1 系列目录

  • dubbo源码分析系列(1)扩展机制的实现
  • dubbo源码分析系列(2)服务的发布
  • dubbo源码分析系列(3)服务的引用
  • dubbo源码分析系列(4)dubbo通信设计

2 SPI扩展机制

站在一个框架作者的角度来说,定义一个接口,自己默认给出几个接口的实现类,同时允许框架的使用者也能够自定义接口的实现。现在一个简单的问题就是:如何优雅的根据一个接口来获取该接口的所有实现类呢?

这就需要引出java的SPI机制了

2.1 SPI介绍与demo

这些内容就不再多说了,网上搜一下,一大堆,具体可以参考这篇博客Java SPI机制简介;

我这里给出一个简单的demo:

定义一个接口:com.demo.dubbo.demo.spi.service.HelloService

接口的实现类:

com.demo.dubbo.demo.spi.service.impl.DefaultHelloService
com.demo.dubbo.demo.spi.service.impl.CustomHelloService

然后在类路径下,创建META-INF/services/com.demo.dubbo.demo.spi.service.HelloService文件,内容如下:

com.demo.dubbo.demo.spi.service.impl.DefaultHelloService
com.demo.dubbo.demo.spi.service.impl.CustomHelloService

整体结构如下图所示:

使用方式如下:

ServiceLoader<HelloService> helloServiceLoader=ServiceLoader.load(HelloService.class);
for(HelloService item:helloServiceLoader){item.hello();
}

2.2 ServiceLoader的源码分析

从上面可以看到,先根据ServiceLoader的load静态方法根据目标接口加载出一个ServiceLoader实例,然后可以遍历这个实例(实现了Iterable接口),获取到接口的所有实现类

来看下ServiceLoader的几个重要属性:

要加载的接口
private Class<S> service;// The class loader used to locate, load, and instantiate providers
private ClassLoader loader;// 用于缓存已经加载的接口实现类,其中key为实现类的完整类名
private LinkedHashMap<String,S> providers = new LinkedHashMap<>();// 用于延迟加载接口的实现类
private LazyIterator lookupIterator;

首先第一步:获取一个ServiceLoader<HelloService> helloServiceLoader实例,此时还没有进行任何接口实现类的加载操作,属于延迟加载类型的。只是创建了LazyIterator lookupIterator对象而已。

第二步:ServiceLoader实现了Iterable接口,即实现了该接口的iterator()方法,实现内容如下:

public Iterator<S> iterator() {return new Iterator<S>() {Iterator<Map.Entry<String,S>> knownProviders= providers.entrySet().iterator();public boolean hasNext() {if (knownProviders.hasNext())return true;return lookupIterator.hasNext();}public S next() {if (knownProviders.hasNext())return knownProviders.next().getValue();return lookupIterator.next();}public void remove() {throw new UnsupportedOperationException();}};
}

for循环遍历ServiceLoader的过程其实就是调用上述hasNext()和next()方法的过程

第一次循环遍历会使用lookupIterator去查找,之后就缓存到providers中。LazyIterator会去加载类路径下/META-INF/services/接口全称 文件的url地址,使用如下代码来加载:

String fullName = "META-INF/services/" + service.getName();
loader.getResources(fullName)

文件加载并解析完成之后,得到一系列的接口实现类的完整类名,调用next()方法时才回去真正执行接口实现类的加载操作,并根据无参构造器创建出一个实例,存到providers中;

之后再次遍历ServiceLoader,就直接遍历providers中的数据

2.3 ServiceLoader缺点分析

  • 虽然ServiceLoader也算是使用的延迟加载,但是基本只能通过遍历全部获取,也就是接口的实现类全部加载并实例化一遍。如果你并不想用某些实现类,它也被加载并实例化了,这就造成了浪费。

  • 获取某个实现类的方式不够灵活,只能通过Iterator形式获取,不能根据某个参数来获取对应的实现类

3 dubbo的扩展机制

3.1 简单功能介绍

dubbo的扩展机制和java的SPI机制非常相似,但是又增加了如下功能:

  • 1 可以方便的获取某一个想要的扩展实现,java的SPI机制就没有提供这样的功能
  • 2 对于扩展实现IOC依赖注入功能:

    举例来说:接口A,实现者A1、A2。接口B,实现者B1、B2。

    现在实现者A1含有setB()方法,会自动注入一个接口B的实现者,此时注入B1还是B2呢?都不是,而是注入一个动态生成的接口B的实现者B$Adpative,该实现者能够根据参数的不同,自动引用B1或者B2来完成相应的功能

