(一)C语言——没有类的概念

(二)C++

C++ 在 C 语言的基础上增加了面向对象编程,C++ 支持面向对象程序设计。类是 C++ 的核心特性,通常被称为用户定义的类型。

类用于指定对象的形式,它包含了数据表示法和用于处理数据的方法。类中的数据和方法称为类的成员。函数在一个类中被称为类的成员。

2.1类的定义

定义一个类,本质上是定义一个数据类型的蓝图。这实际上并没有定义任何数据,但它定义了类的名称意味着什么,也就是说,它定义了类的对象包括了什么,以及可以在这个对象上执行哪些操作。

类定义是以关键字 class 开头,后跟类的名称。类的主体是包含在一对花括号中。类定义后必须跟着一个分号或一个声明列表。例如,我们使用关键字 class 定义 Box 数据类型,如下所示:

class Box
{public:double length;   // 盒子的长度double breadth;  // 盒子的宽度double height;   // 盒子的高度
};

键字 public 确定了类成员的访问属性。在类对象作用域内,公共成员在类的外部是可访问的。您也可以指定类的成员为 private 或 protected;

2.2对象的定义

类提供了对象的蓝图,所以基本上,对象是根据类来创建的。声明类的对象,就像声明基本类型的变量一样。

​Box Box1;          // 声明 Box1,类型为 Box
Box Box2;          // 声明 Box2,类型为 Box

2.3 访问数据成员

#include <iostream>using namespace std;class Box
{public:double length;   // 长度double breadth;  // 宽度double height;   // 高度// 成员函数声明double get(void);void set( double len, double bre, double hei );
};
// 成员函数定义
double Box::get(void)
{return length * breadth * height;
}void Box::set( double len, double bre, double hei)
{length = len;breadth = bre;height = hei;
}
int main( )
{Box Box1;        // 声明 Box1,类型为 BoxBox Box2;        // 声明 Box2,类型为 BoxBox Box3;        // 声明 Box3,类型为 Boxdouble volume = 0.0;     // 用于存储体积// box 1 详述Box1.height = 5.0; Box1.length = 6.0; Box1.breadth = 7.0;// box 2 详述Box2.height = 10.0;Box2.length = 12.0;Box2.breadth = 13.0;// box 1 的体积volume = Box1.height * Box1.length * Box1.breadth;cout << "Box1 的体积:" << volume <<endl;// box 2 的体积volume = Box2.height * Box2.length * Box2.breadth;cout << "Box2 的体积:" << volume <<endl;// box 3 详述Box3.set(16.0, 8.0, 12.0); volume = Box3.get(); cout << "Box3 的体积:" << volume <<endl;return 0;
}

需要注意的是,私有的成员和受保护的成员不能使用直接成员访问运算符 (.) 来直接访问

2.4类成员函数

定义在类之内

class Box
{public:double length;      // 长度double breadth;     // 宽度double height;      // 高度double getVolume(void){return length * breadth * height;}
};

定义在类之外

也可以在类的外部使用范围解析运算符 :: 定义该函数。

double Box::getVolume(void)
{return length * breadth * height;
}

综合应用

#include <iostream>using namespace std;class Box
{public:double length;         // 长度double breadth;        // 宽度double height;         // 高度// 成员函数声明double getVolume(void);void setLength( double len );void setBreadth( double bre );void setHeight( double hei );
};// 成员函数定义
double Box::getVolume(void)
{return length * breadth * height;
}void Box::setLength( double len )
{length = len;
}void Box::setBreadth( double bre )
{breadth = bre;
}void Box::setHeight( double hei )
{height = hei;
}// 程序的主函数
int main( )
{Box Box1;                // 声明 Box1,类型为 BoxBox Box2;                // 声明 Box2,类型为 Boxdouble volume = 0.0;     // 用于存储体积// box 1 详述Box1.setLength(6.0); Box1.setBreadth(7.0); Box1.setHeight(5.0);// box 2 详述Box2.setLength(12.0); Box2.setBreadth(13.0); Box2.setHeight(10.0);// box 1 的体积volume = Box1.getVolume();cout << "Box1 的体积:" << volume <<endl;// box 2 的体积volume = Box2.getVolume();cout << "Box2 的体积:" << volume <<endl;return 0;
}

2.5类成员函数

数据封装是面向对象编程的一个重要特点,它防止函数直接访问类类型的内部成员。类成员的访问限制是通过在类主体内部对各个区域标记 public、private、protected 来指定的。关键字 public、private、protected 称为访问修饰符。

class Base {public:// 公有成员protected:// 受保护成员private:// 私有成员};

(1)公有(public)成员

公有成员在程序中类的外部是可访问的。您可以不使用任何成员函数来设置和获取公有变量的值,如下所示:

#include <iostream>using namespace std;class Line
{public:double length;void setLength( double len );double getLength( void );
};// 成员函数定义
double Line::getLength(void)
{return length ;
}void Line::setLength( double len )
{length = len;
}// 程序的主函数
int main( )
{Line line;// 设置长度line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl;// 不使用成员函数设置长度line.length = 10.0; // OK: 因为 length 是公有的cout << "Length of line : " << line.length <<endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Length of line : 6
Length of line : 10

(2)私有(private)成员

私有成员变量或函数在类的外部是不可访问的,甚至是不可查看的。只有类和友元函数可以访问私有成员。默认情况下,类的所有成员都是私有的。

#include <iostream>using namespace std;class Box
{public:double length;void setWidth( double wid );double getWidth( void );private:double width;
};// 成员函数定义
double Box::getWidth(void)
{return width ;
}void Box::setWidth( double wid )
{width = wid;
}// 程序的主函数
int main( )
{Box box;// 不使用成员函数设置长度box.length = 10.0; // OK: 因为 length 是公有的cout << "Length of box : " << box.length <<endl;// 不使用成员函数设置宽度// box.width = 10.0; // Error: 因为 width 是私有的box.setWidth(10.0);  // 使用成员函数设置宽度cout << "Width of box : " << box.getWidth() <<endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Length of box : 10
Width of box : 10

(3)protected(受保护)成员

protected(受保护)成员变量或函数与私有成员十分相似,但有一点不同,protected(受保护)成员在派生类(即子类)中是可访问的。

#include <iostream>
using namespace std;class Box
{protected:double width;
};class SmallBox:Box // SmallBox 是派生类
{public:void setSmallWidth( double wid );double getSmallWidth( void );
};// 子类的成员函数
double SmallBox::getSmallWidth(void)
{return width ;
}void SmallBox::setSmallWidth( double wid )
{width = wid;
}// 程序的主函数
int main( )
{SmallBox box;// 使用成员函数设置宽度box.setSmallWidth(5.0);cout << "Width of box : "<< box.getSmallWidth() << endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Width of box : 5

(3)继承

有public, protected, private三种继承方式,它们相应地改变了基类成员的访问属性。

  • 1.public 继承:基类 public 成员,protected 成员,private 成员的访问属性在派生类中分别变成:public, protected, private

  • 2.protected 继承:基类 public 成员,protected 成员,private 成员的访问属性在派生类中分别变成:protected, protected, private

  • 3.private 继承:基类 public 成员,protected 成员,private 成员的访问属性在派生类中分别变成:private, private, private

但无论哪种继承方式,上面两点都没有改变:

  • 1.private 成员只能被本类成员(类内)和友元访问,不能被派生类访问;

  • 2.protected 成员可以被派生类访问。

继承方式 基类的public成员 基类的protected成员 基类的private成员 继承引起的访问控制关系变化概括
public继承 仍为public成员 仍为protected成员 不可见 基类的非私有成员在子类的访问属性不变
protected继承 变为protected成员 变为protected成员 不可见 基类的非私有成员都为子类的保护成员
private继承 变为private成员 变为private成员 不可见 基类中的非私有成员都称为子类的私有成员

