这是Silvaco victory process第一个初始化语句

INITThis statement is used to initialize a simulation run. A simulation run can either be initialized by
loading a previously saved simulation structure or by setting up the simulation domain and creating
a planar initial structure. The INIT statement only initiates a new simulation run. To load a
previously saved simulation structure use the LOAD statement.Syntax INIT MATERIAL=<Name> DEPTH=<Value> GASHEIGHT=<Value> [SURFACE.Z=<Value>]( ( [ FROM=<Value or ListOfValues> TO=<Value or ListOfValues> ] [ LAYOUT=<Name> AT=<Value or ListOfValues> ] ) ||( LAYOUT=<Name> [ CELL=<Name> ] [ MAPFILE=<Name> ] [ RULEFILE=<Name> ][PADDING=<Value>] [PADDING.XM=<Value>] [PADDING.XP=<Value>] [PADDING.YM=<Value>] [PADDING.YP=<Value>] [SHIFT.X=<Value>] [SHIFT.Y=<Value>] ( QUARTER.XMYM || QUARTER.XMYP || QUARTER.XPYM || QUARTER.XPYP || HALF.XM || HALF.XP || HALF.YM || HALF.YP )( [ MOVELABEL.NAME=<Name> MOVELABEL.POS=<Type> ] ) [DONOTCUTLAYOUT] )[ RESOLUTION=<Value or ListOfValues> ] [ MESHDEPTH=<Number> ||REFINEMENTRATIO = <ListOfValues> ] [ DOPMESHFACTOR=<Value> ][ SUB.TYPE=<Name> ] [ SUB.ORI=<Name> ] [ SUB.ROT=<Value> ][ SUB.MISCUT.PHI=<Value> ] [SUB.MISCUT.THETA=<Value> ]( [ DOPANTS=<Name or ListOfNames> && DOPINGVALUES=<Value or ListOfValues> ] ||[ DOPANTS=<Name> && RESISTIVITY=<Value> ]                                 ||[ <BASICDOPANT> && RESISTIVITY=<Value> ]                                  ||[ C.<BASICDOPANT>=<Value> ] )[ FLOW.DIM=<Name> ] [FLIP] [ FLIPTHICKNESS=<Value> ] [SEPARATE.LAYERS] )( [ X.COMP=<Value> ] [ Y.COMP=<Value> ] [ Z.COMP=<Value> ] )[GR.SIZE][ COMP.DOPING ]Parameter          Type                   Default             Units         Supported only in
<BASICDOPANT>      None
AT                 Character                                   um
CELL               Character            The first cell in the GDSII file
DEPTH              Real                                        um             process mode
C.<BASICDOPANT>    Real                                       1/cm3
COMP.DOPING        Logical                ON/TRUE
DONOTCUTLAYOUT     Logical               OFF/FALSE
DOPANTS            List of Characters
DOPINGVALUES       List_of_Real                               1/cm3
DOPMESHFACTOR      Real                     1                                 process mode
FLIP               Logical               OFF/FALSE
FLIPTHICKNESS      Real                                        um
FLOW.DIM           Character             automatic                            process mode
FROM               List_of_Real                                um
GASHEIGHT          Real                                        um
GR.SIZE            Real                      0                 um
HALF.XM            Logical               OFF/FALSE
HALF.XP            Logical               OFF/FALSE
HALF.YM            Logical               OFF/FALSE
HALF.YP            Logical               OFF/FALSE
LAYOUT             Character              None
MAPFILE            Character
MATERIAL           Character
MESHDEPTH          Integer                   2                                process mode
MOVELABEL.NAME     Character                                                  cell mode
MOVELABEL.POS      Character                                                  cell mode
PADDING            Real                      0                 um
PADDING.XM         Real                      0                 um
PADDING.XP         Real                      0                 um
PADDING.YM         Real                      0                 um
PADDING.YP         Real                      0                 um
QUARTER.XMYM       Logical               OFF/FALSE
QUARTER.XMYP       Logical               OFF/FALSE
QUARTER.XPYM       Logical               OFF/FALSE
QUARTER.XPYP       Logical               OFF/FALSE
REFINEMENTRATIO    List of Integers          4                                process mode
RESISTIVITY        Real                                        Ohm
RESOLUTION         List_of_Real                                um             process mode
RULEFILE           Character
SEPARATE.LAYERS    Logical               OFF/FALSE
SHIFT.X            Real                     0.0                um
SHIFT.Y            Real                     0.0                um
SUB.MISCUT.THETA   Real               depends on material
SUB.MISCUT.PHI     Real               depends on material
