) \\ &= \text{D}x_2-\frac{C_{x_1x_2}^2}{\text{D}x_1} \\ \text{E}[y|x_1]+\text{E}[y|\widetilde{x}_2]-\text{E}y &= \text{E}y +\frac{C_{x_1y}}{\text{D}x_1}(x_1-\text{E}x_1) +\frac{\text{Cov}(y,\widetilde{x}_2)}{\text{D}\widetilde{x}_2} (\widetilde{x}_2-\text{E}\widetilde{x}_2) \\ &= \text{OMIT}+\frac{\text{Cov}(y,x_2)-\text{Cov}(y,\hat{x}_2)} {\text{D}\widetilde{x}_2}(x_2-\hat{x}_2) \\ &= \text{OMIT}+\frac{C_{yx_2}-\displaystyle\frac{C_{x_1x_2}C_{yx_1}}{\text{D}x_1}} {\text{D}x_2-\displaystyle\frac{C_{x_1x_2}^2}{\text{D}x_1}}(x_2-\text{E}_2 -\frac{\text{Cov}(x_2,x_1)}{\text{D}x_1}(x_1-\text{E}_1)) \\ &= \text{OMIT}+\frac{C_{yx_2}\text{D}x_1-C_{x_1x_2}C_{yx_1}} {\text{D}x_1\text{D}x_2-C_{x_1x_2}^2}(x_2-\text{E}_2 -\frac{C_{x_1x_2}}{\text{D}x_1}(x_1-\text{E}_1)) \\ &= \text{E}y+A(x_1-\text{E}x_1) +B(x_2-\text{E}_2) \\ \end{aligned} Cov(y,x^2​)Cov(x2​,x^2​)Dx^2​Dx2​E[y∣x1​]+E[y∣x2​]−Ey​=E[y(Ex2​+Dx1​Cov(x2​,x1​)​(x1​−Ex1​))]−EyEx^2​=EyEx2​+Dx1​Cov(x2​,x1​)​(Ex1​y−Ex1​Ey)−EyEx2​=Dx1​Cx1​x2​​Cyx1​​​=Ex2​x^2​−Ex2​Ex^2​=E[x2​(Ex2​+Dx1​Cov(x2​,x1​)​(x1​−Ex1​))]−(Ex2​)2=Dx1​Cov(x2​,x1​)​(Ex2​x1​−Ex2​Ex1​)=Dx1​Cx1​x2​2​​=D(Ex2​+Dx1​Cov(x2​,x1​)​(x1​−Ex1​))=(Dx1​)2Cx1​x2​2​​Dx1​=Dx1​Cx1​x2​2​​=Dx2​+Dx^2​−2Cov(x2​,x^2​)=Dx2​−Dx1​Cx1​x2​2​​=Ey+Dx1​Cx1​y​​(x1​−Ex1​)+Dx2​Cov(y,x2​)​(x2​−Ex2​)=OMIT+Dx2​Cov(y,x2​)−Cov(y,x^2​)​(x2​−x^2​)=OMIT+Dx2​−Dx1​Cx1​x2​2​​Cyx2​​−Dx1​Cx1​x2​​Cyx1​​​​(x2​−E2​−Dx1​Cov(x2​,x1​)​(x1​−E1​))=OMIT+Dx1​Dx2​−Cx1​x2​2​Cyx2​​Dx1​−Cx1​x2​​Cyx1​​​(x2​−E2​−Dx1​Cx1​x2​​​(x1​−E1​))=Ey+A(x1​−Ex1​)+B(x2​−E2​)​
其中OMIT\text{OMIT}OMIT用于代替式
Ey+Cx1yDx1(x1−Ex1)\text{E}y+\frac{C_{x_1y}}{\text{D}x_1}(x_1-\text{E}x_1) Ey+Dx1​Cx1​y​​(x1​−Ex1​)
以及
