神经网络是什么

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:1、生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2、建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3、算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

谷歌人工智能写作项目:爱发猫

什么是神经网络,举例说明神经网络的应用

我想这可能是你想要的神经网络吧!

什么是神经网络:人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型好文案

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

神经网络参数如何确定

神经网络各个网络参数设定原则:①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。

如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。

故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。

因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。④、动态参数 动态系数的选择也是经验性的,一般取0.6~0.8。

⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。⑥、迭代次数 一般取1000次。

由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。⑦、Sigmoid参数该参数调整神经元激励函数形式,一般取0.9~1.0之间。⑧、数据转换。

在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:1.生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2.建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3.算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

我现在在做RBF神经网络k-means算法与RLS递归二乘法结合训练,求哪位大神能给个RLS的算法的MTALAB程序 20

直接用广义RBF网络我感觉比较方便,而且可以直接用newgrnn(P,T,spread)函数。RLS算法的MATLAB程序在附件,你可以参考下。

最小二乘大约是1795年高斯在他那星体运动轨道预报工作中提出的[1]。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法结构简单,编制程序也不困难,所以它颇受人们重视,应用相当广泛。

如用标准符号,最小二乘估计可被表示为:AX=B(2-43)上式中的解是最小化,通过下式中的伪逆可求得:A'AX=A'B(2-44)(A'A)^(-1)A'AX=(A'A)^(-1)A'B(2-45)由于(A'A)^-1A'A=I(2-46)所以有X=(A'A)^(-1)A'B(2-47)此即最小二乘的一次完成算法,现代的递推算法,更适用于计算机的在线辨识。

最小二乘是一种最基本的辨识方法,但它具有两方面的缺陷[1]:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的“数据饱和”现象。

针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。

神经网络中的前向和后向算法

神经网络中的前向和后向算法看了一段时间的深度网络模型,也在tf和theano上都跑了一些模型,但是感觉没有潜下去,对很多东西的理解都只停留在“这个是干什么的”层次上面。

昨天在和小老师一起看一篇文章的时候,就被问到RNN里面的后向传播算法具体是怎么推。当时心里觉得BP算法其实很熟悉啊,然后在推导的过程中就一脸懵逼了。

于是又去网上翻了翻相关内容,自己走了一遍,准备做个笔记,算是个交代。准备一个神经网络模型,比如:其中,[i1,i2]代表输入层的两个结点,[h1,h2]代表隐藏层的两个结点,[o1,o2]为输出。

[b1,b2]为偏置项。连接每个结点之间的边已经在图中标出。

来了解一下前向算法:前向算法的作用是计算输入层结点对隐藏层结点的影响,也就是说,把网络正向的走一遍:输入层—->隐藏层—->输出层计算每个结点对其下一层结点的影响。

??例如,我们要算结点h1的值,那么就是:是一个简单的加权求和。这里稍微说一下,偏置项和权重项的作用是类似的,不同之处在于权重项一般以乘法的形式体现,而偏置项以加法的形式体现。

??而在计算结点o1时,结点h1的输出不能简单的使用neth1的结果,必须要计算激活函数,激活函数,不是说要去激活什么,而是要指“激活的神经元的特征”通过函数保留并映射出来。

以sigmoid函数为例,h1的输出:于是最后o1的输出结果,也就是整个网络的一个输出值是:按照上面的步骤计算出out02,则[outo1,outo2]就是整个网络第一次前向运算之后得到的结果。

后向算法:??在实际情况中,因为是随机给定的权值,很大的可能(几乎是100%)得到的输出与实际结果之间的偏差非常的大,这个时候我们就需要比较我们的输出和实际结果之间的差异,将这个残差返回给整个网络,调整网络中的权重关系。

这也是为什么我们在神经网络中需要后向传播的原因。

其主要计算步骤如下:1.计算总误差2.隐藏层的权值更新在要更新每个边的权重之前,必须要知道这条边对最后输出结果的影响,可以用整体误差对w5求偏导求出:具体计算的时候,可以采用链式法则展开:在计算的时候一定要注意每个式子里面哪些自变量是什么,求导千万不要求错了。

??需要讲出来的一个地方是,在计算w1的权重时,Etotal中的两部分都需要对它进行求导,因为这条边在前向传播中对两个残差都有影响3.更新权重这一步里面就没什么东西了,直接根据学习率来更新权重:至此,一次正向+反向传播过程就到此为止,接下来只需要进行迭代,不断调整边的权重,修正网络的输出和实际结果之间的偏差(也就是training整个网络)。

人工神经网络原理的内容简介

为了满足读者应用人工神经网络解决实际问题的需要,书中还介绍了人工神经网络应用开发设计的全过程,并在附录中给出了BP神经网络实现预测、Hop6eld神经网络实现图像自联想记忆、模拟退火算法实现TSP和ARTI神经网络的源程序,供读者参考。

作为扩充知识,书中也简单介绍了人工神经网络的实现,以及人工神经网络技术与传统的基于规则的专家系统和模糊系统的融合。

《人工神经网络原理》既可作为计算机科学与技术、电子、通信与自动控制等相关专业的研究生和高年级本科生的参考书,也可作为相关专业领域的科研人员和工程技术人员的学习参考书。

有人可以介绍一下什么是"神经网络"吗?

