算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。

那么我们应该如何去衡量不同算法之间的优劣呢?

主要还是从算法所占用的「时间」和「空间」两个维度去考量。

  • 时间维度:它定性描述该算法的运行时间,我们通常用「时间复杂度」来描述。
  • 空间维度:定性地描述该算法或程序运行所需要的存储空间大小,我们通常用「空间复杂度」来描述。

因此,评价一个算法的效率主要是看它的时间复杂度和空间复杂度情况。然而,有的时候时间和空间却又是「鱼和熊掌」,不可兼得的,那么我们就需要从中去取一个平衡点。

下面我来分别介绍一下「时间复杂度」和「空间复杂度」的计算方式。

一、时间复杂度

这个图中我们可以看出 不同算法的时间复杂度 在不同数据输入规模下的差异。

 O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(n^2)平方阶 < O(n^3)(立方阶) < O(2^n) (指数阶)

我们想要知道一个算法的「时间复杂度」,很多人首先想到的的方法就是把这个算法程序运行一遍,那么它所消耗的时间就自然而然知道了。

这种方式可以吗?当然可以,不过它也有很多弊端。
这种方式非常容易受运行环境的影响,在性能高的机器上跑出来的结果与在性能低的机器上跑的结果相差会很大。而且对测试时使用的数据规模也有很大关系。再者,并我们在写算法的时候,还没有办法完整的去运行呢。

因此,另一种更为通用的方法就出来了:「 大O符号表示法 」,即 T(n) = O(f(n))

我们先来看个例子:

for(i=1; i<=n; ++i)
{j = i;j++;
}

通过「 大O符号表示法 」,这段代码的时间复杂度为:O(n) ,为什么呢?

在 大O符号表示法中,时间复杂度的公式是: T(n) = O( f(n) ),其中f(n) 表示每行代码执行次数之和,而 O 表示正比例关系,这个公式的全称是:算法的渐进时间复杂度

我们继续看上面的例子,假设每行代码的执行时间都是一样的,我们用 1颗粒时间 来表示,那么这个例子的第一行耗时是1个颗粒时间,第三行的执行时间是 n个颗粒时间,第四行的执行时间也是 n个颗粒时间(第二行和第五行是符号,暂时忽略),那么总时间就是 1颗粒时间 + n颗粒时间 + n颗粒时间 ,即 (1+2n)个颗粒时间,即: T(n) = (1+2n)*颗粒时间,从这个结果可以看出,这个算法的耗时是随着n的变化而变化,因此,我们可以简化的将这个算法的时间复杂度表示为:T(n) = O(n)

为什么可以这么去简化呢,因为大O符号表示法并不是用于来真实代表算法的执行时间的,它是用来表示代码执行时间的增长变化趋势的。

所以上面的例子中,如果n无限大的时候,T(n) = time(1+2n)中的常量1就没有意义了,倍数2也意义不大。因此直接简化为T(n) = O(n) 就可以了。

常见的时间复杂度量级有:

  • 常数阶O(1)
  • 对数阶O(logN)
  • 线性阶O(n)
  • 线性对数阶O(nlogN)
  • 平方阶O(n²)
  • 立方阶O(n³)
  • K次方阶O(n^k)
  • 指数阶(2^n)

上面从上至下依次的时间复杂度越来越大,执行的效率越来越低。

下面选取一些较为常用的来讲解一下(没有严格按照顺序):

  1. 常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1),如:

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

  1. 线性阶O(n)

这个在最开始的代码示例中就讲解过了,如:

for(i=1; i<=n; ++i)
{j = i;j++;
}

这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。

  1. 对数阶O(logN)

还是先来看代码:

int i = 1;
while(i<n)
{i = i * 2;
}

从上面代码可以看到,在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。我们试着求解一下,假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2^n
也就是说当循环 log2^n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(logn)

  1. 线性对数阶O(nlogN)

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。

就拿上面的代码加一点修改来举例:

for(m=1; m<n; m++)
{i = 1;while(i<n){i = i * 2;}
}
  1. 平方阶O(n²)

平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。
举例:

for(x=1; i<=n; x++)
{for(i=1; i<=n; i++){j = i;j++;}
}

这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n*n),即 O(n²)
如果将其中一层循环的n改成m,即:

for(x=1; i<=m; x++)
{for(i=1; i<=n; i++){j = i;j++;}
}

那它的时间复杂度就变成了 O(m*n)

  1. 立方阶O(n³)K次方阶O(n^k)

参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似。

除此之外,其实还有 平均时间复杂度、均摊时间复杂度、最坏时间复杂度、最好时间复杂度 的分析方法,有点复杂,这里就不展开了。

 我们在决定使用那些算法的时候 ,不是时间复杂越低的越好,要考虑数据规模,如果数据规模很小 甚至可以用O(n^2)的算法比 O(n)的更合适,可以从图中看出2^n在n=0~10阶段是时间复杂度就比100n的更优。

