前言

RSA算法是最重要的算法之一,它是一种非对称加密,是目前最有影响力的加密方式之一。这篇文章我们通过实现一种简单的RSA加密来探究它的原理。

计算公钥和私钥

RSA中的公钥和私钥需要结合在一起工作。公钥用来对数据块加密,之后 ,只有对应的私钥才能用来解密。生成密钥时,需要遵循几个步骤以确保公钥和私钥的这种关系能够正常工作。这些步骤也确保没有实际方法能够从一个密钥推出另一个。

开始前,首先要选择两个大的素数,记为p和q。根据当今求解大数因子的技术水平,这两个数应该至少有200位,这们在实践中才可以认为是安全的。

然后,开始计算n:

n = pq

接下来,选择一个小的奇数e,它将成为公钥的一部分。选择e最需要考虑的重点是它与(p-1)(q-1)不能有相同的因子。换句话说,e与(p-1)(q-1)是互为素数关系的。比如,如果p=11而q=19,那么n=11 X 19=209。这里选择e=17,因为(p-1)(q-1)=10 X 18 =180,而17和180没有相同的因子。通常选择3、17、65、537作为e的值。使用这些值不会对RSA的安全性造成影响,因为解密数据还需要用到私钥。

一旦为e选择了一个值,接下来开始计算相对应的值d,d将成为私钥的一部分。d的值就是计算e的倒数对(p-1)(q-1)的取模结果,公式如下:

d = e-1 mod (p-1)(q-1)

这里d和e是模乘法逆元的关系。

思考一下这个问题:当d为多少时可以满足ed mod (p-1)(q-1) = 1 ?比如在等式 17d mod 180 = 1中,d的一个可能值是53。其他的可能值是233、413、593等。在实践中,可以利用欧几里德算法来计算模乘法逆元。这里就不再展开。

现在有了e和d的值,将(e,n)作为公钥P,将(d,n)作为私钥S并保持其不可见。

如何计算d?

上面p、q、e需要预设三个素数,n很容易求出来,但是d的计算就涉及到模的运算了

什么是模、取模和模运算?

取模:
https://baike.baidu.com/item/%E5%8F%96%E6%A8%A1%E8%BF%90%E7%AE%97/10739384?fr=aladdin

模运算:
https://baike.baidu.com/item/%E6%A8%A1%E8%BF%90%E7%AE%97/4376110

具体就不细说了,但是要注意取模和取余的区别

这里d = e-1 mod (p-1)(q-1)

简化为:

d = e-1 % m

这是乘法逆元的问题。我们对上面的进行处理

d * e = e-1 % m * e

(d * e) % m = (e-1 % m * e) %m

根据模运算的结合率
(a%p * b)%p=(a * b)%p

(d * e) % m = (e-1 % m * e) %m = (e-1 * e) % m = 1 % m

所以我们最后得到

(d * e) % m = 1 % m

这里由于n说我们自己定义的,一定是正数,所以1%n=1

所以最后变为计算

(d * e) % m = 1

并且e和d一定有一组解满足他们都小于m。我们只需求这组解即可。

根据费马小定理,如果a和b互质,则

ab-1 % b = 1

那么已经要求e与m互质,所以

(e * em-2) % m = 1

所以d的一个解是em-2,但是这个很可能比m大,则可以表示为m + k,那么

(e * (m + k)) % m = 1

根据模的加法运算规则

(em % m + e*k % m) % m = 1

因为em % m一定是0,所以上面的可以转为

e*k % m = 1

如果k还大于m,则重复上面的步骤直到k小于m。这时k就是d。

因为e小于m,所以d一定有一个小于m的解使 (d * e) % m = 1成立

代码

简单的算法是遍历找到d,代码:

var q = 13;
var p = 17;
var n = q * p;
var e = 7;
var tmp = (q - 1) * (p - 1);
var d;
for (d = 1; ; d++) {if (e * d % tmp === 1) {break}
}

这里还需要进行优化,因为一般n都是超大数,而e则比较小,所以d也会很大,这里就需要大量的循环,优化后如下:

    var d;for (var j = 1; j < e; j++) {if ((tmp * j + 1) % e === 0) {d = (tmp * j + 1) / e;break;}}

因为 (d * e) % m = 1也就是

d * e = k * m + 1

而且d也需要小于m,所以k一定小于e,而e是比较小的值,所以我们将循环改成k即可减少大量的计算。

加密和解密数据分组

要使用RSA算法对数据进行加密和解密,首先要确定分组的大小。为了实现这一步,必须确保该分组可以保存的最大数值要小于n的位数。比如,如果p和q都是200位数字的素数,则n的结果将小于400位。因而,所选择的分组所能保存的最大值应该要以是接近于400。在实践中,通常选择的位数都是比n小的2的整数次幂。比如,如果n是209,要选择的分组大小就是7位,因为27 = 128比209小,但28 = 256又大于209。