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。

目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

"如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方式进行比较,就可以看出人脑具有以下鲜明特征:1.巨量并行性。

在冯·诺依曼机中,信息处理的方式是集中、串行的,即所有的程序指令都必须调到CPU中后再一条一条地执行。而人在识别一幅图像或作出一项决策时,存在于脑中的多方面的知识和经验会同时并发作用以迅速作出解答。

据研究,人脑中约有多达10^(10)~10^(11)数量级的神经元,每一个神经元具有103数量级的连接,这就提供了巨大的存储容量,在需要时能以很高的反应速度作出判断。

2.信息处理和存储单元结合在一起。在冯·诺依曼机中,存储内容和存储地址是分开的,必须先找出存储器的地址,然后才能查出所存储的内容。一旦存储器发生了硬件故障,存储器中存储的所有信息就都将受到毁坏。

而人脑神经元既有信息处理能力又有存储功能,所以它在进行回忆时不仅不用先找存储地址再调出所存内容,而且可以由一部分内容恢复全部内容。

当发生"硬件"故障(例如头部受伤)时,并不是所有存储的信息都失效,而是仅有被损坏得最严重的那部分信息丢失。3.自组织自学习功能。

冯·诺依曼机没有主动学习能力和自适应能力,它只能不折不扣地按照人们已经编制好的程序步骤来进行相应的数值计算或逻辑计算。

而人脑能够通过内部自组织、自学习的能力,不断地适应外界环境,从而可以有效地处理各种模拟的、模糊的或随机的问题。神经网络研究的主要发展过程大致可分为四个阶段:1.第一阶段是在五十年代中期之前。

西班牙解剖学家Cajal于十九世纪末创立了神经元学说,该学说认为神经元的形状呈两极,其细胞体和树突从其他神经元接受冲动,而轴索则将信号向远离细胞体的方向传递。

在他之后发明的各种染色技术和微电极技术不断提供了有关神经元的主要特征及其电学性质。

1943年,美国的心理学家W.S.McCulloch和数学家W.A.Pitts在论文《神经活动中所蕴含思想的逻辑活动》中,提出了一个非常简单的神经元模型,即M-P模型。

该模型将神经元当作一个功能逻辑器件来对待,从而开创了神经网络模型的理论研究。

1949年,心理学家D.O.Hebb写了一本题为《行为的组织》的书,在这本书中他提出了神经元之间连接强度变化的规则,即后来所谓的Hebb学习法则。

Hebb写道:"当神经细胞A的轴突足够靠近细胞B并能使之兴奋时,如果A重复或持续地激发B,那么这两个细胞或其中一个细胞上必然有某种生长或代谢过程上的变化,这种变化使A激活B的效率有所增加。

"简单地说,就是如果两个神经元都处于兴奋状态,那么它们之间的突触连接强度将会得到增强。

五十年代初,生理学家Hodykin和数学家Huxley在研究神经细胞膜等效电路时,将膜上离子的迁移变化分别等效为可变的Na+电阻和K+电阻,从而建立了著名的Hodykin-Huxley方程。

这些先驱者的工作激发了许多学者从事这一领域的研究,从而为神经计算的出现打下了基础。2.第二阶段从五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研制出了历史上第一个具有学习型神经网络特点的模式识别装置,即代号为MarkI的感知机(Perceptron),这一重大事件是神经网络研究进入第二阶段的标志。

对于最简单的没有中间层的感知机,Rosenblatt证明了一种学习算法的收敛性,这种学习算法通过迭代地改变连接权来使网络执行预期的计算。

稍后于Rosenblatt,B.Widrow等人创造出了一种不同类型的会学习的神经网络处理单元,即自适应线性元件Adaline,并且还为Adaline找出了一种有力的学习规则,这个规则至今仍被广泛应用。

Widrow还建立了第一家神经计算机硬件公司,并在六十年代中期实际生产商用神经计算机和神经计算机软件。

除Rosenblatt和Widrow外,在这个阶段还有许多人在神经计算的结构和实现思想方面作出了很大的贡献。例如,K.Steinbuch研究了称为学习矩阵的一种二进制联想网络结构及其硬件实现。