SUB.ORI            Character               "100"
SUB.ROT            Real                      0               degree
SUB.TYPE           Character             "diamond"
SURFACE.Z          Real                     0.0                um             process mode
TO                 List_of_Real                                um
X.COMP             Real
Y.COMP             Real
Z.COMP             Real                            DescriptionParameter       Description
<BASICDOPANT>   One of the following :Aluminium, Antimony, Arsenic, Boron, Hydrogen, Indium, Nitrogen, PhosphorusAT              Selects a 2D cross-section within the mask (see LAYOUT parameter) or a 1D pointwithin the mask for simulation. You can perform a 2D simulation in a 2D cross-section of a mask by specifying theFROM, TO and AT parameters in the following manner:FROM=<x_min> TO=<x_max> AT=<y_position_in_the_mask> FLOW.DIM=2D_XZorFROM=<y_min> TO=<y_max> AT=<x_position_in_the_mask> FLOW.DIM=2D_YZThe value passed to the AT parameter is the x- or y-coordinate of the plane within themask where the 2D simulation will be performed. You must use FROM and TO parametersto indicate 2D simulation. If 2D simulation is chosen, then by default the value of FLOW.DIM parameter is 2D_XZ and AT refers to y-coordinate within the mask. In order tosimulate the 'vertical' cut through the mask you should explicitly set FLOW.DIM=2D_YZYou can perform a 1D simulation at a 1D cut-point of a mask by only specifying  theAT parameter in the following manner:  AT="<xpos>, <ypos>"<xpos> and <ypos> are the x and y-coordinate of the point within the mask where the1D simulation will be performed. If you define a 1D simulation by AT in this manner,the FROM and TO parameters must not be used. Otherwise, it will cause an error. You must use the AT parameter together with the LAYOUT parameter.C.<BASICDOPANT> You can start the simulation with a doped wafer. The parameter C.<BASICDOPANT>specifies the concentration of a dopant inside the wafer. You can specify multipleC.<BASICDOPANT> parameters. <BASICDOPANT> is one of the following :Aluminium, Antimony, Arsenic, Boron, Hydrogen, Indium, Nitrogen, PhosphorusCELL            A GDSII mask file usually contains several cells. Victory Process can only load oneof those cells. The CELL parameter is used to select the cell that will be loadedinto the internal mask set of Victory Process. If you do not specify the CELLparameter, the first cell from the GDSII file will be loaded. The CELL parameterwill only have an effect if a GDSII file is loaded. If a mask file in .lay format isloaded, the CELL parameter will be ignored.  COMP.DOPING     By setting COMP.DOPING=OFF no impurities which are related to the composition will be added.Important : You have to keep in mind that doping diffusion will not work properly when this parameter is used. This means you should not use this parameter in combination with DIFFUSE and EPITAXY statements.DEPTH           Determines the depth of the substrate material. The bottom of the simulation domainis filled up to the thickness specified by the DEPTH parameter with substratematerial while the rest of the domain is filled with "Gas". The total extension ofthe simulation domain is DEPTH + GASHEIGHT. DONOTCUTLAYOUT  By default loaded mask layout is cut to fit the simulation domain size. When this flag isset to TRUE the mask layout remains uncut. It may be useful when you want to start the simulation with only half or quarter of the symmetrical structure and to switch to the fullstructure using mirroring later in the deck (e.g. at the export stage). Without this flaginformatin about electrodes outside the initial simulation domain will be lost.DOPANTS         You can start the simulation with a doped wafer. The parameter DOPANTSspecifies the names of the dopants inside the wafer. The parameter DOPANTS alwayshas to be specified together with the parameter DOPINGVALUES. You can pass severalnames to the parameter DOPANTS, whereby the names must be separated by "\t", " ", or",". The order of the names in the DOPANTS string must correspond to the order ofthe values in the DOPINGVALUES string.  DOPINGVALUES    You can start the simulation with a doped wafer. The parameter DOPINGVALUESspecifies the concentration of the dopant (specified by means of the parameterDOPANTS) inside the wafer. The parameter DOPINGVALUES always has to be specifiedtogether with the parameter DOPANTS. You can pass several names to the parameterDOPINGVALUES, whereby the names must be separated by "\t", " ", or ",". The order ofthe names in the DOPINGVALUES string must correspond to the order of the values inthe DOPANTS string.  