(4)public 继承

#include<iostream>
#include<assert.h>
using namespace std;class A{
public:int a;A(){a1 = 1;a2 = 2;a3 = 3;a = 4;}void fun(){cout << a << endl;    //正确cout << a1 << endl;   //正确cout << a2 << endl;   //正确cout << a3 << endl;   //正确}
public:int a1;
protected:int a2;
private:int a3;
};
class B : public A{
public:int a;B(int i){A();a = i;}void fun(){cout << a << endl;       //正确,public成员cout << a1 << endl;       //正确,基类的public成员,在派生类中仍是public成员。cout << a2 << endl;       //正确,基类的protected成员,在派生类中仍是protected可以被派生类访问。cout << a3 << endl;       //错误,基类的private成员不能被派生类访问。}
};
int main(){B b(10);cout << b.a << endl;cout << b.a1 << endl;   //正确cout << b.a2 << endl;   //错误,类外不能访问protected成员cout << b.a3 << endl;   //错误,类外不能访问private成员system("pause");return 0;
}

(5)protected 继承

#include<iostream>
#include<assert.h>
using namespace std;
class A{
public:int a;A(){a1 = 1;a2 = 2;a3 = 3;a = 4;}void fun(){cout << a << endl;    //正确cout << a1 << endl;   //正确cout << a2 << endl;   //正确cout << a3 << endl;   //正确}
public:int a1;
protected:int a2;
private:int a3;
};
class B : protected A{
public:int a;B(int i){A();a = i;}void fun(){cout << a << endl;       //正确,public成员。cout << a1 << endl;       //正确,基类的public成员,在派生类中变成了protected,可以被派生类访问。cout << a2 << endl;       //正确,基类的protected成员,在派生类中还是protected,可以被派生类访问。cout << a3 << endl;       //错误,基类的private成员不能被派生类访问。}
};
int main(){B b(10);cout << b.a << endl;       //正确。public成员cout << b.a1 << endl;      //错误,protected成员不能在类外访问。cout << b.a2 << endl;      //错误,protected成员不能在类外访问。cout << b.a3 << endl;      //错误,private成员不能在类外访问。system("pause");return 0;
}

(6)private 继承

#include<iostream>
#include<assert.h>
using namespace std;
class A{
public:int a;A(){a1 = 1;a2 = 2;a3 = 3;a = 4;}void fun(){cout << a << endl;    //正确cout << a1 << endl;   //正确cout << a2 << endl;   //正确cout << a3 << endl;   //正确}
public:int a1;
protected:int a2;
private:int a3;
};
class B : private A{
public:int a;B(int i){A();a = i;}void fun(){cout << a << endl;       //正确,public成员。cout << a1 << endl;       //正确,基类public成员,在派生类中变成了private,可以被派生类访问。cout << a2 << endl;       //正确,基类的protected成员,在派生类中变成了private,可以被派生类访问。cout << a3 << endl;       //错误,基类的private成员不能被派生类访问。}
};
int main(){B b(10);cout << b.a << endl;       //正确。public成员cout << b.a1 << endl;      //错误,private成员不能在类外访问。cout << b.a2 << endl;      //错误, private成员不能在类外访问。cout << b.a3 << endl;      //错误,private成员不能在类外访问。system("pause");return 0;
}

2.6类构造函数 & 析构函数

类的构造函数是类的一种特殊的成员函数,它会在每次创建类的新对象时执行。

构造函数的名称与类的名称是完全相同的,并且不会返回任何类型,也不会返回 void。构造函数可用于为某些成员变量设置初始值。在定义对象的时候就执行该函数。

#include <iostream>using namespace std;class Line
{public:void setLength( double len );double getLength( void );Line();  // 这是构造函数private:double length;
};// 成员函数定义,包括构造函数
Line::Line(void)
{cout << "Object is being created" << endl;
}void Line::setLength( double len )
{length = len;
}double Line::getLength( void )
{return length;
}
// 程序的主函数
int main( )
{Line line;// 设置长度line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Object is being created
Length of line : 6

(1)带参数的构造函数

默认的构造函数没有任何参数,但如果需要,构造函数也可以带有参数。这样在创建对象时就会给对象赋初始值。

#include <iostream>using namespace std;class Line
{public:void setLength( double len );double getLength( void );Line(double len);  // 这是构造函数private:double length;
};// 成员函数定义,包括构造函数
Line::Line( double len)
{cout << "Object is being created, length = " << len << endl;length = len;
}void Line::setLength( double len )
{length = len;
}double Line::getLength( void )
{return length;
}
// 程序的主函数
int main( )
{Line line(10.0);// 获取默认设置的长度cout << "Length of line : " << line.getLength() <<endl;// 再次设置长度line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Object is being created, length = 10
Length of line : 10
Length of line : 6

(2)使用初始化列表来初始化字段

使用初始化列表来初始化字段:

Line::Line( double len): length(len)
{cout << "Object is being created, length = " << len << endl;
}

上面的语法等同于如下语法:

Line::Line( double len)
{length = len;cout << "Object is being created, length = " << len << endl;
}

假设有一个类 C,具有多个字段 X、Y、Z 等需要进行初始化,同理地,您可以使用上面的语法,只需要在不同的字段使用逗号进行分隔,如下所示:

C::C( double a, double b, double c): X(a), Y(b), Z(c)
{....
}

2.7 类的析构函数

类的析构函数是类的一种特殊的成员函数,它会在每次删除所创建的对象时执行。

析构函数的名称与类的名称是完全相同的,只是在前面加了个波浪号(~)作为前缀,它不会返回任何值,也不能带有任何参数。析构函数有助于在跳出程序(比如关闭文件、释放内存等)前释放资源。

#include <iostream>using namespace std;class Line
{public:void setLength( double len );double getLength( void );Line();   // 这是构造函数声明~Line();  // 这是析构函数声明private:double length;
};// 成员函数定义,包括构造函数
Line::Line(void)
{cout << "Object is being created" << endl;
}
Line::~Line(void)
{cout << "Object is being deleted" << endl;
}void Line::setLength( double len )
{length = len;
}double Line::getLength( void )
{return length;
}
// 程序的主函数
int main( )
{Line line;// 设置长度line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl;return 0;
}

2.7 拷贝构造函数

拷贝构造函数是一种特殊的构造函数,它在创建对象时,是使用同一类中之前创建的对象来初始化新创建的对象。拷贝构造函数通常用于:

  • 通过使用另一个同类型的对象来初始化新创建的对象。

  • 复制对象把它作为参数传递给函数。

  • 复制对象,并从函数返回这个对象。

如果在类中没有定义拷贝构造函数,编译器会自行定义一个。如果类带有指针变量,并有动态内存分配,则它必须有一个拷贝构造函数。

#include <iostream>using namespace std;class Line
{public:int getLength( void );Line( int len );             // 简单的构造函数Line( const Line &obj);      // 拷贝构造函数~Line();                     // 析构函数private:int *ptr;
};// 成员函数定义,包括构造函数
Line::Line(int len)
{cout << "调用构造函数" << endl;// 为指针分配内存ptr = new int;*ptr = len;
}Line::Line(const Line &obj)
{cout << "调用拷贝构造函数并为指针 ptr 分配内存" << endl;ptr = new int;*ptr = *obj.ptr; // 拷贝值
}Line::~Line(void)
{cout << "释放内存" << endl;delete ptr;
}
int Line::getLength( void )
{return *ptr;
}void display(Line obj)
{cout << "line 大小 : " << obj.getLength() <<endl;
}// 程序的主函数
int main( )
{Line line(10);display(line);return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

调用构造函数
调用拷贝构造函数并为指针 ptr 分配内存
line 大小 : 10
释放内存
释放内存

通过使用已有的同类型的对象来初始化新创建的对象:

#include <iostream>using namespace std;class Line
{public:int getLength( void );Line( int len );             // 简单的构造函数Line( const Line &obj);      // 拷贝构造函数~Line();                     // 析构函数private:int *ptr;
};// 成员函数定义,包括构造函数
Line::Line(int len)
{cout << "调用构造函数" << endl;// 为指针分配内存ptr = new int;*ptr = len;
}Line::Line(const Line &obj)
{cout << "调用拷贝构造函数并为指针 ptr 分配内存" << endl;ptr = new int;*ptr = *obj.ptr; // 拷贝值
}Line::~Line(void)
{cout << "释放内存" << endl;delete ptr;
}
int Line::getLength( void )
{return *ptr;
}void display(Line obj)
{cout << "line 大小 : " << obj.getLength() <<endl;
}// 程序的主函数
int main( )
{Line line1(10);Line line2 = line1; // 这里也调用了拷贝构造函数display(line1);display(line2);return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