B=Cyx2Dx1−Cx1x2Cyx1Dx1Dx2−Cx1x22A=Cx1yDx1−BCx1x2Dx1=Cx1yDx1(Dx1Dx2−Cx1x22)−Cx1x2Dx1(Cyx2Dx1−Cx1x2Cyx1)Dx1Dx2−Cx1x22=Cx1yDx2−Cx1x2Cyx2Dx1Dx2−Cx1x22\begin{aligned} B &= \frac{C_{yx_2}\text{D}x_1-C_{x_1x_2}C_{yx_1}} {\text{D}x_1\text{D}x_2-C_{x_1x_2}^2} \\ A &= \frac{C_{x_1y}}{\text{D}x_1}-B\frac{C_{x_1x_2}}{\text{D}x_1} \\ &= \frac{\displaystyle\frac{C_{x_1y}}{\text{D}x_1} (\text{D}x_1\text{D}x_2-C_{x_1x_2}^2) -\displaystyle\frac{C_{x_1x_2}}{\text{D}x_1} (C_{yx_2}\text{D}x_1-C_{x_1x_2}C_{yx_1})} {\text{D}x_1\text{D}x_2-C_{x_1x_2}^2} \\ &= \frac{C_{x_1y}\text{D}x_2-C_{x_1x_2}C_{yx_2}} {\text{D}x_1\text{D}x_2-C_{x_1x_2}^2} \\ \end{aligned} BA​=Dx1​Dx2​−Cx1​x2​2​Cyx2​​Dx1​−Cx1​x2​​Cyx1​​​=Dx1​Cx1​y​​−BDx1​Cx1​x2​​​=Dx1​Dx2​−Cx1​x2​2​Dx1​Cx1​y​​(Dx1​Dx2​−Cx1​x2​2​)−Dx1​Cx1​x2​​​(Cyx2​​Dx1​−Cx1​x2​​Cyx1​​)​=Dx1​Dx2​−Cx1​x2​2​Cx1​y​Dx2​−Cx1​x2​​Cyx2​​​​
与另一个式子
E(y∣x1,x2)=Ey+[Cyx1Cyx2][Dx1Cx1x2Cx2x1Dx2]−1[x1−Ex1x2−Ex2]=Ey+[Cyx1Cyx2]Dx1Dx2−Cx1x22[Dx2−Cx1x2−Cx1x2Dx1][x1−Ex1x2−Ex2]\begin{aligned} \text{E}(y|x_1,x_2) &= \text{E}y+\left[ \begin{matrix} C_{yx_1} & C_{yx_2} \end{matrix}\right] \left[\begin{matrix} \text{D}x_1 & C_{x_1x_2} \\ C_{x_2x_1} & \text{D}x_2 \end{matrix}\right]^{-1} \left[\begin{matrix} x_1-\text{E}x_1 \\ x_2-\text{E}x_2 \end{matrix}\right] \\ &= \text{E}y+\frac{\left[ \begin{matrix} C_{yx_1} & C_{yx_2} \end{matrix}\right]} {\text{D}x_1\text{D}x_2-C^2_{x_1x_2}} \left[\begin{matrix} \text{D}x_2 & -C_{x_1x_2} \\ -C_{x_1x_2} & \text{D}x_1 \end{matrix}\right] \left[\begin{matrix} x_1-\text{E}x_1 \\ x_2-\text{E}x_2 \end{matrix}\right] \\ \end{aligned} E(y∣x1​,x2​)​=Ey+[Cyx1​​​Cyx2​​​][Dx1​Cx2​x1​​​Cx1​x2​​Dx2​​]−1[x1​−Ex1​x2​−Ex2​​]=Ey+Dx1​Dx2​−Cx1​x2​2​[Cyx1​​​Cyx2​​​]​[Dx2​−Cx1​x2​​​−Cx1​x2​​Dx1​​][x1​−Ex1​x2​−Ex2​​]​
中对应的AAA和BBB相等。