DOPMESHFACTOR   Victory Process uses different meshes to represent the geometry and to storevolumetric data (like doping or stress). By default, the resolution of the mesh,which is used to represent the volumetric data, is the same as the base meshresolution of the mesh to represent the geometry (see parameter RESOLUTION). Theparameter DOPMESHFACTOR is used to obtain a different resolution for the volumetricmesh. If the parameter DOPMESHFACTOR is specified, the element size of thevolumetric mesh resolution is multiplied by the factor supplied as an argument tothe parameter DOPMESHFACTOR. A value less than 1 reduces the number of mesh pointsin the volumetric mesh, while a value larger than 1 increases the number of meshpoints in the volumetric mesh. The number of mesh elements in each direction ismultiplied by this factor to total number of mesh elements and is multiplied byDOPMESHFACTOR^3. For example, a DOPMESHFACTOR of 2 means that the mesh is twice asfine in x, y, and z direction and that the total number of mesh elements is 8 timesthe number of mesh elements in the base mesh, which represents the geometry.FLIP            If used, the initial structure will be prepared for the flipping operation at certain stage of the simulation. In this case, the structure will consist ofthe initial material layer MATERIAL with thickness DEPTH, gas layer of thicknessGASHEIGHT, and another gas layer of the same thickness below the material layer.This second gas layer is named 'gasbackside' and will provide enough computational space for simulations to continue after flipping. If FLIP is not present, thestructure will consist of material and top gas layer only. Any calls of the FLIPstatement will produce an error.FLIPTHICKNESS   When FLIP is specified, a gas layer below the material layer will have a thicknessGASHEIGHT; in some simulations, we need to have thicker gas layer below material, and it is specified by this parameter. If FLIPTHICKNESS <= GASHEIGHT, thisparameter and its effects are ignored.FLOW.DIM        Determines the operational dimension mode of Victory Process to the start thesimulation with. The following operational modes are supported: 1D2D_XZ2D_YZ3DIf you do not specify an operational dimension mode Victory Process willautomatically start with a 1D simulation and will switch over to 2D and 3D whenevernecessary according to etching or deposition conditions.FROM            Specifies the extent of a 3D or 2D simulation domain. When you intend to perform a 2D simulation, you must specify the simulation domainvia the FROM and TO parameters, whereby you pass a single value to the parametersFROM and the TO..) FROM determines the x-coordinate of the left side of the simulation domain. .) TO determines the x-coordinate of the right side of the simulation domain. If you choose to perform a simulation in 2D_YZ mode (see the FLOW.DIM parameter),FROM and TO specify the y-limits of the simulation domain. If you also use a mask inthe simulation, then also use the AT parameter to specify where (x- or y-position,depending on value of FLOW.DIM parameter) thesimulation domain is located within the mask. For a 3D simulation, FROM and TO  are supplied with pairs of values, defining thesimulation domain's minimum x and y coordinates (FROM parameter) and domain'smaximum x and y coordinates (TO parameter). When you specify neither the FROM and TO parameters nor the LAYOUT parameter youinitialize a 1D simulation.GASHEIGHT       Describes the height of the gas above the substrate material. You will find thesurface of the substrate material at position 0 and substrate material in positivedirection (as in Athena) and "gas" material in negative direction (as inAthena). When the simulation domain is automatically set with a mask file (seeLAYOUT parameter), set the height of the gas region within the simulation domainabove the wafer with the GASHEIGHT parameter. GR.SIZE         Specifies grain size in deposited polysilicon layer. This parameter is used only when GRAINBASED model is specified in the METHOD statement. HALF.XM         Declares that only one half of the mask layout will be used as the simulation
HALF.XP         domain.