调用构造函数
调用拷贝构造函数并为指针 ptr 分配内存
调用拷贝构造函数并为指针 ptr 分配内存
line 大小 : 10
释放内存
调用拷贝构造函数并为指针 ptr 分配内存
line 大小 : 10
释放内存
释放内存
释放内存

2.8 友元函数

#include <iostream>using namespace std;class Box
{double width;
public://声明友元函数friend void printWidth( Box box );void setWidth( double wid );
};// 成员函数定义
void Box::setWidth( double wid )
{width = wid;
}// 请注意:printWidth() 不是任何类的成员函数
void printWidth( Box box )
{/* 因为 printWidth() 是 Box 的友元,它可以直接访问该类的任何成员 */cout << "Width of box : " << box.width <<endl;
}// 程序的主函数
int main( )
{Box box;// 使用成员函数设置宽度box.setWidth(10.0);// 使用友元函数输出宽度printWidth( box );return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Width of box : 10

2.9 内联函数

C++ 内联函数是通常与类一起使用。如果一个函数是内联的,那么在编译时,编译器会把该函数的代码副本放置在每个调用该函数的地方。

对内联函数进行任何修改,都需要重新编译函数的所有客户端,因为编译器需要重新更换一次所有的代码,否则将会继续使用旧的函数。

如果想把一个函数定义为内联函数,则需要在函数名前面放置关键字 inline,在调用函数之前需要对函数进行定义。如果已定义的函数多于一行,编译器会忽略 inline 限定符。

在类定义中的定义的函数都是内联函数,即使没有使用 inline 说明符。

#include <iostream>using namespace std;inline int Max(int x, int y)
{return (x > y)? x : y;
}// 程序的主函数
int main( )
{cout << "Max (20,10): " << Max(20,10) << endl;cout << "Max (0,200): " << Max(0,200) << endl;cout << "Max (100,1010): " << Max(100,1010) << endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Max (20,10): 20
Max (0,200): 200
Max (100,1010): 1010

2.10 this 指针

在 C++ 中,每一个对象都能通过 this 指针来访问自己的地址。this 指针是所有成员函数的隐含参数。因此,在成员函数内部,它可以用来指向调用对象。

友元函数没有 this 指针,因为友元不是类的成员。只有成员函数才有 this 指针。t

#include <iostream>using namespace std;class Box
{public:// 构造函数定义Box(double l=2.0, double b=2.0, double h=2.0){cout <<"Constructor called." << endl;length = l;breadth = b;height = h;}double Volume(){return length * breadth * height;}int compare(Box box){return this->Volume() > box.Volume();}private:double length;     // Length of a boxdouble breadth;    // Breadth of a boxdouble height;     // Height of a box
};int main(void)
{Box Box1(3.3, 1.2, 1.5);    // Declare box1Box Box2(8.5, 6.0, 2.0);    // Declare box2if(Box1.compare(Box2)){cout << "Box2 is smaller than Box1" <<endl;}else{cout << "Box2 is equal to or larger than Box1" <<endl;}return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Constructor called.
Constructor called.
Box2 is equal to or larger than Box1

成员函数通过一个名为 this 的额外隐式参数来访问调用它的那个对象,当我们调用一个成员函数时,用请求该函数的对象地址初始化 this。this 指针的类型可理解为 Box*

2.11指向类的指针

一个指向 C++ 类的指针与指向结构的指针类似,访问指向类的指针的成员,需要使用成员访问运算符 ->,就像访问指向结构的指针一样。与所有的指针一样,您必须在使用指针之前,对指针进行初始化。

#include <iostream>using namespace std;class Box
{public:// 构造函数定义Box(double l=2.0, double b=2.0, double h=2.0){cout <<"Constructor called." << endl;length = l;breadth = b;height = h;}double Volume(){return length * breadth * height;}private:double length;     // Length of a boxdouble breadth;    // Breadth of a boxdouble height;     // Height of a box
};int main(void)
{Box Box1(3.3, 1.2, 1.5);    // Declare box1Box Box2(8.5, 6.0, 2.0);    // Declare box2Box *ptrBox;                // Declare pointer to a class.// 保存第一个对象的地址ptrBox = &Box1;// 现在尝试使用成员访问运算符来访问成员cout << "Volume of Box1: " << ptrBox->Volume() << endl;// 保存第二个对象的地址ptrBox = &Box2;// 现在尝试使用成员访问运算符来访问成员cout << "Volume of Box2: " << ptrBox->Volume() << endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Constructor called.
Constructor called.
Volume of Box1: 5.94
Volume of Box2: 102

2.12类的静态成员

我们可以使用 static 关键字来把类成员定义为静态的。当我们声明类的成员为静态时,这意味着无论创建多少个类的对象,静态成员都只有一个副本。

静态成员在类的所有对象中是共享的。如果不存在其他的初始化语句,在创建第一个对象时,所有的静态数据都会被初始化为零。我们不能把静态成员的初始化放置在类的定义中,但是可以在类的外部通过使用范围解析运算符 :: 来重新声明静态变量从而对它进行初始化。

#include <iostream>using namespace std;class Box
{public:static int objectCount;// 构造函数定义Box(double l=2.0, double b=2.0, double h=2.0){cout <<"Constructor called." << endl;length = l;breadth = b;height = h;// 每次创建对象时增加 1objectCount++;}double Volume(){return length * breadth * height;}private:double length;     // 长度double breadth;    // 宽度double height;     // 高度
};// 初始化类 Box 的静态成员
int Box::objectCount = 0;int main(void)
{Box Box1(3.3, 1.2, 1.5);    // 声明 box1Box Box2(8.5, 6.0, 2.0);    // 声明 box2// 输出对象的总数cout << "Total objects: " << Box::objectCount << endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Constructor called.
Constructor called.
Total objects: 2

2.13静态成员函数

如果把函数成员声明为静态的,就可以把函数与类的任何特定对象独立开来。静态成员函数即使在类对象不存在的情况下也能被调用,静态函数只要使用类名加范围解析运算符 :: 就可以访问。

静态成员函数只能访问静态成员数据、其他静态成员函数和类外部的其他函数。

静态成员函数有一个类范围,他们不能访问类的 this 指针。您可以使用静态成员函数来判断类的某些对象是否已被创建。

静态成员函数与普通成员函数的区别:

  • 静态成员函数没有 this 指针,只能访问静态成员(包括静态成员变量和静态成员函数)。
  • 普通成员函数有 this 指针,可以访问类中的任意成员;而静态成员函数没有 this 指针。
#include <iostream>using namespace std;class Box
{public:static int objectCount;// 构造函数定义Box(double l=2.0, double b=2.0, double h=2.0){cout <<"Constructor called." << endl;length = l;breadth = b;height = h;// 每次创建对象时增加 1objectCount++;}double Volume(){return length * breadth * height;}static int getCount(){return objectCount;}private:double length;     // 长度double breadth;    // 宽度double height;     // 高度
};// 初始化类 Box 的静态成员
int Box::objectCount = 0;int main(void)
{// 在创建对象之前输出对象的总数cout << "Inital Stage Count: " << Box::getCount() << endl;Box Box1(3.3, 1.2, 1.5);    // 声明 box1Box Box2(8.5, 6.0, 2.0);    // 声明 box2// 在创建对象之后输出对象的总数cout << "Final Stage Count: " << Box::getCount() << endl;return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Inital Stage Count: 0
Constructor called.
Constructor called.
Final Stage Count: 2

(三)C#

3.6 类

当你定义一个类时,你定义了一个数据类型的蓝图。这实际上并没有定义任何的数据,但它定义了类的名称意味着什么,也就是说,类的对象由什么组成及在这个对象上可执行什么操作。对象是类的实例构成类的方法和变量称为类的成员。类——方法——>实例对象