高斯白噪声中的直流电平

  这个例子可以作为铺垫,有助于理解卡尔曼滤波各个公式的来源,比如x(k)x(k)x(k)和x(k−1)x(k-1)x(k−1)之间为什么还要有一个x^(k∣k−1)\hat{x}(k|k-1)x^(k∣k−1)等。考虑模型
x(k)=A+w(k)x(k)=A+w(k)x(k)=A+w(k)
其中AAA是待估计参数,w(k)w(k)w(k)是均值为0、方差为σ2\sigma^2σ2的高斯白噪声,x(k)x(k)x(k)是观测。这里需要注意的是,AAA也是一个先验随机变量,也就是说在测量AAA之前,预先猜测比方说AAA应该在10左右,大概率不超过7~13的范围,因此假设A∼N(10,1)A\sim N(10,1)A∼N(10,1),然后开始测量。
  一开始可以得到x^(0)=x(0)\hat{x}(0)=x(0)x^(0)=x(0),然后根据x(0)x(0)x(0)和x(1)x(1)x(1)预测k=1k=1k=1时刻的值E[x(1)∣x(1),x(0)]\text{E}[x(1)|x(1),x(0)]E[x(1)∣x(1),x(0)]时,需要用到联合正态分布的条件可加性,但由于x(1)x(1)x(1)和x(0)x(0)x(0)不独立,需要使用投影定理计算出两个独立的变量x(0)x(0)x(0)与x~(1∣0)\widetilde{x}(1|0)x(1∣0),进而计算x^(1)\hat{x}(1)x^(1),即
x^(1)=E[x(1)∣x(1),x(0)]=E[x(1)∣x(0),x~(1∣0)]=E[x(1)∣x(0)]+E[x(1)∣x~(1∣0)]−Ex(1)\begin{aligned} \hat{x}(1) &= \text{E}[x(1)|x(1),x(0)] \\ &= \text{E}[x(1)|x(0),\widetilde{x}(1|0)] \\ &= \text{E}[x(1)|x(0)]+\text{E}[x(1)|\widetilde{x}(1|0)]-\text{E}x(1) \end{aligned} x^(1)​=E[x(1)∣x(1),x(0)]=E[x(1)∣x(0),x(1∣0)]=E[x(1)∣x(0)]+E[x(1)∣x(1∣0)]−Ex(1)​
其中E[x(1)∣x(0)]=x^(1∣0)\text{E}[x(1)|x(0)]=\hat{x}(1|0)E[x(1)∣x(0)]=x^(1∣0),
x^(1∣0)=Ex(1)+Cov(x(1),x(0))Dx(0)(x(0)−Ex(0))=A+E(A+w(1))(A+w(0))−E(A+w(1))E(A+w(0))E(A+w(1))2−[E(A+w(1))]2(x(0)−A)=A\begin{aligned} \hat{x}(1|0) &= \text{E}x(1)+\frac{\text{Cov}(x(1),x(0))} {\text{D}x(0)}(x(0)-\text{E}x(0)) \\ &= A+\frac{\text{E}(A+w(1))(A+w(0))-\text{E}(A+w(1))\text{E}(A+w(0))} {\text{E}(A+w(1))^2-[\text{E}(A+w(1))]^2}(x(0)-A) \\ &= A \end{aligned} x^(1∣0)​=Ex(1)+Dx(0)Cov(x(1),x(0))​(x(0)−Ex(0))=A+E(A+w(1))2−[E(A+w(1))]2E(A+w(1))(A+w(0))−E(A+w(1))E(A+w(0))​(x(0)−A)=A​
此时式中就出现了x^(k∣k−1)\hat{x}(k|k-1)x^(k∣k−1),和另一个未知式E[x(1)∣x~(1∣0)]\text{E}[x(1)|\widetilde{x}(1|0)]E[x(1)∣x(1∣0)]。由零均值应用定理,
E[x(1)∣x~(1∣0)]=Ex(0)+Cov(x(1),x~(1∣0))Dx~(1∣0)(x~(1∣0)−Ex~(1∣0))\text{E}[x(1)|\widetilde{x}(1|0)] = \text{E}x(0)+\frac{\text{Cov}(x(1),\widetilde{x}(1|0))} {\text{D}\widetilde{x}(1|0)}(\widetilde{x}(1|0)-\text{E}\widetilde{x}(1|0)) E[x(1)∣x(1∣0)]=Ex(0)+Dx(1∣0)Cov(x(1),x(1∣0))​(x(1∣0)−Ex(1∣0))
其中
x~(1∣0)=x(1)−x^(1∣0)Ex~(1∣0)=E(x−x^)=0Dx~(1∣0)=E(x(1)−x^(1∣0))2=E(A+w(1))2=a2P(0)+σ2=P(1∣0)\begin{aligned} \widetilde{x}(1|0) &= x(1)-\hat{x}(1|0) \\ \text{E}\widetilde{x}(1|0) &= \text{E}(x-\hat{x}) = 0 \\ \text{D}\widetilde{x}(1|0) &= \text{E}(x(1)-\hat{x}(1|0))^2 \\ &= \text{E}(A+w(1))^2 \\ &= a^2P(0)+\sigma^2 \\ &= P(1|0) \end{aligned} x(1∣0)Ex(1∣0)Dx(1∣0)​=x(1)−x^(1∣0)=E(x−x^)=0=E(x(1)−x^(1∣0))2=E(A+w(1))2=a2P(0)+σ2=P(1∣0)​