要从缓冲区M中加密第(i)组明文Mi ,使用公钥(e,n)来获取M的数值,对其求e次幂,然后再对n取模。这将产生一组密文Ci。对n的取模操作确保了Ci将和明文的分组大小保持一致。因而,要加密明文分组有:

Ci = Mie mod n

之前提到过,欧拉函数是采用幂模运算来加密数据的基础,根据欧拉函数及其推导式,能够将密文解密回原文。

要对缓冲区中C中的第(i)组密文进行解密,使用私钥(d,n)来获取Ci的数值部分,对其求d次幂,然后再对n取模。这将产生一组明文Mi。因此,要解密密文分组有:

Mi = Cid mod n

计算过程及优化

这里加密解密的算法一样,只不过key值不同而已,涉及的是模的幂运算

以加密为例

Ci = Mie mod n

因为需要考虑大数的问题,所以模的幂运算不能直接运算,比如如果我先直接计算Mie,由于Mi有可能是很大的数,这样它的e次幂就会是一个超级数字,计算机无法计算和存储

所以这里我们就需要对模幂运算进行优化,就涉及到了蒙哥马利算法

参考
https://blog.csdn.net/zgzczzw/article/details/52712980
https://blog.csdn.net/linraise/article/details/17490769)

蒙哥马利算法比较复杂,包含三个算法进行优化。

我们先设计一个简单的算法,先将模幂运算转化为模乘运算

关于模运算,有如下几个公式:

结合律(a%p*b)%p=(a*b)%p同理((a*b) % p * c)% p = (a*b*c) % p 四则运算(a * b) % p = (a % p * b % p) % p (a^b) % p = ((a % p)^b) % p

我们先利用上面两个结合律,所以:

a2%n = (a * a) %n = (a%n * a) %n

因为a%n取模一定比a小,所以a%n*a就要比a2小很多,类推

a3%n = (a2 * a) %n = ((a2%n)*a)%n

得出

an%n = ((an-1%n)*a)%n

这是一个简单递归算法,通过这个算法,每次乘完都会做一个取模运算,运算的数据就会小很多。

代码:

function encode(x, e, n) {var result = x % n;for (var i = 1; i < e ; i++) {result = (result * x) % n;}return result
}function decode(x, d, n) {var result = x % n;for (var i = 1; i < d ; i++) {result = (result * x) % n;}return result
}

当然,上面仅仅是简单例子,因为如果幂数较大比如d就会是一个超大数,这样循环次数就会很多,计算时间很长。

根据模的运算法则:

(a % p * b) % p = (a * b) % p

(a * b) % p = (a % p * b % p) % p

我们可以得出,当指数(假设为e)是偶数时

se % n = ((se/2 % n) * (se/2 % n)) % n

当为奇数时则可以先转成偶数

se % n = ((se - 1 % n) * e) % n

这样就可以用二分法和位运算来优化算法。如下:

function modpow(x, p, m) {if(p === 1){return mod(x, m)}var mid;if((p & 1) === 0){mid = (p >> 1);var tmp1 =  modpow(x, mid, m);return mod(tmp1 * tmp1, m);}else{return mod(modpow(x, p - 1, m) * x, m)}
}

1、利用递归二分。因为开方所以每个节点的两个子节点都相等,所以计算其中一个就可以,这样我们只需计算二叉树的一条路径就可以了,整体复杂度只有O(log2n)。比如2n只需要计算n + x次(最多坏情况每次都是奇数则是2n),比2n次计算节省大量的时间,而且数据越大节省时间越多。

2、位运算。在判断奇偶数时,没有使用除法,因为除法运算复杂度很大,耗时比其他运算长很多。这里使用位运算,只需判断最低位是否为0即可,而除2运算则可以用右移一位代替。因为计算机中位运算最快,所以这样会节省大量的时间。

正确性验证

加密我们可以理解,因为运算中有模参与,所以不可逆。但是加密后为什么通过私钥就可以解密,解密一定正确么?

首先加密

k = se % n

然后对k解密

r = ((se % n)d) %n

根据(a^b) % p = ((a % p)^b) % p可得

r = (se)d % n = se*d % n

通过之前的计算可知 (d * e) % m = 1,而m是(q-1)(p-1),所以

d * e = k(q-1)(p-1) + 1 (k未知)

而且n=pq,所以

r = sk(q-1)(p-1) + 1 % (pq)

根据费马小定理,如果a和b互质,则

ab-1 = 1 mod b

所以考虑两种情况:

1、s与n即pq互质

因为p和q是两个大质数,所以s与n互质就相当于s分别于p和q互质

所以根据费马小定理

sp-1 = 1 mod p

sp-1 % p = 1

所以根据幂模的运算法则(a^b) % p = ((a % p)^b) % p

sk(q-1)(p-1) % p = (sp-1 % p)k(q-1) % p

因为sp-1 % p = 1,所以

sk(q-1)(p-1) % p = 1k(q-1) % p = 1

同理可以得出

sk(q-1)(p-1) % q = 1

所以sk(q-1)(p-1) - 1可以被p和q都整除,得出

sk(q-1)(p-1) % (pq) = 1

回到之前

r = sk(q-1)(p-1) + 1 % (pq) = (sk(q-1)(p-1) * s) % (pq)