(1)定义和使用

using System;
namespace BoxApplication
{class Box{public double length;   // 长度public double breadth;  // 宽度public double height;   // 高度}class Boxtester{static void Main(string[] args){Box Box1 = new Box();        // 声明 Box1,类型为 BoxBox Box2 = new Box();        // 声明 Box2,类型为 Boxdouble volume = 0.0;         // 体积// Box1 详述Box1.height = 5.0;Box1.length = 6.0;Box1.breadth = 7.0;// Box2 详述Box2.height = 10.0;Box2.length = 12.0;Box2.breadth = 13.0;// Box1 的体积volume = Box1.height * Box1.length * Box1.breadth;Console.WriteLine("Box1 的体积: {0}",  volume);// Box2 的体积volume = Box2.height * Box2.length * Box2.breadth;Console.WriteLine("Box2 的体积: {0}", volume);Console.ReadKey();}}
}

当上面的代码被编译和执行时,它会产生下列结果:

Box1 的体积: 210
Box2 的体积: 1560

(2)成员函数和封装

类的成员函数是一个在类定义中有它的定义或原型的函数,就像其他变量一样。作为类的一个成员,它能在类的任何对象上操作,且能访问该对象的类的所有成员。

成员变量是对象的属性(从设计角度),且它们保持私有来实现封装。这些变量只能使用公共成员函数来访问。

让我们使用上面的概念来设置和获取一个类中不同的类成员的值:

using System;
namespace BoxApplication
{class Box{private double length;   // 长度private double breadth;  // 宽度private double height;   // 高度public void setLength( double len ){length = len;}public void setBreadth( double bre ){breadth = bre;}public void setHeight( double hei ){height = hei;}public double getVolume(){return length * breadth * height;}}class Boxtester{static void Main(string[] args){Box Box1 = new Box();        // 声明 Box1,类型为 BoxBox Box2 = new Box();                // 声明 Box2,类型为 Boxdouble volume;                               // 体积// Box1 详述Box1.setLength(6.0);Box1.setBreadth(7.0);Box1.setHeight(5.0);// Box2 详述Box2.setLength(12.0);Box2.setBreadth(13.0);Box2.setHeight(10.0);// Box1 的体积volume = Box1.getVolume();Console.WriteLine("Box1 的体积: {0}" ,volume);// Box2 的体积volume = Box2.getVolume();Console.WriteLine("Box2 的体积: {0}", volume);Console.ReadKey();}}
}

当上面的代码被编译和执行时,它会产生下列结果:

Box1 的体积: 210
Box2 的体积: 1560

(3)构造函数

类的 构造函数 是类的一个特殊的成员函数,当创建类的新对象时执行。

构造函数的名称与类的名称完全相同,它没有任何返回类型。

using System;
namespace LineApplication
{class Line{private double length;   // 线条的长度public Line(){Console.WriteLine("对象已创建");}public void setLength( double len ){length = len;}public double getLength(){return length;}static void Main(string[] args){Line line = new Line();    // 设置线条长度line.setLength(6.0);Console.WriteLine("线条的长度: {0}", line.getLength());Console.ReadKey();}}
}

当上面的代码被编译和执行时,它会产生下列结果:

对象已创建
线条的长度: 6

默认的构造函数没有任何参数。但是如果你需要一个带有参数的构造函数可以有参数,这种构造函数叫做参数化构造函数。这种技术可以帮助你在创建对象的同时给对象赋初始值,具体请看下面实例:

using System;
namespace LineApplication
{class Line{private double length;   // 线条的长度public Line(double len)  // 参数化构造函数{Console.WriteLine("对象已创建,length = {0}", len);length = len;}public void setLength( double len ){length = len;}public double getLength(){return length;}static void Main(string[] args){Line line = new Line(10.0);Console.WriteLine("线条的长度: {0}", line.getLength());// 设置线条长度line.setLength(6.0);Console.WriteLine("线条的长度: {0}", line.getLength());Console.ReadKey();}}
}

当上面的代码被编译和执行时,它会产生下列结果:

对象已创建,length = 10
线条的长度: 10
线条的长度: 6

(4)析构函数

类的 析构函数 是类的一个特殊的成员函数,当类的对象超出范围时执行。

析构函数的名称是在类的名称前加上一个波浪形(~)作为前缀,它不返回值,也不带任何参数。

析构函数用于在结束程序(比如关闭文件、释放内存等)之前释放资源。析构函数不能继承或重载。

下面的实例说明了析构函数的概念:

using System;
namespace LineApplication
{class Line{private double length;   // 线条的长度public Line()  // 构造函数{Console.WriteLine("对象已创建");}~Line() //析构函数{Console.WriteLine("对象已删除");}public void setLength( double len ){length = len;}public double getLength(){return length;}static void Main(string[] args){Line line = new Line();// 设置线条长度line.setLength(6.0);Console.WriteLine("线条的长度: {0}", line.getLength());          }}
}

当上面的代码被编译和执行时,它会产生下列结果:

对象已创建
线条的长度: 6
对象已删除

(5) 类的静态成员

我们可以使用 static 关键字把类成员定义为静态的。当我们声明一个类成员为静态时,意味着无论有多少个类的对象被创建,只会有一个该静态成员的副本。

关键字 static 意味着类中只有一个该成员的实例。静态变量用于定义常量,因为它们的值可以通过直接调用类而不需要创建类的实例来获取。静态变量可在成员函数或类的定义外部进行初始化。你也可以在类的定义内部初始化静态变量。

using System;
namespace StaticVarApplication
{class StaticVar{public static int num;public void count(){num++;}public int getNum(){return num;}}class StaticTester{static void Main(string[] args){StaticVar s1 = new StaticVar();StaticVar s2 = new StaticVar();s1.count();s1.count();s1.count();s2.count();s2.count();s2.count();        Console.WriteLine("s1 的变量 num: {0}", s1.getNum());Console.WriteLine("s2 的变量 num: {0}", s2.getNum());Console.ReadKey();}}
}

当上面的代码被编译和执行时,它会产生下列结果:

s1 的变量 num: 6
s2 的变量 num: 6

你也可以把一个成员函数声明为 static。这样的函数只能访问静态变量。静态函数在对象被创建之前就已经存在。

using System;
namespace StaticVarApplication
{class StaticVar{public static int num;public void count(){num++;}public static int getNum(){return num;}}class StaticTester{static void Main(string[] args){StaticVar s = new StaticVar();s.count();s.count();s.count();                  Console.WriteLine("变量 num: {0}", StaticVar.getNum());Console.ReadKey();}}
}

当上面的代码被编译和执行时,它会产生下列结果:

变量 num: 3

(4)Python

4.1基本概念

  • 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
  • 数据成员:类变量或者实例变量, 用于处理类及其实例对象的相关的数据。
  • 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
  • 局部变量:定义在方法中的变量,只作用于当前实例的类。
  • 实例变量:在类的声明中,属性是用变量来表示的。这种变量就称为实例变量,是在类声明的内部但是在类的其他成员方法之外声明的。
  • 继承:即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
  • 实例化:创建一个类的实例,类的具体对象。
  • 方法:类中定义的函数。
  • 对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

4.2创建类

#!/usr/bin/python
# -*- coding: UTF-8 -*-class Employee:'所有员工的基类'empCount = 0def __init__(self, name, salary):self.name = nameself.salary = salaryEmployee.empCount += 1def displayCount(self):print "Total Employee %d" % Employee.empCountdef displayEmployee(self):print "Name : ", self.name,  ", Salary: ", self.salary
  • empCount 变量是一个类变量,它的值将在这个类的所有实例之间共享。你可以在内部类或外部类使用 Employee.empCount 访问。

  • 第一种方法__init__()方法是一种特殊的方法,被称为类的构造函数或初始化方法,当创建了这个类的实例时就会调用该方法

  • self 代表类的实例,self 在定义类的方法时是必须有的,虽然在调用时不必传入相应的参数。

(1)self代表类的实例,而非类

类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self。

class Test:def prt(self):print(self)print(self.__class__)t = Test()
t.prt()

以上实例执行结果为:

<__main__.Test instance at 0x10d066878>
__main__.Test

从执行结果可以很明显的看出,self 代表的是类的实例,代表当前对象的地址,而 self.__class__ 则指向类。

self 不是 python 关键字,我们把他换成 runoob 也是可以正常执行的:

class Test:def prt(runoob):print(runoob)print(runoob.__class__)t = Test()
t.prt()

以上实例执行结果为:

<__main__.Test instance at 0x10d066878>
__main__.Test

4.3创建实例对象/访问属性

实例化类其他编程语言中一般用关键字 new,但是在 Python 中并没有这个关键字,类的实例化类似函数调用方式。

以下使用类的名称 Employee 来实例化,并通过 __init__ 方法接收参数。

#!/usr/bin/python
# -*- coding: UTF-8 -*-class Employee:'所有员工的基类'empCount = 0def __init__(self, name, salary):self.name = nameself.salary = salaryEmployee.empCount += 1def displayCount(self):print "Total Employee %d" % Employee.empCountdef displayEmployee(self):print "Name : ", self.name,  ", Salary: ", self.salary"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象""您可以使用点号 . 来访问对象的属性。使用如下类的名称访问类变量:"
emp2 = Employee("Manni", 5000)
emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

执行以上代码输出结果如下:

Name :  Zara ,Salary:  2000
Name :  Manni ,Salary:  5000
Total Employee 2

你可以添加,删除,修改类的属性,如下所示:

emp1.age = 7  # 添加一个 'age' 属性
emp1.age = 8  # 修改 'age' 属性
del emp1.age  # 删除 'age' 属性

你也可以使用以下函数的方式来访问属性:

  • getattr(obj, name[, default]) : 访问对象的属性。
  • hasattr(obj,name) : 检查是否存在一个属性。
  • setattr(obj,name,value) : 设置一个属性。如果属性不存在,会创建一个新属性。
  • delattr(obj, name) : 删除属性。
hasattr(emp1, 'age')    # 如果存在 'age' 属性返回 True。
getattr(emp1, 'age')    # 返回 'age' 属性的值
setattr(emp1, 'age', 8) # 添加属性 'age' 值为 8
delattr(emp1, 'age')    # 删除属性 'age'

4.3Python内置类属性

  • __dict__ : 类的属性(包含一个字典,由类的数据属性组成)
  • __doc__ :类的文档字符串
  • __name__: 类名
  • __module__: 类定义所在的模块(类的全名是'__main__.className',如果类位于一个导入模块mymod中,那么className.__module__ 等于 mymod)
  • __bases__ : 类的所有父类构成元素(包含了一个由所有父类组成的元组)
#!/usr/bin/python
# -*- coding: UTF-8 -*-class Employee:'所有员工的基类'empCount = 0def __init__(self, name, salary):self.name = nameself.salary = salaryEmployee.empCount += 1def displayCount(self):print "Total Employee %d" % Employee.empCountdef displayEmployee(self):print "Name : ", self.name,  ", Salary: ", self.salaryprint "Employee.__doc__:", Employee.__doc__
print "Employee.__name__:", Employee.__name__
print "Employee.__module__:", Employee.__module__
print "Employee.__bases__:", Employee.__bases__
print "Employee.__dict__:", Employee.__dict__

执行以上代码输出结果如下:

Employee.__doc__: 所有员工的基类
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: ()
Employee.__dict__: {'__module__': '__main__', 'displayCount': <function displayCount at 0x10a939c80>, 'empCount': 0, 'displayEmployee': <function displayEmployee at 0x10a93caa0>, '__doc__': '\xe6\x89\x80\xe6\x9c\x89\xe5\x91\x98\xe5\xb7\xa5\xe7\x9a\x84\xe5\x9f\xba\xe7\xb1\xbb', '__init__': <function __init__ at 0x10a939578>}

4.4python对象销毁(垃圾回收)

Python 使用了引用计数这一简单技术来跟踪和回收垃圾。

在 Python 内部记录着所有使用中的对象各有多少引用。

一个内部跟踪变量,称为一个引用计数器。

当对象被创建时, 就创建了一个引用计数, 当这个对象不再需要时, 也就是说, 这个对象的引用计数变为0 时, 它被垃圾回收。但是回收不是"立即"的, 由解释器在适当的时机,将垃圾对象占用的内存空间回收。

a = 40      # 创建对象  <40>
b = a       # 增加引用, <40> 的计数
c = [b]     # 增加引用.  <40> 的计数del a       # 减少引用 <40> 的计数
b = 100     # 减少引用 <40> 的计数
c[0] = -1   # 减少引用 <40> 的计数

垃圾回收机制不仅针对引用计数为0的对象,同样也可以处理循环引用的情况。循环引用指的是,两个对象相互引用,但是没有其他变量引用他们。这种情况下,仅使用引用计数是不够的。Python 的垃圾收集器实际上是一个引用计数器和一个循环垃圾收集器。作为引用计数的补充, 垃圾收集器也会留心被分配的总量很大(即未通过引用计数销毁的那些)的对象。 在这种情况下, 解释器会暂停下来, 试图清理所有未引用的循环。

析构函数 __del__ ,__del__在对象销毁的时候被调用,当对象不再被使用时,__del__方法运行:

#!/usr/bin/python
# -*- coding: UTF-8 -*-class Point:def __init__( self, x=0, y=0):self.x = xself.y = ydef __del__(self):class_name = self.__class__.__name__print class_name, "销毁"pt1 = Point()
pt2 = pt1
pt3 = pt1
print id(pt1), id(pt2), id(pt3) # 打印对象的id
del pt1
del pt2
del pt3

以上实例运行结果如下:

3083401324 3083401324 3083401324
Point 销毁

注意:通常你需要在单独的文件中定义一个类。

4.5类的继承

面向对象的编程带来的主要好处之一是代码的重用,实现这种重用的方法之一是通过继承机制。

通过继承创建的新类称为子类派生类,被继承的类称为基类父类超类

在python中继承中的一些特点:

  • 1、如果在子类中需要父类的构造方法就需要显式的调用父类的构造方法,或者不重写父类的构造方法。详细说明可查看: python 子类继承父类构造函数说明。
  • 2、在调用基类的方法时,需要加上基类的类名前缀,且需要带上 self 参数变量。区别在于类中调用普通函数时并不需要带上 self 参数
  • 3、Python 总是首先查找对应类型的方法,如果它不能在派生类中找到对应的方法,它才开始到基类中逐个查找。(先在本类中查找调用的方法,找不到才去基类中找)。

如果在继承元组中列了一个以上的类,那么它就被称作"多重继承" 。

#!/usr/bin/python
# -*- coding: UTF-8 -*-class Parent:        # 定义父类parentAttr = 100def __init__(self):print "调用父类构造函数"def parentMethod(self):print '调用父类方法'def setAttr(self, attr):Parent.parentAttr = attrdef getAttr(self):print "父类属性 :", Parent.parentAttrclass Child(Parent): # 定义子类def __init__(self):print "调用子类构造方法"def childMethod(self):print '调用子类方法'c = Child()          # 实例化子类
c.childMethod()      # 调用子类的方法
c.parentMethod()     # 调用父类方法
c.setAttr(200)       # 再次调用父类的方法 - 设置属性值
c.getAttr()          # 再次调用父类的方法 - 获取属性值

以上代码执行结果如下:

调用子类构造方法
调用子类方法
调用父类方法
父类属性 : 200

你可以继承多个类

class A:        # 定义类 A
.....class B:         # 定义类 B
.....class C(A, B):   # 继承类 A 和 B
.....