卡尔曼滤波正式推导

标量形式
x^(k∣k−1)=E[x(k)∣Y(k−1)]=E[Ax(k−1)+Bu(k−1)+v(k−1)∣Y(k−1)]=AE[x(k−1)∣Y(k−1)]+BE[u(k−1)∣Y(k−1)]+E[v(k−1)∣Y(k−1)]=Ax^(k−1)+Bu(k−1)x~(k∣k−1)=x(k)−x^(k∣k−1)=[Ax(k−1)+Bu(k−1)+v(k−1)]−[Ax^(k−1)+Bu(k−1)]=Ax~(k−1)+v(k−1)y^(k∣k−1)=E[y(k)∣Y(k−1)]=E[Cx(k)+w(k−1)∣Y(k−1)]=Cx^(k∣k−1)\begin{aligned} \hat{x}(k|k-1) &= \text{E}[x(k)|Y(k-1)] \\ &= \text{E}[Ax(k-1)+Bu(k-1)+v(k-1)|Y(k-1)] \\ &= A\text{E}[x(k-1)|Y(k-1)]+B\text{E}[u(k-1)|Y(k-1)]+\text{E}[v(k-1)|Y(k-1)] \\ &= A\hat{x}(k-1)+Bu(k-1) \\ \widetilde{x}(k|k-1) &= x(k)-\hat{x}(k|k-1) \\ &= [Ax(k-1)+Bu(k-1)+v(k-1)]-[A\hat{x}(k-1)+Bu(k-1)] \\ &= A\widetilde{x}(k-1)+v(k-1) \\ \hat{y}(k|k-1) &= \text{E}[y(k)|Y(k-1)] \\ &= \text{E}[Cx(k)+w(k-1)|Y(k-1)] \\ &= C\hat{x}(k|k-1) \\ \end{aligned} x^(k∣k−1)x(k∣k−1)y^​(k∣k−1)​=E[x(k)∣Y(k−1)]=E[Ax(k−1)+Bu(k−1)+v(k−1)∣Y(k−1)]=AE[x(k−1)∣Y(k−1)]+BE[u(k−1)∣Y(k−1)]+E[v(k−1)∣Y(k−1)]=Ax^(k−1)+Bu(k−1)=x(k)−x^(k∣k−1)=[Ax(k−1)+Bu(k−1)+v(k−1)]−[Ax^(k−1)+Bu(k−1)]=Ax(k−1)+v(k−1)=E[y(k)∣Y(k−1)]=E[Cx(k)+w(k−1)∣Y(k−1)]=Cx^(k∣k−1)​
由条件可加性,
x^(k)=E[x(k)∣Y(k)]=E[x(k)∣Y(k−1),y(k)]=E[x(k)∣Y(k−1),y~(k∣k−1)]=E[x(k)∣Y(k−1)]+E[x(k)∣y~(k∣k−1)]−Ex(k)=x^(k∣k−1)+E[x(k)∣y~(k∣k−1)]−Ex(k)\begin{aligned} \hat{x}(k) &= \text{E}[x(k)|Y(k)] \\ &= \text{E}[x(k)|Y(k-1),y(k)] \\ &= \text{E}[x(k)|Y(k-1),\widetilde{y}(k|k-1)] \\ &= \text{E}[x(k)|Y(k-1)]+\text{E}[x(k)|\widetilde{y}(k|k-1)]-\text{E}x(k) \\ &= \hat{x}(k|k-1)+\text{E}[x(k)|\widetilde{y}(k|k-1)]-\text{E}x(k) \end{aligned} x^(k)​=E[x(k)∣Y(k)]=E[x(k)∣Y(k−1),y(k)]=E[x(k)∣Y(k−1),y​(k∣k−1)]=E[x(k)∣Y(k−1)]+E[x(k)∣y​(k∣k−1)]−Ex(k)=x^(k∣k−1)+E[x(k)∣y​(k∣k−1)]−Ex(k)​
由零均值应用定理,
E[x(k)∣y~(k∣k−1)]=Ex(k)+Cov(x(k),y~(k∣k−1))Dy~(k∣k−1)(y~(k∣k−1)−Ey~(k∣k−1))\text{E}[x(k)|\widetilde{y}(k|k-1)] = \text{E}x(k)+\frac{\text{Cov}(x(k),\widetilde{y}(k|k-1))} {\text{D}\widetilde{y}(k|k-1)}(\widetilde{y}(k|k-1)-\text{E}\widetilde{y}(k|k-1)) E[x(k)∣y​(k∣k−1)]=Ex(k)+Dy​(k∣k−1)Cov(x(k),y​(k∣k−1))​(y​(k∣k−1)−Ey​(k∣k−1))
其中
Ey~(k∣k−1)=E(y−y^)=0P(k∣k−1)=Dx~(k∣k−1)=E(ax~(k−1)+v(k−1))2=a2P(k−1)+V\begin{aligned} \text{E}\widetilde{y}(k|k-1) &= \text{E}(y-\hat{y}) = 0 \\ P(k|k-1) &= \text{D}\widetilde{x}(k|k-1) \\ &= \text{E}(a\widetilde{x}(k-1)+v(k-1))^2 \\ &= a^2P(k-1)+V \end{aligned} Ey​(k∣k−1)P(k∣k−1)​=E(y−y^​)=0=Dx(k∣k−1)=E(ax(k−1)+v(k−1))2=a2P(k−1)+V​