二、空间复杂度

既然时间复杂度不是用来计算程序具体耗时的,那么我也应该明白,空间复杂度也不是用来计算程序实际占用的空间的。

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的一个量度,同样反映的是一个趋势,我们用 S(n) 来定义。

空间复杂度比较常用的有:O(1)、O(n)、O(n²),我们下面来看看:

  1. 空间复杂度 O(1)

如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)
举例:

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)

  1. 空间复杂度 O(n)

我们先看一个代码:

int[] m = new int[n]
for(i=1; i<=n; ++i)
{j = i;j++;
}

这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,这段代码的2-6行,虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)

以上,就是对算法的时间复杂度与空间复杂度基础的分析,欢迎大家一起交流。

算法的时间与空间复杂度(精细+举例)相关推荐

  1. 【算法】时间和空间复杂度

    文章目录 前言 一.时间复杂度 二.空间复杂度 三.常见的案例和示例 1. 线性查找(Linear Search) 2. 快速排序(Quick Sort) 3.动态规划(Dynamic Program ...

  2. 算法的时间与空间复杂度详解

    算法(Algorithm)是指用来操作数据.解决程序问题的一组方法.对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别. 那么我们应该如何去衡量不同 ...

  3. 一层循环时间复杂度_算法的时间与空间复杂度(一看就懂)

    算法(Algorithm)是指用来操作数据.解决程序问题的一组方法.对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别. 那么我们应该如何去衡量不同 ...

  4. 算法的时间与空间复杂度(一看就懂)

    算法(Algorithm)是指用来操作数据.解决程序问题的一组方法.对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别. 那么我们应该如何去衡量不同 ...

  5. 算法的时间和空间复杂度

    算法定义 算法由控制结构(顺序.分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果.为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题 ...

  6. a*算法的时间复杂度_数据结构与算法系列——时间、空间复杂度

    数据结构和算法本质就是帮我们用最快的时间和最少的空间来执行我们的代码.所以,执行效率是衡量一个算法的非常重要的指标.那如何来计算你的算法代码的执行效率呢?这就需要时间.空间复杂度来分析了. 有人可能会 ...

  7. 一层循环时间复杂度_数据结构与算法系列——时间、空间复杂度

    数据结构和算法本质就是帮我们用最快的时间和最少的空间来执行我们的代码.所以,执行效率是衡量一个算法的非常重要的指标.那如何来计算你的算法代码的执行效率呢?这就需要时间.空间复杂度来分析了. 有人可能会 ...

  8. 排序算法的时间与空间复杂度分析

    时间复杂度 时间复杂度是同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率.算法分析的目的在于选择合适算法和改进算法. 计算机科学中,算法的时间复杂度是一个函数,它定性描述了该算 ...

  9. a*算法的时间复杂度_算法的时间和空间复杂度,就是这么简单

    算法(Algorithm) 算法是程序用来操作数据.解决程序问题的一组方法.对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别. 那么我们应该如何去 ...

最新文章

  1. canny边缘检测 关于2个阈值参数
  2. Java培训好不好?零基础可以学吗?
  3. 贪吃蛇游戏(java)
  4. 第十五届智能车竞赛不公平竞争情况反映以及审议结果
  5. densenet tensorflow 中文汉字手写识别
  6. Mozilla发布2015年度报告:搜索合作成营收大头
  7. 【Android】安装时, 先拷so主目录(当前设备相关),再拷so次目录,不重复拷贝 (armeabi/armeabi-v7a) arm-v7不兼容arm-v5
  8. git压测出现访问500
  9. 四大主流芯片架构(X86、ARM、RISC-V和MIPS)
  10. ADPC2-G 希望
  11. Spring集成Quartz定时任务 ---- 定时执行
  12. 【Elasticsearch】玩转 Elasticsearch 7.8 的 SQL 功能
  13. Java中的文件压缩
  14. 区块链技术公司——资本重塑
  15. pycharm下的第一个函数程序
  16. Oracle建立用户和表空间
  17. js调用网页打印接口
  18. docke网络之bridge、host、none
  19. OpenWRT安装SIM7600CE 4G模块驱动
  20. 解决:java.lang.IllegalArgumentException: Can not set java.lang.Boolean field

热门文章

  1. 结构体的定义、初始化
  2. English - 英语学习小笔记
  3. ab测试时结果显示大量Request failed的情况分析
  4. 服务器设计之SEDA架构
  5. SSM框架的介绍与搭建
  6. 平板上pyto软件_平板电脑性价比排行大更新!
  7. 研发效能系列----开源的数据库版本管理工具Flyway
  8. 计算机控制课设串级回路,华北电力大学过程计算机控制课设ddc串级回路pid闭环.docx...
  9. 玩转OSGI-ApacheFelix(一)框架启动部署
  10. gaussDB200 单节点安装