根据模的结合率(a%p * b)%p=(a * b)%p

r = ( (sk(q-1)(p-1) % (pq)) * s ) % (pq)

上面推出sk(q-1)(p-1) % (pq) = 1,所以

r = s % (pq)

因为pq = n所以最终

r = s % n

根据上面RSA算法要求,可知s一定是小于n的数,所以s对n取模结果也是s

所以 r = s 验证了RSA的正确性。

2、s于n不互质

一文搞懂RSA算法原理及简单实现相关推荐

  1. 一文搞懂 Raft 算法

    一文搞懂Raft算法 正文 raft是工程上使用较为广泛的强一致性.去中心化.高可用的分布式协议.在这里强调了是在工程上,因为在学术理论界,最耀眼的还是大名鼎鼎的Paxos.但Paxos是:少数真正理 ...

  2. 一文搞懂线程池原理——Executor框架详解

    文章目录 1 使用线程池的好处 2 Executor 框架 2.1 Executor 框架结构 2.2 Executor 框架使用示意图 2.3 Executor 框架成员 2.3.1 Executo ...

  3. RSA算法原理(简单易懂)

    1. 什么是RSA RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法.在了解RSA算法之前,先熟悉下几个术语  根据密钥的使用方法,可以将密码分为对称密码和公钥密码  对称密码 ...

  4. 一文搞懂H264量化原理以及计算过程

    1.概述 量化是使数据比特率下降的有效工具.量化过程的输入值动态范围很大,需要较多的比特才能表示一个数值,量化后的输出则只需要较小比特表示. 量化是不可逆过程,处理过程中有信息丢失,存在量化误差. H ...

  5. 一文搞懂 Web Worker(原理到实践)

    作者:poetry 原文地址:https://mp.weixin.qq.com/s/XF7qOhbBtYlwADCiyxbT-w Web Worker 作为浏览器多线程技术,在页面内容不断丰富,功能日 ...

  6. 一文搞懂Raft算法

    英文解析: 1 follower : 信徒 2 candidate :候选人 3 majority :多数 4 term :术语 5 election :选举 6 leader :领导 7 repli ...

  7. (单源最短路径)一文搞懂dijkstra算法

    前言 大家好,我是bigsai,今天给大家讲讲Dijkstra算法,下次拿着这个算法找女神少绕路,有女朋友的可以试试行不行的通. 对于Dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较 ...

  8. 一文搞懂CDN加速原理

    目录 一.什么是 CDN 二.CDN工作原理 传统访问过程 CDN访问过程 CDN网络的组成要素 三.名词解释 CNAME记录(CNAME record) CNAME域名 DNS 回源host 协议回 ...

  9. raft算法mysql主从复制_一文搞懂Raft算法

    raft是工程上使用较为广泛的强一致性.去中心化.高可用的分布式协议.在这里强调了是在工程上,因为在学术理论界,最耀眼的还是大名鼎鼎的Paxos.但Paxos是:少数真正理解的人觉得简单,尚未理解的人 ...

最新文章

  1. uboot启动流程概述_关于RISCV启动部分的思考~
  2. WindowsPhone 7.8 Tiles 3 : 7.8的Tiles利器mangopollo
  3. HTML5的新增功能
  4. 回溯法:批量作业调度
  5. 【Tensorflow】 Object_detection之训练PASCAL VOC数据集
  6. Mysql索引介绍及常见索引的区别
  7. 输出结果 配置_经典架构新玩法:用单端仪表放大器实现全差分输出
  8. 【图像处理】U-Net中的重叠-切片(Overlap-tile)
  9. ExtJs五(ExtJs Mvc登录优化)
  10. 特斯拉CEO马斯克再卖4套房 挂牌价6250万美元
  11. ACL限制vlan间的访问
  12. 逆向某某单车-iOS客户端
  13. 解决“C:\Windows\System32\ntdll.dll”。无法查找或打开 PDB 文件问题
  14. 程序员面试金典——9.8硬币表示
  15. 在QGIS中使用GEE插件
  16. Matlab 2020b安装教程
  17. Oracle安装基本步骤
  18. 计算机系统保密检查整改情况函,民政局保密工作整改情况的报告
  19. sqlserver 日期与字符串之间的转换
  20. 路飞项目整体流程(二)

热门文章

  1. loj 1251(2-sat + 输出一组可行解)
  2. Centos7之Gcc安装
  3. Open suse下 vi 语法加亮设置 显示
  4. 浅析去中化区块链游戏资产交易平台
  5. linux 安装 python3
  6. Swift4.1第二章 The Basics
  7. 树(1)------实现和遍历
  8. 设置virgo-tomcat-server的JVM内存
  9. FTP开启虚拟用户访问
  10. DNS and Bind (二)