K(k)=Cov(x(k),y~(k∣k−1))Dy~(k∣k−1)K(k)=\frac{\text{Cov}(x(k),\widetilde{y}(k|k-1))} {\text{D}\widetilde{y}(k|k-1)} K(k)=Dy​(k∣k−1)Cov(x(k),y​(k∣k−1))​

E[x(k)∣y~(k∣k−1)]=Ex(k)+K(k)(y(k)−y^(k∣k−1))x^(k)=x^(k∣k−1)+E[x(k)∣y~(k∣k−1)]−Ex(k)=x^(k∣k−1)+K(k)(y(k)−Cx^(k∣k−1))\begin{aligned} \text{E}[x(k)|\widetilde{y}(k|k-1)] &= \text{E}x(k)+K(k)(y(k)-\hat{y}(k|k-1)) \\ \hat{x}(k)&= \hat{x}(k|k-1)+\text{E}[x(k)|\widetilde{y}(k|k-1)]-\text{E}x(k) \\ &= \hat{x}(k|k-1)+K(k)(y(k)-C\hat{x}(k|k-1)) \end{aligned} E[x(k)∣y​(k∣k−1)]x^(k)​=Ex(k)+K(k)(y(k)−y^​(k∣k−1))=x^(k∣k−1)+E[x(k)∣y​(k∣k−1)]−Ex(k)=x^(k∣k−1)+K(k)(y(k)−Cx^(k∣k−1))​
下面计算其中的K(k)K(k)K(k),
Dy~(k∣k−1)=D[Cx(k)+w(k)−Cx^(k∣k−1)]=C2D[x(k)−x^(k∣k−1)]+Dw(k)=C2P(k∣k−1)+WCov(x(k),y~(k∣k−1))=Cov(x(k),Cx(k)+w(k)−Cx^(k∣k−1))=CCov(x(k),x(k)−x^(k∣k−1))=CE[x(k)(x(k)−x^(k∣k−1))]−CEx(k)E[(x(k)−x^(k∣k−1))]=CE[(x(k)((x(k)−x^(k∣k−1))]=CE[(x(k)((x(k)−x^(k∣k−1))−x^(k∣k−1)((x(k)−x^(k∣k−1))]=CE[(x(k)−x^(k∣k−1))2]=CP(k∣k−1)K(k)=Cov(x(k),y~(k∣k−1))Dy~(k∣k−1)=CP(k∣k−1)C2P(k∣k−1)+W\begin{aligned} \text{D}\widetilde{y}(k|k-1) &= \text{D}[Cx(k)+w(k)-C\hat{x}(k|k-1)] \\ &= C^2\text{D}[x(k)-\hat{x}(k|k-1)]+\text{D}w(k) \\ &= C^2P(k|k-1)+W \\ \text{Cov}(x(k),\widetilde{y}(k|k-1)) &= \text{Cov}(x(k),Cx(k)+w(k)-C\hat{x}(k|k-1)) \\ &= C\text{Cov}(x(k),x(k)-\hat{x}(k|k-1)) \\ &= C\text{E}[x(k)(x(k)-\hat{x}(k|k-1))] -C\text{E}x(k)\text{E}[(x(k)-\hat{x}(k|k-1))] \\ &= C\text{E}[(x(k)((x(k)-\hat{x}(k|k-1))] \\ &= C\text{E}[(x(k)((x(k)-\hat{x}(k|k-1)) -\hat{x}(k|k-1)((x(k)-\hat{x}(k|k-1))] \\ &= C\text{E}[(x(k)-\hat{x}(k|k-1))^2] \\ &= CP(k|k-1) \\ K(k) &= \frac{\text{Cov}(x(k),\widetilde{y}(k|k-1))} {\text{D}\widetilde{y}(k|k-1)} \\ &= \frac{CP(k|k-1)}{C^2P(k|k-1)+W} \\ \end{aligned} Dy​(k∣k−1)Cov(x(k),y​(k∣k−1))K(k)​=D[Cx(k)+w(k)−Cx^(k∣k−1)]=C2D[x(k)−x^(k∣k−1)]+Dw(k)=C2P(k∣k−1)+W=Cov(x(k),Cx(k)+w(k)−Cx^(k∣k−1))=CCov(x(k),x(k)−x^(k∣k−1))=CE[x(k)(x(k)−x^(k∣k−1))]−CEx(k)E[(x(k)−x^(k∣k−1))]=CE[(x(k)((x(k)−x^(k∣k−1))]=CE[(x(k)((x(k)−x^(k∣k−1))−x^(k∣k−1)((x(k)−x^(k∣k−1))]=CE[(x(k)−x^(k∣k−1))2]=CP(k∣k−1)=Dy​(k∣k−1)Cov(x(k),y​(k∣k−1))​=C2P(k∣k−1)+WCP(k∣k−1)​​