你可以使用issubclass()或者isinstance()方法来检测。

  • issubclass() - 布尔函数判断一个类是另一个类的子类或者子孙类,语法:issubclass(sub,sup)
  • isinstance(obj, Class) 布尔函数如果obj是Class类的实例对象或者是一个Class子类的实例对象则返回true。

4.6方法重写

如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法:

#!/usr/bin/python
# -*- coding: UTF-8 -*-class Parent:        # 定义父类def myMethod(self):print '调用父类方法'class Child(Parent): # 定义子类def myMethod(self):print '调用子类方法'c = Child()          # 子类实例
c.myMethod()         # 子类调用重写方法

4.7基础重载方法

下表列出了一些通用的功能,你可以在自己的类重写:

序号 方法, 描述 & 简单的调用
1 __init__ ( self [,args...] )
构造函数
简单的调用方法: obj = className(args)
2 __del__( self )
析构方法, 删除一个对象
简单的调用方法 : del obj
3 __repr__( self )
转化为供解释器读取的形式
简单的调用方法 : repr(obj)
4 __str__( self )
用于将值转化为适于人阅读的形式
简单的调用方法 : str(obj)
5 __cmp__ ( self, x )
对象比较
简单的调用方法 : cmp(obj, x)

4.8运算符重载

#!/usr/bin/pythonclass Vector:def __init__(self, a, b):self.a = aself.b = bdef __str__(self):return 'Vector (%d, %d)' % (self.a, self.b)def __add__(self,other):return Vector(self.a + other.a, self.b + other.b)v1 = Vector(2,10)
v2 = Vector(5,-2)
print v1 + v2

以上代码执行结果如下所示:

Vector(7,8)

4.9类属性与方法

(1)类的私有属性

__private_attrs:两个下划线开头,声明该属性为私有,不能在类的外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs

(2)类的方法

在类的内部,使用 def 关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数 self,且为第一个参数

(3)类的私有方法

__private_method:两个下划线开头,声明该方法为私有方法,不能在类的外部调用。在类的内部调用 self.__private_methods

#!/usr/bin/python
# -*- coding: UTF-8 -*-class JustCounter:__secretCount = 0  # 私有变量publicCount = 0    # 公开变量def count(self):self.__secretCount += 1self.publicCount += 1print self.__secretCountcounter = JustCounter()
counter.count()
counter.count()
print counter.publicCount
print counter.__secretCount  # 报错,实例不能访问私有变量

Python 通过改变名称来包含类名:

1
2
2
Traceback (most recent call last):File "test.py", line 17, in <module>print counter.__secretCount  # 报错,实例不能访问私有变量
AttributeError: JustCounter instance has no attribute '__secretCount'

Python不允许实例化的类访问私有数据,但你可以使用 object._className__attrName( 对象名._类名__私有属性名 )访问属性,参考以下实例:

#!/usr/bin/python
# -*- coding: UTF-8 -*-class Runoob:__site = "www.runoob.com"runoob = Runoob()
print runoob._Runoob__site

执行以上代码,执行结果如下:

www.runoob.com

单下划线、双下划线、头尾双下划线说明:

  • __foo__: 定义的是特殊方法,一般是系统定义名字 ,类似 __init__() 之类的。

  • _foo: 以单下划线开头的表示的是 protected 类型的变量,即保护类型只能允许其本身与子类进行访问,不能用于 from module import *

  • __foo: 双下划线的表示的是私有类型(private)的变量, 只能是允许这个类本身进行访问了。

(五)Java

5.1基本概念

  • 对象:对象是类的一个实例(对象不是找个女朋友),有状态和行为。例如,一条狗是一个对象,它的状态有:颜色、名字、品种;行为有:摇尾巴、叫、吃等。
  • :类是一个模板,它描述一类对象的行为和状态。

男孩(boy)女孩(girl)类(class),而具体的每个人为该类的对象(object)

下图中汽车类(class),而具体的每辆车为该汽车类的对象(object),对象包含了汽车的颜色、品牌、名称等。

5.2 Java 中的类

类可以看成是创建 Java 对象的模板。

public class Dog {String breed;int size;String colour;int age;void eat() {}void run() {}void sleep(){}void name(){}
}

一个类可以包含以下类型变量:

  • 局部变量:在方法、构造方法或者语句块中定义的变量被称为局部变量。变量声明和初始化都是在方法中,方法结束后,变量就会自动销毁。
  • 成员变量:成员变量是定义在类中,方法体之外的变量。这种变量在创建对象的时候实例化。成员变量可以被类中方法、构造方法和特定类的语句块访问。
  • 类变量:类变量也声明在类中,方法体之外,但必须声明为 static 类型。

一个类可以拥有多个方法,在上面的例子中:eat()、run()、sleep() 和 name() 都是 Dog 类的方法。

5.2 构造方法、创建对象、访问实例变量和方法

每个类都有构造方法。如果没有显式地为类定义构造方法,Java 编译器将会为该类提供一个默认构造方法。

在创建一个对象的时候,至少要调用一个构造方法。构造方法的名称必须与类同名,一个类可以有多个构造方法。

对象是根据类创建的。在Java中,使用关键字 new 来创建一个新的对象。创建对象需要以下三步:

  • 声明:声明一个对象,包括对象名称和对象类型。
  • 实例化:使用关键字 new 来创建一个对象。
  • 初始化:使用 new 创建对象时,会调用构造方法初始化对象。
public class Puppy{int puppyAge;public Puppy(String name){// 这个构造器仅有一个参数:nameSystem.out.println("小狗的名字是 : " + name ); }public void setAge( int age ){puppyAge = age;}public int getAge( ){System.out.println("小狗的年龄为 : " + puppyAge ); return puppyAge;}public static void main(String[] args){/* 创建对象 */Puppy myPuppy = new Puppy( "tommy" );/* 通过方法来设定age */myPuppy.setAge( 2 );/* 调用另一个方法获取age */myPuppy.getAge( );/*你也可以像下面这样访问成员变量 */System.out.println("变量值 : " + myPuppy.puppyAge ); }
}

5.3源文件声明

当在一个源文件中定义多个类,并且还有import语句和package语句时,要特别注意这些规则。

  • 一个源文件中只能有一个 public 类
  • 一个源文件可以有多个非 public 类
  • 源文件的名称应该和 public 类的类名保持一致。例如:源文件中 public 类的类名是 Employee,那么源文件应该命名为Employee.java。
  • 如果一个类定义在某个包中,那么 package 语句应该在源文件的首行。
  • 如果源文件包含 import 语句,那么应该放在 package 语句和类定义之间。如果没有 package 语句,那么 import 语句应该在源文件中最前面。
  • import 语句和 package 语句对源文件中定义的所有类都有效。在同一源文件中,不能给不同的类不同的包声明。

(1)import 语句

在 Java 中,如果给出一个完整的限定名,包括包名、类名,那么 Java 编译器就可以很容易地定位到源代码或者类。import 语句就是用来提供一个合理的路径,使得编译器可以找到某个类。

例如,下面的命令行将会命令编译器载入 java_installation/java/io 路径下的所有类

我们创建两个类:Employee 和 EmployeeTest

首先打开文本编辑器,把下面的代码粘贴进去。注意将文件保存为 Employee.java。

Employee 类有四个成员变量:name、age、designation 和 salary。该类显式声明了一个构造方法,该方法只有一个参数。

import java.io.*;public class Employee{String name;int age;String designation;double salary;// Employee 类的构造器public Employee(String name){this.name = name;}// 设置age的值public void empAge(int empAge){age =  empAge;}/* 设置designation的值*/public void empDesignation(String empDesig){designation = empDesig;}/* 设置salary的值*/public void empSalary(double empSalary){salary = empSalary;}/* 打印信息 */public void printEmployee(){System.out.println("名字:"+ name );System.out.println("年龄:" + age );System.out.println("职位:" + designation );System.out.println("薪水:" + salary);}
}

分析:程序都是从main方法开始执行。为了能运行这个程序,必须包含main方法并且创建一个实例对象。

下面给出EmployeeTest类,该类实例化2个 Employee 类的实例,并调用方法设置变量的值。将下面的代码保存在 EmployeeTest.java文件中。

import java.io.*;
public class EmployeeTest{public static void main(String[] args){/* 使用构造器创建两个对象 */Employee empOne = new Employee("RUNOOB1");Employee empTwo = new Employee("RUNOOB2");// 调用这两个对象的成员方法empOne.empAge(26);empOne.empDesignation("高级程序员");empOne.empSalary(1000);empOne.printEmployee();empTwo.empAge(21);empTwo.empDesignation("菜鸟程序员");empTwo.empSalary(500);empTwo.printEmployee();}
}