  • 3 对扩展采用装饰器模式进行功能增强,类似AOP实现的功能

    还是以上面的例子,接口A的另一个实现者AWrapper1。大体内容如下:

    private A a; AWrapper1(A a){

       this.a=a;
    

    }

    因此,我们在获取某一个接口A的实现者A1的时候,已经自动被AWrapper1包装了。

3.2 dubbo的ExtensionLoader解析扩展过程

以下面的例子为例来分析下:

ExtensionLoader<Protocol> protocolLoader=ExtensionLoader.getExtensionLoader(Protocol.class);
Protocol  protocol=protocolLoader.getAdaptiveExtension();

其中Protocol接口定义如下:

@Extension("dubbo")
public interface Protocol {int getDefaultPort();@Adaptive<T> Exporter<T> export(Invoker<T> invoker) throws RpcException;@Adaptive<T> Invoker<T> refer(Class<T> type, URL url) throws RpcException;void destroy();}

对应的实现者如下:

第一步:根据要加载的接口创建出一个ExtensionLoader实例

ExtensionLoader中含有一个静态属性:

ConcurrentMap<Class<?>, ExtensionLoader<?>> EXTENSION_LOADERS = new ConcurrentHashMap<Class<?>, ExtensionLoader<?>>();

用于缓存所有的扩展加载实例,这里加载Protocol.class,就以Protocol.class为key,创建的ExtensionLoader为value存储到上述EXTENSION_LOADERS中

这里没有进行任何的加载操作。

我们先来看下,ExtensionLoader实例是如何来加载Protocol的实现类的:

  • 1 先解析Protocol上的Extension注解的name,存至String cachedDefaultName属性中,作为默认的实现
  • 2 到类路径下的加载 META-INF/services/com.alibaba.dubbo.rpc.Protocol文件

    该文件的内容如下:

    com.alibaba.dubbo.registry.support.RegistryProtocol com.alibaba.dubbo.rpc.protocol.ProtocolFilterWrapper com.alibaba.dubbo.rpc.protocol.ProtocolListenerWrapper com.alibaba.dubbo.rpc.protocol.dubbo.DubboProtocol com.alibaba.dubbo.rpc.protocol.injvm.InjvmProtocol com.alibaba.dubbo.rpc.protocol.rmi.RmiProtocol com.alibaba.dubbo.rpc.protocol.hessian.HessianProtocol

    然后就是读取每一行内容,加载对应的class。

  • 3 对于上述class分成三种情况来处理

    对于一个接口的实现者,ExtensionLoader分三种情况来分别存储对应的实现者,属性分别如下:

    Class<?> cachedAdaptiveClass; Set<Class<?>> cachedWrapperClasses; Reference<Map<String, Class<?>>> cachedClasses;

    情况1: 如果这个class含有Adaptive注解,则将这个class设置为Class<?> cachedAdaptiveClass。

    情况2: 尝试获取带对应接口参数的构造器,如果能够获取到,则说明这个class是一个装饰类即,需要存到Set<Class<?>> cachedWrapperClasses中

    情况3: 如果没有上述构造器。则获取class上的Extension注解,根据该注解的定义的name作为key,存至Reference<Map<String, Class<?>>> cachedClasses结构中

至此,解析文件过程结束。

以Protocol为例来详细介绍下整个过程:

  • 1 解析Protocol上的Extension注解的name

    @Extension("dubbo") public interface Protocol{

       //略
    

    }

    所以cachedDefaultName值为dubbo。

  • 2 解析类路径下的加载 META-INF/services/com.alibaba.dubbo.rpc.Protocol文件

    如DubboProtocol:

    @Extension(DubboProtocol.NAME) public class DubboProtocol extends AbstractProtocol {

       //略
    

    }

    没有Adaptive注解,同时只有无参构造器,所以只能存放到Reference<Map<String, Class<?>>> cachedClasses中,key就是上述DubboProtocol.NAME即dubbo。

    如ProtocolFilterWrapper:

    public class ProtocolFilterWrapper implements Protocol {

       private final Protocol protocol;public ProtocolFilterWrapper(Protocol protocol){if (protocol == null) {throw new IllegalArgumentException("protocol == null");}this.protocol = protocol;}
    