其中显然CEx(k)E[(x(k)−x^(k∣k−1))]=0C\text{E}x(k)\text{E}[(x(k)-\hat{x}(k|k-1))]=0CEx(k)E[(x(k)−x^(k∣k−1))]=0,而x^(k∣k−1)((x(k)−x^(k∣k−1))]\hat{x}(k|k-1)((x(k)-\hat{x}(k|k-1))]x^(k∣k−1)((x(k)−x^(k∣k−1))]是由投影定理的下面两个公式中的第二个
E[y(x−x^)]=0,E[x^(x−x^)]=0\text{E}[y(x-\hat{x})]=0,\quad\text{E}[\hat{x}(x-\hat{x})]=0 E[y(x−x^)]=0,E[x^(x−x^)]=0
下面出于递推需要而计算P(k)P(k)P(k)
P(k)=D[x(k)−x^(k)]=D[x(k)−x^(k∣k−1)−K(k)(y(k)−Cx^(k∣k−1))]=D[x(k)−x^(k∣k−1)−K(k)C(x(k)−x^(k∣k−1))−K(k)w]=D[(1−K(k)C)x~−K(k)w]=(1−K(k)C)2P(k∣k−1)+K2(k)W=(WC2P(k∣k−1)+W)2P(k∣k−1)+(CP(k∣k−1)C2P(k∣k−1)+W)2W=W2P(k∣k−1)+C2P2(k∣k−1)W(C2P(k∣k−1)+W)2=WP(k∣k−1)C2P(k∣k−1)+W=(1−K(k)C)P(k∣k−1)\begin{aligned} P(k) &= \text{D}[x(k)-\hat{x}(k)] \\ &= \text{D}[x(k)-\hat{x}(k|k-1)-K(k)(y(k)-C\hat{x}(k|k-1))] \\ &= \text{D}[x(k)-\hat{x}(k|k-1)-K(k)C(x(k)-\hat{x}(k|k-1))-K(k)w] \\ &= \text{D}[(1-K(k)C)\widetilde{x}-K(k)w] \\ &= (1-K(k)C)^2P(k|k-1)+K^2(k)W \\ &= \left(\frac{W}{C^2P(k|k-1)+W}\right)^2P(k|k-1) +\left(\frac{CP(k|k-1)}{C^2P(k|k-1)+W}\right)^2W \\ &= \frac{W^2P(k|k-1)+C^2P^2(k|k-1)W}{(C^2P(k|k-1)+W)^2} \\ &= \frac{WP(k|k-1)}{C^2P(k|k-1)+W} \\ &= (1-K(k)C)P(k|k-1) \\ \end{aligned} P(k)​=D[x(k)−x^(k)]=D[x(k)−x^(k∣k−1)−K(k)(y(k)−Cx^(k∣k−1))]=D[x(k)−x^(k∣k−1)−K(k)C(x(k)−x^(k∣k−1))−K(k)w]=D[(1−K(k)C)x−K(k)w]=(1−K(k)C)2P(k∣k−1)+K2(k)W=(C2P(k∣k−1)+WW​)2P(k∣k−1)+(C2P(k∣k−1)+WCP(k∣k−1)​)2W=(C2P(k∣k−1)+W)2W2P(k∣k−1)+C2P2(k∣k−1)W​=C2P(k∣k−1)+WWP(k∣k−1)​=(1−K(k)C)P(k∣k−1)​
向量形式
x^(k∣k−1)=E[x(k)∣Y(k−1)]=E[Ax(k−1)+Bu(k−1)+v(k−1)∣Y(k−1)]=AE[x(k−1)∣Y(k−1)]+BE[u(k−1)∣Y(k−1)]+E[v(k−1)∣Y(k−1)]=Ax^(k−1)+Bu(k−1)\begin{aligned} \hat{x}(k|k-1) &= \text{E}[x(k)|Y(k-1)] \\ &= \text{E}[Ax(k-1)+Bu(k-1)+v(k-1)|Y(k-1)] \\ &= A\text{E}[x(k-1)|Y(k-1)]+B\text{E}[u(k-1)|Y(k-1)]+\text{E}[v(k-1)|Y(k-1)] \\ &= A\hat{x}(k-1)+Bu(k-1) \\ \end{aligned} x^(k∣k−1)​=E[x(k)∣Y(k−1)]=E[Ax(k−1)+Bu(k−1)+v(k−1)∣Y(k−1)]=AE[x(k−1)∣Y(k−1)]+BE[u(k−1)∣Y(k−1)]+E[v(k−1)∣Y(k−1)]=Ax^(k−1)+Bu(k−1)​