编译这两个文件并且运行 EmployeeTest 类,可以看到如下结果:

$ javac EmployeeTest.java
$ java EmployeeTest
名字:RUNOOB1
年龄:26
职位:高级程序员
薪水:1000.0
名字:RUNOOB2
年龄:21
职位:菜鸟程序员
薪水:500.0

5.4继承

(1)基本概念

继承是java面向对象编程技术的一块基石,因为它允许创建分等级层次的类。

继承就是子类继承父类的特征和行为,使得子类对象(实例)具有父类的实例域和方法,或子类从父类继承方法,使得子类具有父类相同的行为。

兔子和羊属于食草动物类,狮子和豹属于食肉动物类。

食草动物和食肉动物又是属于动物类。

所以继承需要符合的关系是:is-a,父类更通用,子类更具体。

虽然食草动物和食肉动物都是属于动物,但是两者的属性和行为上有差别,所以子类会具有父类的一般特性也会具有自身的特性

(2)为什么需要继承

开发动物类,其中动物分别为企鹅以及老鼠,要求如下:

  • 企鹅:属性(姓名,id),方法(吃,睡,自我介绍)
  • 老鼠:属性(姓名,id),方法(吃,睡,自我介绍)
public class Penguin { private String name; private int id; public Penguin(String myName, int  myid) { name = myName; id = myid; } public void eat(){ System.out.println(name+"正在吃"); }public void sleep(){System.out.println(name+"正在睡");}public void introduction() { System.out.println("大家好!我是"         + id + "号" + name + "."); }
}public class Mouse { private String name; private int id; public Mouse(String myName, int  myid) { name = myName; id = myid; } public void eat(){ System.out.println(name+"正在吃"); }public void sleep(){System.out.println(name+"正在睡");}public void introduction() { System.out.println("大家好!我是"         + id + "号" + name + "."); }
}

从这两段代码可以看出来,代码存在重复了,导致后果就是代码量大且臃肿,而且维护性不高(维护性主要是后期需要修改的时候,就需要修改很多的代码,容易出错),所以要从根本上解决这两段代码的问题,就需要继承,将两段代码中相同的部分提取出来组成 一个父类:

public class Animal { private String name;  private int id; public Animal(String myName, int myid) { name = myName; id = myid;} public void eat(){ System.out.println(name+"正在吃"); }public void sleep(){System.out.println(name+"正在睡");}public void introduction() { System.out.println("大家好!我是"         + id + "号" + name + "."); }
}

这个Animal类就可以作为一个父类,然后企鹅类和老鼠类继承这个类之后,就具有父类当中的属性和方法,子类就不会存在重复的代码,维护性也提高,代码也更加简洁,提高代码的复用性(复用性主要是可以多次使用,不用再多次写同样的代码) 继承之后的代码:

public class Animal { private String name;  private int id; public Animal(String myName, int myid) { name = myName; id = myid;} public void eat(){ System.out.println(name+"正在吃"); }public void sleep(){System.out.println(name+"正在睡");}public void introduction() { System.out.println("大家好!我是"         + id + "号" + name + "."); }
}public class Penguin extends Animal { public Penguin(String myName, int myid) { super(myName, myid); }
}public class Mouse extends Animal { public Mouse(String myName, int myid) { super(myName, myid); }
}

(3)继承类型

Java 不支持多继承,但支持多重继承

(4)继承特性

  • 子类拥有父类非 private 的属性、方法。

  • 子类可以拥有自己的属性和方法,即子类可以对父类进行扩展。

  • 子类可以用自己的方式实现父类的方法。

  • Java 的继承是单继承,但是可以多重继承,单继承就是一个子类只能继承一个父类,多重继承就是,例如 B 类继承 A 类,C 类继承 B 类,所以按照关系就是 B 类是 C 类的父类,A 类是 B 类的父类,这是 Java 继承区别于 C++ 继承的一个特性。

  • 提高了类之间的耦合性(继承的缺点,耦合度高就会造成代码之间的联系越紧密,代码独立性越差)。

(5)继承关键字

继承可以使用 extends 和 implements 这两个关键字来实现继承,而且所有的类都是继承于 java.lang.Object,当一个类没有继承的两个关键字,则默认继承object(这个类在 java.lang 包中,所以不需要 import)祖先类。

extends关键字

在 Java 中,类的继承是单一继承,也就是说,一个子类只能拥有一个父类,所以 extends 只能继承一个类。

public class Animal { private String name;   private int id; public Animal(String myName, String myid) { //初始化属性值} public void eat() {  //吃东西方法的具体实现  } public void sleep() { //睡觉方法的具体实现  }
} public class Penguin  extends  Animal{
}

implements关键字

使用 implements 关键字可以变相的使java具有多继承的特性,使用范围为类继承接口的情况,可以同时继承多个接口(接口跟接口之间采用逗号分隔)。

public interface A {public void eat();public void sleep();
}public interface B {public void show();
}public class C implements A,B {
}

super 与 this 关键字

super关键字:我们可以通过super关键字来实现对父类成员的访问,用来引用当前对象的父类。

this关键字:指向自己的引用。

class Animal {void eat() {System.out.println("animal : eat");}
}class Dog extends Animal {void eat() {System.out.println("dog : eat");}void eatTest() {this.eat();   // this 调用自己的方法super.eat();  // super 调用父类方法}
}public class Test {public static void main(String[] args) {Animal a = new Animal();a.eat();Dog d = new Dog();d.eatTest();}
}

输出结果为:

animal : eat
dog : eat
animal : eat

final关键字

final 关键字声明类可以把类定义为不能继承的,即最终类;或者用于修饰方法,该方法不能被子类重写:

  • 声明类:

    final class 类名 {//类体}
  • 声明方法:

    修饰符(public/private/default/protected) final 返回值类型 方法名(){//方法体}

:实例变量也可以被定义为 final,被定义为 final 的变量不能被修改。被声明为 final 类的方法自动地声明为 final,但是实例变量并不是 final

(6)构造器

子类是不继承父类的构造器(构造方法或者构造函数)的,它只是调用(隐式或显式)。如果父类的构造器带有参数,则必须在子类的构造器中显式地通过 super 关键字调用父类的构造器并配以适当的参数列表。

如果父类构造器没有参数,则在子类的构造器中不需要使用 super 关键字调用父类构造器,系统会自动调用父类的无参构造器。

class SuperClass {private int n;SuperClass(){System.out.println("SuperClass()");}SuperClass(int n) {System.out.println("SuperClass(int n)");this.n = n;}
}
// SubClass 类继承
class SubClass extends SuperClass{private int n;SubClass(){ // 自动调用父类的无参数构造器System.out.println("SubClass");}  public SubClass(int n){ super(300);  // 调用父类中带有参数的构造器System.out.println("SubClass(int n):"+n);this.n = n;}
}
// SubClass2 类继承
class SubClass2 extends SuperClass{private int n;SubClass2(){super(300);  // 调用父类中带有参数的构造器System.out.println("SubClass2");}  public SubClass2(int n){ // 自动调用父类的无参数构造器System.out.println("SubClass2(int n):"+n);this.n = n;}
}
public class TestSuperSub{public static void main (String args[]){System.out.println("------SubClass 类继承------");SubClass sc1 = new SubClass();SubClass sc2 = new SubClass(100); System.out.println("------SubClass2 类继承------");SubClass2 sc3 = new SubClass2();SubClass2 sc4 = new SubClass2(200); }
}

输出结果为:

------SubClass 类继承------
SuperClass()
SubClass
SuperClass(int n)
SubClass(int n):100
------SubClass2 类继承------
SuperClass(int n)
SubClass2
SuperClass()
SubClass2(int n):200

5.5内部类

要访问内部类,可以通过创建外部类的对象,然后创建内部类的对象来实现。

嵌套类有两种类型:

  • 非静态内部类
  • 静态内部类

(1)非静态内部类

非静态内部类是一个类中嵌套着另外一个类。 它有访问外部类成员的权限, 通常被称为内部类。

由于内部类嵌套在外部类中,因此必须首先实例化外部类,然后创建内部类的对象来实现。

class OuterClass {int x = 10;class InnerClass {int y = 5;}
}public class MyMainClass {public static void main(String[] args) {OuterClass myOuter = new OuterClass();OuterClass.InnerClass myInner = myOuter.new InnerClass();System.out.println(myInner.y + myOuter.x);}
}

以上实例执行输出结果为:

15

(2)私有的内部类

内部类可以使用 private 或 protected 来修饰,如果你不希望内部类被外部类访问可以使用 private 修饰符:

class OuterClass {int x = 10;private class InnerClass {int y = 5;}
}public class MyMainClass {public static void main(String[] args) {OuterClass myOuter = new OuterClass();OuterClass.InnerClass myInner = myOuter.new InnerClass();System.out.println(myInner.y + myOuter.x);}
}

以上实例 InnerClass 设置为私有内部类,执行会报错:

MyMainClass.java:12: error: OuterClass.InnerClass has private access in OuterClassOuterClass.InnerClass myInner = myOuter.new InnerClass();

(3)静态内部类

静态内部类可以使用 static 关键字定义,静态内部类我们不需要创建外部类来访问,可以直接访问它:

class OuterClass {int x = 10;static class InnerClass {int y = 5;}
}public class MyMainClass {public static void main(String[] args) {OuterClass.InnerClass myInner = new OuterClass.InnerClass();System.out.println(myInner.y);}
}

以上实例执行输出结果为:

5

注意:静态内部类无法访问外部类的成员。

(4)从内部类访问外部类成员

内部类一个高级的用法就是可以访问外部类的属性和方法:

class OuterClass {int x = 10;class InnerClass {public int myInnerMethod() {return x;}}
}public class MyMainClass {public static void main(String[] args) {OuterClass myOuter = new OuterClass();OuterClass.InnerClass myInner = myOuter.new InnerClass();System.out.println(myInner.myInnerMethod());}
}

以上实例执行输出结果为:

10

5.6匿名类

Java 中可以实现一个类中包含另外一个类,且不需要提供任何的类名直接实例化。

主要是用于在我们需要的时候创建一个对象来执行特定的任务,可以使代码更加简洁。

匿名类是不能有名字的类,它们不能被引用,只能在创建时用 new 语句来声明它们。

class outerClass {// 定义一个匿名类object1 = new Type(parameterList) {// 匿名类代码};
}

以上的代码创建了一个匿名类对象 object1,匿名类是表达式形式定义的,所以末尾以分号 ; 来结束。

匿名类通常继承一个父类或实现一个接口。

(1)匿名类继承一个父类

以下实例中,创建了 Polygon 类,该类只有一个方法 display(),AnonymousDemo 类继承了 Polygon 类并重写了 Polygon 类的 display() 方法<:/p>

class Polygon {public void display() {System.out.println("在 Polygon 类内部");}
}class AnonymousDemo {public void createClass() {// 创建的匿名类继承了 Polygon 类Polygon p1 = new Polygon() {public void display() {System.out.println("在匿名类内部。");}};p1.display();}
}class Main {public static void main(String[] args) {AnonymousDemo an = new AnonymousDemo();an.createClass();}
}

执行以上代码,匿名类的对象 p1 会被创建,该对象会调用匿名类的 display() 方法,输出结果为:

在匿名类内部。

(2)匿名类实现一个接口

interface Polygon {public void display();
}class AnonymousDemo {public void createClass() {// 匿名类实现一个接口Polygon p1 = new Polygon() {public void display() {System.out.println("在匿名类内部。");}};p1.display();}
}class Main {public static void main(String[] args) {AnonymousDemo an = new AnonymousDemo();an.createClass();}
}

输出结果为:

在匿名类内部。

C、C++、C#、python、java编程—类的使用相关推荐

  1. 【轻松学】Python面向对象编程——类的设计、基础语法、继承、多态、类属性和类方法、单例设计

    文章目录 1. 类的设计 大驼峰命名法 1.1 类名的确定 1.2 属性和方法的确定 练习 1.1 练习 1.2 2. 面相对象基础语法 2.1 定义简单的类(只包含方法) 2.1.1 定义只包含方法 ...

  2. python多个对象调用类方法、且之间有联系_趣味解读Python面向对象编程 (类和对象)...

    一.面向对象简介 考虑现实生活中,我们的思维方式是放在学生这个个人上,是学生做了自我介绍.而不是像我们刚刚写出的代码,先有了介绍的行为,再去看介绍了谁. 用我们的现实思维方式该怎么用程序表达呢? 面向 ...

  3. Python CGI 编程 | 类FieldStorage的使用

    使用Python自带的cgi库,可以很容易的实现CGI编程. 下面的例子实现了使用 类FieldStorage 得到POST或GET参数的方法 表单示例 <form method="P ...

  4. python编程例子-Python面向对象编程 - 类和实例

    一.preface 面向对象编程OOP:object oriented programming. OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数.Python是一门面向对象的编程语 ...

  5. Python面向对象编程——类的学习

    面向对象编程     面向对象编程--Object Oriented Programming,简称OOP,是一种程序设计思想.OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数. 面向 ...

  6. Python面向对象编程(类编程)中self的含义详解(简单明了直击本质的解释)

    以下是博主认为的对self讲解得比较透彻又简洁明了的资料. 上面的资料把这个问题说得简单明了,大家认真看一遍相信就对self有个深入的了解了. 总结一下: 在Python为面向对象编程中,成员函数被调 ...

  7. python面向对象图片_趣味解读Python面向对象编程 (类和对象)

    一.面向对象简介 考虑现实生活中,我们的思维方式是放在学生这个个人上,是学生做了自我介绍.而不是像我们刚刚写出的代码,先有了介绍的行为,再去看介绍了谁. 用我们的现实思维方式该怎么用程序表达呢?面向过 ...

  8. python对象编程例子-python 面向对象编程 类和实例

    class Student(object): #class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的.通常,如果没有合适的继承 ...

  9. python面向对象编程类的成员总结

    类.对象的三大成员之一字段,静态字段,动态字段 1.静态字段与普通字段的区别,静态字段属于类,普通字段属于有类生成的对象, 2.在内存中的存储方式也不一样,静态字段在内存中存储一份,普通字段每个对象存 ...

最新文章

  1. 走向DBA[MSSQL篇] 面试官最喜欢的问题 ----索引+C#面试题客串
  2. 直播预告 | STC单车拉力组专题培训
  3. (0076)iOS开发之UIWebView嵌套直播平台(不涉及播放器技术的开发)
  4. JAVA SE学习day_07:异常处理、TCP通信
  5. PLSQL导出表的数据insert语句
  6. ACM模板——并查集
  7. 良好的代码风格养成记
  8. 满足条件的两个数或多个数
  9. cocos android-1,cocos2dx在windows下开发,编译到android上(1)
  10. 光纤收发器按照网管怎么分类?
  11. IO流(1)-键盘录入学生信息(姓名,语文成绩,数学成绩,英语成绩),按照总分从高到低存入文本文件...
  12. android系统签名一样不,解决Android应用签名和系统不一致的问题
  13. 下载安装ARM交叉编译器
  14. 我的世界服务器显示红心,我的世界手机版红心怎么恢复 | 手游网游页游攻略大全...
  15. 数据分析之描述性统计分析
  16. yzl的VSCode使用指南
  17. 网络安全、HTTP协议
  18. 网页版飞信(Fetion)的安全问题
  19. 跟葫芦兄弟学拆产品线
  20. 改变全局变量值得两种方法

热门文章

  1. 山东ISO14001需要准备哪些材料
  2. 【最新无授权全解密影视小程序】电影小程序 流量主广告费 提供苹果CMS接口设置maccms伪静态
  3. 基于MATLAB的语音分析处理系统设计
  4. png 矢量图 RGBA 转 RGB后变黑问题解决
  5. HTML5 面试题整理
  6. matlab中的匹配函数
  7. Zend Studio 无法打开的解决办法
  8. 对于bufif1、bufif0、notif1、notif0的详解
  9. mysql无法连接内网的数据库
  10. Unity 插件使用笔记