    }

    含有Protocol参数的构造器,作为一个装饰类,存放至Set<Class<?>> cachedWrapperClasses中

    同理ProtocolListenerWrapper:

    public class ProtocolListenerWrapper implements Protocol {

       private final Protocol protocol;public ProtocolListenerWrapper(Protocol protocol){if (protocol == null) {throw new IllegalArgumentException("protocol == null");}this.protocol = protocol;}
    

    }

    含有Protocol参数的构造器,作为一个装饰类,存放至Set<Class<?>> cachedWrapperClasses中。

3.3 dubbo的ExtensionLoader获取扩展的过程

以获取DubboProtocol为例

ExtensionLoader<Protocol> protocolLoader=ExtensionLoader.getExtensionLoader(Protocol.class);
Protocol dubboProtocol=protocolLoader.getExtension(DubboProtocol.NAME);

获取过程如下:

private T createExtension(String name) {Class<?> clazz = getExtensionClasses().get(name); if (clazz == null) { throw findException(name);}try {T instance = injectExtension((T) clazz.newInstance());Set<Class<?>> wrapperClasses = cachedWrapperClasses; if (wrapperClasses != null && wrapperClasses.size() > 0) {for (Class<?> wrapperClass : wrapperClasses) { instance = injectExtension((T) wrapperClass.getConstructor(type).newInstance(instance));}} return instance;} catch (Throwable t) { throw new IllegalStateException("Extension instance(name: " + name + ", class: " +type + ")  could not be instantiated: " + t.getMessage(), t);}
}

大致分成4步:

  • 1 根据name获取对应的class

    首先获取ExtensionLoader<Protocol>对象的Reference<Map<String, Class<?>>> cachedClasses属性,如果为空则表示还没有进行解析,则开始进行上面的解析。解析完成之后,根据name获取对应的class,这里便获取到了DubboProtocol.class

  • 2 根据获取到的class创建一个实例

  • 3 对获取到的实例,进行依赖注入

  • 4 对于上述经过依赖注入的实例,再次进行包装。即遍历Set<Class<?>> cachedWrapperClasses中每一个包装类,分别调用带Protocol参数的构造函数创建出实例,然后同样进行依赖注入

    以Protocol为例,cachedWrapperClasses中存着上述提到过的ProtocolFilterWrapper、ProtocolListenerWrapper。分别会对DubboProtocol实例进行包装,这个比较好理解的

下面对于这个依赖注入的过程就要详细的说明下,来看下这个过程:

private T injectExtension(T instance) {try {for (Method method : instance.getClass().getMethods()) {if (method.getName().startsWith("set")&& method.getParameterTypes().length == 1&& Modifier.isPublic(method.getModifiers())) {Class<?> pt = method.getParameterTypes()[0];if (pt.isInterface() && getExtensionLoader(pt).getSupportedExtensions().size() > 0) {try {Object adaptive = getExtensionLoader(pt).getAdaptiveExtension();method.invoke(instance, adaptive);} catch (Exception e) {logger.error("fail to inject via method " + method.getName()+ " of interface " + type.getName() + ": " + e.getMessage(), e);}}}}} catch (Exception e) {logger.error(e.getMessage(), e);}return instance;
}

从上面可以看到,进行注入的条件如下:

  • set开头的方法
  • 方法的参数只有一个
  • 方法必须是public
  • 方法的参数必须是接口,并且是ExtensionLoader能够获取其扩展类

我们知道一个接口的实现者可能有多个,此时到底注入哪一个呢?

此时采取的策略是,并不去注入一个具体的实现者,而是注入一个动态生成的实现者,这个动态生成的实现者的逻辑是确定的,能够根据不同的参数来使用不同的实现者实现相应的方法。这个动态生成的实现者的class就是ExtensionLoader的Class<?> cachedAdaptiveClass

以Protocol为例,动态生成的Protocol实现者大概如下:

class Protocol$Adpative implements Protocol{public com.alibaba.dubbo.rpc.Exporter export(com.alibaba.dubbo.rpc.Invoker arg0) throws com.alibaba.dubbo.rpc.RpcException{if (arg0 == null)  { throw new IllegalArgumentException("com.alibaba.dubbo.rpc.Invoker argument == null"); }if (arg0.getUrl() == null) { throw new IllegalArgumentException("com.alibaba.dubbo.rpc.Invoker argument getUrl() == null"); }com.alibaba.dubbo.common.URL url = arg0.getUrl();String extName = ( url.getProtocol() == null ? "dubbo" : url.getProtocol() );if(extName == null) {throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.rpc.Protocol) name from url(" + url.toString() + ") use keys([protocol])"); }com.alibaba.dubbo.rpc.Protocol extension = (com.alibaba.dubbo.rpc.Protocol)com.alibaba.dubbo.common.ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.rpc.Protocol.class).getExtension(extName);return extension.export(arg0);}public com.alibaba.dubbo.rpc.Invoker refer(java.lang.Class arg0,com.alibaba.dubbo.common.URL arg1) throws com.alibaba.dubbo.rpc.RpcException{if (arg1 == null)  { throw new IllegalArgumentException("url == null"); }com.alibaba.dubbo.common.URL url = arg1;String extName = ( url.getProtocol() == null ? "dubbo" : url.getProtocol() );if(extName == null) {throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.rpc.Protocol) name from url(" + url.toString() + ") use keys([protocol])"); }com.alibaba.dubbo.rpc.Protocol extension = (com.alibaba.dubbo.rpc.Protocol)com.alibaba.dubbo.common.ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.rpc.Protocol.class).getExtension(extName);return extension.refer(arg0, arg1);}public void destroy(){throw new UnsupportedOperationException("method public abstract void com.alibaba.dubbo.rpc.Protocol.destroy() of interface com.alibaba.dubbo.rpc.Protocol is not adaptive method!");}
}

从上面的代码中可以看到,Protocol$Adpative是根据URL参数中protocol属性的值来选择具体的实现类的。

如值为dubbo,则从ExtensionLoader<Protocol>中获取dubbo对应的实例,即DubboProtocol实例

如值为hessian,则从ExtensionLoader<Protocol>中获取hessian对应的实例,即HessianProtocol实例

也就是说Protocol$Adpative能够根据url中的protocol属性值动态的采用对应的实现。

对于上述获取动态实现者即Protocol$Adpative的过程还需要补充一些细节内容:

  • 1 要求对应的接口中的某些方法必须含有Adaptive注解,没有Adaptive注解,则表示不需要生成动态类
  • 2 对于接口的方法中不含Adaptive注解的,全部是不可调用的,如上述的destroy()方法
  • 3 含有Adaptive注解的方法必须含有URL类型的参数,或者能够获取到URL,分别如上述的refer方法和export方法
  • 4 从URL中根据什么参数来获取实现者信息呢?以Protocol为例,参数就为"protocol",默认是接口简单名称首字母小写或者接口中指定的默认实现,对于别的接口,我们从url的哪个参数中获取对应的实现者呢?这就可以从Adpative注解中给出,下面给出一个Transporter例子

Transporter接口内容如下:

@Extension("netty")
public interface Transporter {@Adaptive({Constants.SERVER_KEY, Constants.TRANSPORTER_KEY})Server bind(URL url, ChannelHandler handler) throws RemotingException;@Adaptive({Constants.CLIENT_KEY, Constants.TRANSPORTER_KEY})Client connect(URL url, ChannelHandler handler) throws RemotingException;}

接口Transporter指定的默认实现是"netty",同时@Adaptive注解中又给出了"client"和"transporter"。

所以获取实现的过程如下:

public com.alibaba.dubbo.remoting.Client connect(com.alibaba.dubbo.common.URL arg0,com.alibaba.dubbo.remoting.ChannelHandler arg1) throws com.alibaba.dubbo.remoting.RemotingException{if (arg0 == null)  { throw new IllegalArgumentException("url == null"); }com.alibaba.dubbo.common.URL url = arg0;String extName = url.getParameter("client", url.getParameter("transporter", "netty"));if(extName == null) {throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.remoting.Transporter) name from url(" + url.toString() + ") use keys([client, transporter])"); }com.alibaba.dubbo.remoting.Transporter extension = (com.alibaba.dubbo.remoting.Transporter)com.alibaba.dubbo.common.ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.remoting.Transporter.class).getExtension(extName);return extension.connect(arg0, arg1);
}

String extName = url.getParameter("client", url.getParameter("transporter", "netty"));

先根据client来获取,如果获取不到再根据transporter来获取,如果还获取不到,则直接使用Transporter默认指定的netty。

至此,dubbo的ExtensionLoader的内容大概就说完了。

4 结束语

下一篇文章就开始介绍下,服务器端暴漏服务和向注册中心注册服务的过程

dubbo源码分析系列(1)扩展机制的实现相关推荐

  1. dubbo源码分析系列——dubbo-cluster模块源码分析

    2019独角兽企业重金招聘Python工程师标准>>> 模块功能介绍 该模块的使用介绍请参考dubbo官方用户手册如下章节内容. 集群容错 负载均衡 路由规则 配置规则 注册中心参考 ...