参考

  • 孙增圻. 计算机控制理论与应用[M]. 清华大学出版社, 2008.
  • StevenM.Kay, 罗鹏飞. 统计信号处理基础[M]. 电子工业出版社, 2014.
  • 赵树杰, 赵建勋. 信号检测与估计理论[M]. 电子工业出版社, 2013.
  • 卡尔曼滤波的推导过程详解

自用的卡尔曼滤波推导相关推荐

  1. 卡尔曼滤波推导思路总结

    推导思路一: (1) 混合高斯 一维高斯函数形式: (1)N(x,μ,σ)=1σ2πe−(x−μ)22σ2\mathcal N(x,\mu,\sigma)=\frac{1}{\sigma\sqrt{2 ...

  2. 主流卡尔曼滤波推导——KF、EKF、IKF、UKF、ESKF

    文章目录 一.高斯分布 1.1 高斯概率密度函数 1.2 联合高斯概率密度函数 1.3 高斯随机变量的线性变换 二.滤波器基本原理 2.1 贝叶斯滤波 三.卡尔曼滤波 3.1 普通卡尔曼滤波器 (KF ...

  3. 概率机器人总结——(扩展)卡尔曼滤波先实践再推导

    概率机器人总结--卡尔曼滤波先实践再推导 概率机器人总结--(扩展)卡尔曼滤波先实践再推导 (1)卡尔曼.扩展卡尔曼.粒子滤波到底什么关系? (2)实践--扩展卡尔曼滤波 (3)推导--卡尔曼滤波 ( ...