N.Nilsson于1965年出版的《机器学习》一书对这一时期的活动作了总结。3.第三阶段从六十年代末到八十年代初。

第三阶段开始的标志是1969年M.Minsky和S.Papert所著的《感知机》一书的出版。

该书对单层神经网络进行了深入分析,并且从数学上证明了这种网络功能有限,甚至不能解决象"异或"这样的简单逻辑运算问题。同时,他们还发现有许多模式是不能用单层网络训练的,而多层网络是否可行还很值得怀疑。

由于M.Minsky在人工智能领域中的巨大威望,他在论著中作出的悲观结论给当时神经网络沿感知机方向的研究泼了一盆冷水。

在《感知机》一书出版后,美国联邦基金有15年之久没有资助神经网络方面的研究工作,前苏联也取消了几项有前途的研究计划。

但是,即使在这个低潮期里,仍有一些研究者继续从事神经网络的研究工作,如美国波士顿大学的S.Grossberg、芬兰赫尔辛基技术大学的T.Kohonen以及日本东京大学的甘利俊一等人。

他们坚持不懈的工作为神经网络研究的复兴开辟了道路。4.第四阶段从八十年代初至今。

1982年,美国加州理工学院的生物物理学家J.J.Hopfield采用全互连型神经网络模型,利用所定义的计算能量函数,成功地求解了计算复杂度为NP完全型的旅行商问题(TravellingSalesmanProblem,简称TSP)。

这项突破性进展标志着神经网络方面的研究进入了第四阶段,也是蓬勃发展的阶段。Hopfield模型提出后,许多研究者力图扩展该模型,使之更接近人脑的功能特性。

1983年,T.Sejnowski和G.Hinton提出了"隐单元"的概念,并且研制出了Boltzmann机。

日本的福岛邦房在Rosenblatt的感知机的基础上,增加隐层单元,构造出了可以实现联想学习的"认知机"。Kohonen应用3000个阈器件构造神经网络实现了二维网络的联想式学习功能。

1986年,D.Rumelhart和J.McClelland出版了具有轰动性的著作《并行分布处理-认知微结构的探索》,该书的问世宣告神经网络的研究进入了高潮。

1987年,首届国际神经网络大会在圣地亚哥召开,国际神经网络联合会(INNS)成立。

随后INNS创办了刊物《JournalNeuralNetworks》,其他专业杂志如《NeuralComputation》,《IEEETransactionsonNeuralNetworks》,《InternationalJournalofNeuralSystems》等也纷纷问世。

世界上许多著名大学相继宣布成立神经计算研究所并制订有关教育计划,许多国家也陆续成立了神经网络学会,并召开了多种地区性、国际性会议,优秀论著、重大成果不断涌现。

今天,在经过多年的准备与探索之后,神经网络的研究工作已进入了决定性的阶段。日本、美国及西欧各国均制订了有关的研究规划。日本制订了一个"人类前沿科学计划"。

这项计划为期15-20年,仅初期投资就超过了1万亿日元。在该计划中,神经网络和脑功能的研究占有重要地位,因为所谓"人类前沿科学"首先指的就是有关人类大脑以及通过借鉴人脑而研制新一代计算机的科学领域。

在美国,神经网络的研究得到了军方的强有力的支持。美国国防部投资4亿美元,由国防部高级研究计划局(DAPRA)制订了一个8年研究计划,并成立了相应的组织和指导委员会。

同时,海军研究办公室(ONR)、空军科研办公室(AFOSR)等也纷纷投入巨额资金进行神经网络的研究。DARPA认为神经网络"看来是解决机器智能的唯一希望",并认为"这是一项比原子弹工程更重要的技术"。

美国国家科学基金会(NSF)、国家航空航天局(NASA)等政府机构对神经网络的发展也都非常重视,它们以不同的形式支持了众多的研究课题。欧共体也制订了相应的研究计划。

在其ESPRIT计划中,就有一个项目是"神经网络在欧洲工业中的应用",除了英、德两国的原子能机构外,还有多个欧洲大公司卷进这个研究项目,如英国航天航空公司、德国西门子公司等。

此外,西欧一些国家还有自己的研究计划,如德国从1988年就开始进行一个叫作"神经信息论"的研究计划。我国从1986年开始,先后召开了多次非正式的神经网络研讨会。

1990年12月,由中国计算机学会、电子学会、人工智能学会、自动化学会、通信学会、物理学会、生物物理学会和心理学会等八个学会联合在北京召开了"中国神经网络首届学术会议",从而开创了我国神经网络研究的新纪元。

神经网络实现逻辑运算,神经网络 最小二乘法相关推荐

  1. 3.8 神经网络解决逻辑运算问题-机器学习笔记-斯坦福吴恩达教授

    神经网络解决逻辑运算问题 神经网络通过不同的架构设置,来完成不同的任务,比如我们看到一半的逻辑与运算: x1ANDx2={1ifx1=1andx2=10otherwisex_1\ AND\ x_2=\ ...