  2. apache dubbo 源码分析系列汇总

    Dubbo(读音[ˈdʌbəʊ])是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,可以和 Spring框架无缝集成.后面捐献给了知名的开源社区 ...

  3. Dubbo源码分析系列-深入RPC协议扩展

    导语   在之前的博客里面提到了关于扩展机制以及SPI的原理,这篇博客主要来讨论一下关于协议的扩展问题,在系统与系统之间通信就需要两个系统之间遵循相同的协议.而现在被熟知的常用的协议有TCP/IP协议 ...

  4. Dubbo源码分析系列-深入Dubbo SPI机制

    导语   在之前的博客中介绍过关于Java中SPI的机制,也简单的分析了关于Java中SPI怎么去使用.SPI的全称Service Provider Interface,是一种服务发现机制.SPI的本 ...

  5. Dubbo源码分析系列之-深入Dubbo扩展机制

    导语:   在之前的博客中分析过Java的SPI机制,其实Dubbo的扩展点加载机制也是从JDK表中的SPI(Service Provider Interface)机制中开发而来,只不过在原生的基础上 ...

  6. Dubbo源码分析系列-Dubbo的动态编译原理

    导语   Java程序时运行在JVM中的Class文件,在一般的情况下都是把左右的Java文件编写完成之后,统一进行编译操作,做完编译操作之后,统一由JVM进行加载.而所谓的动态编译则是在JVM进程运 ...

  7. Dubbo源码分析系列之-整体架构设计

    导语:   在了解一个框架的源码的时候,第一步要了解的就是源码的结构,接下来第二步需要了解的就是源码的架构,下面这张图在Dubbo官网上所展示的Dubbo的架构设计图.接下来就来详细的分析一下这张图. ...

  8. Dubbo 源码分析 - 集群容错之 LoadBalance

    1.简介 LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载"均摊"到不同的机器上.避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况.通 ...

  9. Dubbo 源码分析 - 集群容错之 Cluster

    1.简介 为了避免单点故障,现在的应用至少会部署在两台服务器上.对于一些负载比较高的服务,会部署更多台服务器.这样,同一环境下的服务提供者数量会大于1.对于服务消费者来说,同一环境下出现了多个服务提供 ...

最新文章

  1. spring中控制器和服务层校验的实现原理
  2. Ubuntu apt安装/卸载软件和设置软件源
  3. 【Python】25个好用到爆的一行Python代码,建议收藏
  4. sql intersect mysql_SQL INTERSECT子句
  5. AI产品经理必修课:机器学习算法
  6. latex 小于_数学公式怎么快速输入?Latex语法了解一下
  7. 如何制作一个塔防游戏 Cocos2d x 2 0 4
  8. java上传文件的二进制_文件的上传:二进制文件的上传;
  9. vuejs+webpack环境搭建
  10. ReentrantLock与Condition构造有界缓存队列与数据栈
  11. MongoDB 下载地址列表
  12. kk每日一句:第一句
  13. 【今日头条】米兜Java全部资料被曝光
  14. 服务器空文件夹无法删除怎么办,为什么文件夹删不掉
  15. 这就是你日日夜夜想要的docker!!!---------Harbor私有仓库
  16. keyshot渲染图文教程_keyshot基础图文教程,手把手教你用keyshot制作动画效果
  17. 华米Amazfit GTS 2e用续航和高性价比征服外媒
  18. vcruntime140d.dll丢失的解决方法_vcruntime140d.dll修复工具下载
  19. 程序设计天梯赛——T1(15分)java版
  20. PWmat案例赏析:利用激光脉冲实现绝缘体-金属超快转变

热门文章

  1. Boost:在GPU上对整数向量进行排序
  2. ITK:从测量列表创建直方图
  3. VTK:Filtering之TransformPolyData
  4. 嵌入式Linux的Qt
  5. C语言存储类、作用域、声明周期、链接属性
  6. QML基础类型之vector4d
  7. pinpoint全链路监控系统安装配置
  8. Solr(搜索引擎服务)和MongoDB通过mongodb-connector进行数据同步的解决方案,以及遇到的各种坑的总结(针对solr-5.3.x版本),mongodb和solr实现实时增量索引
  9. solrj的使用,环境准备,工程搭建,索引创建,添加\修改索引,删除索引,查询
  10. Linux下创建软链接