  4. 卡尔曼滤波的推导过程详解

    在学习卡尔曼滤波的时候看了很多博客讲这方面的知识,感觉都讲得表面的东西,无法了解它五个公式真正代表的过程,这篇博客我想以我的理解讲讲卡尔曼滤波. 首先我先写出卡尔曼滤波的具体过程,首先针对如下状态空间 ...

  5. 卡尔曼滤波(kalman filter)超详细推导

    1. 概率论相关知识 这一节主要回忆概率论的一些相关基础知识,包括全概率公式.贝叶斯公式.协方差矩阵.多维高斯分布等等,对这些熟悉的可以直接跳到第2节看贝叶斯滤波 1.1 条件概率 P(x,y)=P( ...

  6. 实践卡尔曼滤波--小球追踪

    目标追踪之卡尔曼滤波 最近在看Coursera的robotic learning,发现挺有意思的.这里算是做一下week 2的用卡尔曼滤波来做机器人目标追踪的笔记. 这篇小文章主要有两个内容 怎样用一 ...

  7. 【多源融合】自适应卡尔曼滤波的多种形式:遗忘卡尔曼滤波、渐消记忆卡尔曼滤波和自适应卡尔曼滤波

    自适应卡尔曼滤波的多种形式 在卡尔曼滤波量测更新过程中,按照平差中的数学模型分为函数模型和随机模型,那么动力学方法和观测方程均为函数模型,P和R矩阵的确定则为随机模型的建立. 对于P矩阵来说,其核心思 ...

  8. 扩展卡尔曼滤波建模及应用

    一.公式 1.卡尔曼滤波 A:状态向量   F:状态转移矩阵   P:状态协方差矩阵   Q:过程噪声矩阵   Z:测量向量   H:测量矩阵   R:测量噪声矩阵 本质上讲,建立卡尔曼滤波数学模型的 ...

  9. 【EKF】卡尔曼滤波原理

    前言 本篇是最近在学习云台以及姿态融合时,想学习一下卡尔曼滤波的原理,基于 DR_CAN 老师的卡尔曼滤波的视频做的笔记,基本上是按照 DR_CAN 老师的思路自己推导计算了一遍,推荐还是看一下原视频 ...

最新文章

  1. 简化可视SLAM应用程序的开发
  2. MySQL-5.5.28编译安装
  3. javaScript通用数据类型校验
  4. mysql kill_Mysql使用kill命令解决死锁问题(杀死某条正在执行的sql语句)
  5. gitlab mr wip 怎么弄成_基于GitLab的工作流程设计
  6. 贾跃亭:FF未来主义者们最终所要创造的社会价值 一定会得到资本市场的认可...
  7. php 地图 显示 客户位置_网站SEO优化_PHP程序网站怎么做优化 _SEO优化|SEO推广|SEO服务|上海SEO...
  8. php视图最佳实践,PHP 的最佳实践
  9. CentOS下openssh版本降级
  10. 一分钟了解阿里云产品:专有网络VPC五大热点技术问题分析
  11. 灵灵兔人事考勤薪资软件系统kqwins:连接失败
  12. Daz3d:如何使用景深
  13. Spring整合Quartz实现动态定时器
  14. 聊聊在小米实习的日子
  15. Swing批量重命名并导出excel
  16. Android studio创建虚拟设备
  17. 使vue组件居中、中下
  18. EndNote中英文混排
  19. 致敬最美逆行者网页设计作品 大学生抗疫感动专题网页设计作业模板 疫情感动人物静态HTML网页模板下载
  20. ESP8266+MQTT控制继电器到阿里云

热门文章

  1. oracle经典查询
  2. 《吞食九州》隐私政策
  3. 智能工厂虚拟仿真软件加速工厂数字化转型
  4. 嵌入式系统stm32 跑马灯实验
  5. 谷歌浏览器自定义视频的倍速播放
  6. 武侠世界(天龙八部)源码 vs2015编译 记录
  7. QQ分享总是返回走onCancel()方法以及分享到空间 shareToQzone()没有反应
  8. 资深java工程师简历
  9. 金融信贷风控实战(一)
  10. 使用python调用minitab_Minitab中的机器学习和Python集成