  2. 用神经网络表示与逻辑,神经网络实现逻辑运算

    数据挖掘中的神经网络和模糊逻辑的概念是啥? [神经网络]人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectio ...

  3. 基于神经网络的系统辨识,神经网络与图像识别

    系统辨识的方法 经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法.脉冲响应法.频率响应法.相关分析法.谱分析法.最小二乘法和极大似然法等. 其中最小二乘法(LS)是一种经典的和最基本的,也 ...

  4. 从神经元到神经网络、从神经网络到深度学习:神经网络、深度学习、神经元、神经元模型、感知机、感知机困境、深度网络

    从神经元到神经网络.从神经网络到深度学习:神经网络.深度学习.神经元.神经元模型.感知机.感知机困境.深度网络 目录 从神经元到神经网络.从神经网络到深度学习 神经网络:

  5. BP神经网络与卷积神经网络(CNN)

    BP神经网络与卷积神经网络(CNN) 1.BP神经网络  1.1 神经网络基础  神经网络的基本组成单元是神经元.神经元的通用模型如图 1所示,其中常用的激活函数有阈值函数.sigmoid函数和双曲正 ...

  6. 【数据挖掘】卷积神经网络 ( 视觉原理 | CNN 模仿视觉 | 卷积神经网络简介 | 卷积神经网络组成 | 整体工作流程 | 卷积计算图示 | 卷积计算简介 | 卷积计算示例 | 卷积计算参数 )

    文章目录 I . 人类的视觉原理 II . 卷积神经网络 模仿 视觉原理 III . 卷积神经网络简介 IV . 卷积神经网络 组成 V . 卷积神经网络 工作流程 VI . 降低样本参数数量级 VI ...

  7. 深度学习(神经网络) —— BP神经网络原理推导及python实现

    深度学习(神经网络) -- BP神经网络原理推导及python实现 摘要 (一)BP神经网络简介 1.神经网络权值调整的一般形式为: 2.BP神经网络中关于学习信号的求取方法: (二)BP神经网络原理 ...

  8. matlab神经网络工具箱创建神经网络,matlab神经网络工具箱创建神经网络

    matlab神经网络工具箱创建神经网络 为了看懂师兄的文章中使用的方法,研究了一下神经网络 昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,百度知道里倒是有一个,可以运行的,先贴着做标本 % ...

  9. 卷积网络和卷积神经网络_卷积神经网络的眼病识别

    卷积网络和卷积神经网络 关于这个项目 (About this project) This project is part of the Algorithms for Massive Data cour ...

最新文章

  1. 收藏 | 数据智能与计算机图形学领域2019推荐论文列表(附链接)
  2. cordova ios的问题
  3. 拼音开头有什么字_语文基础 孩子刚上一年级学习拼音太难了?家长在家这样教真不比老师差!...
  4. 使用纯HTML和OmniFaces构建动态响应的多级菜单
  5. linux关闭交互模式,linux – 关闭cp(copy)命令的交互模式(cp:overwrite?)
  6. R语言中dim函数_R语言--向量化计算(apply族函数)
  7. kendo treeview 修改节点显示值_VBA学习笔记60-1: Treeview控件
  8. java discard方法,Java ByteBuf.discardReadBytes方法代码示例
  9. 嘀嗒公司被约谈 要求全面暂停进出京跨城网约车、顺风车等业务
  10. 9 位 IEEE Fellow 确认出席 2019 嵌入式智能国际大会!
  11. python将非0数视为false_Python Numpy – 将小数字视为零
  12. linux容器返回宿主机,Linux下Docker容器访问宿主机网络
  13. 【转】mysql多表关联查询
  14. Java八大基础数据类型转换
  15. 浅析免费加密软件应该如何选择性下载
  16. matlab正太分布的反函数,怎样用matlab求标准正态分布函数的反函数函数值
  17. 关于民族的数据库表设计
  18. 项目管理上的新问题 - 先有鸡还是先有蛋的问题新解
  19. Ceph常见问题处理(octopus 15.2.13)
  20. python录音详解_Python爬虫实战案例:取喜马拉雅音频数据详解

热门文章

  1. 旧金山大学模拟数据库B+树维护过程
  2. 公务员面试题——人际关系
  3. Git 命令之Git clean
  4. 司普沃浅谈油麦菜高产种植技术+管理要点
  5. 中标麒麟——初次体验,感觉流畅
  6. oracle里存储函数将金额数字转换成大写
  7. 自动语音对话系统 Python实现
  8. 计算机修改人类记忆曲线,Memory Helper - 艾宾浩斯遗忘曲线记忆助手
  9. 详解rails命令行
  10. 数据智能的本质和技术体系要求