HALF.YM           HALF.XM: negative x-domain half
HALF.YP           HALF.XP: positive x-domain halfHALF.YM: negative y-domain halfHALF.YP: positive y-domain halfWhen applying one of those parameters, you have to be aware that all mask layerscontained with the mask file selected via the LAYOUT parameter should also satisfythis symmetry. If you consider a half of the structure, the padding is notapplied to the "cut off" sides.  LAYOUT          The name of the mask file that will be loaded. You can load mask files in .layformat and GDSII format. Mask files in .lay format can be created by MaskViews or byVictory Process. If the mask file is not located in the directory where VictoryProcess or DeckBuild was started, you must specify the relative of absolute path (inUnix format) to the mask file. If you do not specify the parameters FROM and TO, the size of the simulation domainis set according to the enclosing bounding box of the mask layers contained in themask file. You can adjust the simulation domain with the following parameters: PADDING, PADDING.XM, PADDING.XM, PADDING.YM, PADDING.YP, QUARTER.XMYM, QUARTER.XMYP, QUARTER.XPYM, QUARTER.XPYP, HALF.XM, HALF.XP, HALF.YMand HALF.YP.  MAPFILE         Specifies the name of the layer-map file that is used to translate numeric masknames of the GDSII file into names that are easier to understand. The translatednames are assigned to the masks in the internal mask set of Victory Process. Theformat of the layer-map file specified as an argument of the  MAPFILE parameter isidentical to the file used by CAD vendors to write GDSII files. Each row of thelayer-map file contains the following:  layer namelayer purpose GDSII layer number GDSII audiotapeIf you load a mask file in GDSII format and do not specify the MAPFILE parameter,the names of the masks in the mask set will be defined according to the followingrule: L#<layer_number>.<audiotape>or L#<layer_number>if the <audiotape> is zero.  For example, layer 15 audiotape 2 will match the mask with the name "L#15.2" in theinternal mask set of Victory Process, or layer 15 audiotape 0 will match the maskwith the name "L#15" in the internal mask set of Victory Process.MATERIAL        When the structure is initialized by the INIT statement, it consists of only onematerial. The name of this material is specified by means of the parameterMATERIAL. In terms of process technology, this can be considered as the wafermaterial.  Only single material structures can be created by the INITstatement. When you intend to simulate technology based on SOI or Si-SiGe wafers,you have to create the material stack within Victory Process, or you just simulatethe top wafer material where the active devices are located. MESHDEPTH       Determines how many levels of refinement can be used by the automatic and the manualmesh refinement procedures. The parameter MESHDEPTH together with the meshresolution (RESOLUTION) specify the maximum achievable resolution of the mesh. Themaximum achievable resolution is the resolution multiplied by 4(n-1) with n beingthe value assigned to MESHDEPTH. You must bear in mind that this is only theresolution to resolve geometrical corners. Material layers with a thickness down to1/100 of this achievable resolution can be treated successfully by VictoryProcess. For instance, if RESOLUTION="0.01, 0.01, 0.01" MESHDEPTH=2, the geometrical resolution around corners will be 2.5 nm and planar layer with athickness down to 0.25 A can be handled properly. The parameter DEPTH is mutuallyexclusive with the parameter REFINEMENTRATIO. MOVELABEL.NAME  Together with the parameter MOVELABEL.POS this parameter instructs Victory Process to move a label or an electrode of the mask from outside the simulation domain into the simulation domain. This obviously only makes sense if the simulation domain is set explicitly by means of the FROM and TO parameters and is smaller than the domain of the mask. The parameter MOVELABEL.NAME selects the electrode which shall be moved.Note : You can use multiple MOVELABEL.NAME=<Name> and MOVELABEL.POS=<Type>parameter pairs within one INIT statementMOVELABEL.POS   Together with the parameter MOVELABEL.NAME this parameter instructs Victory Process to move a label or an electrode of the mask from outside the simulation domain into the simulation domain. This obviously only makes sense if the simulation domain is set explicitly by means of the FROM and TO parameters and is smaller than the domain of the mask. The parameter MOVELABEL.POS determines the new position of the electrode. MOVELABEL.POS can take one of the following arguments LEDGE, REDGE, and LREDGES (or RLEDGES) moves the label or electrode to the left, right or left and right edges.TEDGE, BEDGE, and TBEDGES (or BTEDGES) moves the label or electrode to the top, bottom, or top and bottom edges. INBOX moves the label or electrode inside the box. Note : You can use multiple MOVELABEL.NAME=<Name> and MOVELABEL.POS=<Type>parameter pairs within one INIT statementPADDING         Determines the padding of the simulation domain around the mask, which is loaded viathe LAYOUT parameter. To pad the simulation domain in all four directions, you canuse the PADDING parameter. It determines the padding in um. PADDING.XM      Determines the padding of the simulation domain around the mask, which is loaded via
PADDING.XP      the PADDING.XM parameter. To pad the simulation domain individually in the various
PADDING.YM      axis directions, you can use the parameters:
PADDING.YP        PADDING.XM : pad negative x-domain sidePADDING.XP : pad positive x-domain sidePADDING.YM : pad negative Y-domain sidePADDING.YP : pad positive Y-domain sideThey determines the padding in um. You can use parameters PADDING and PADDING.<Side>together in a single statement, in which case the "global padding" (parameterPADDING) will be overridden by the "side-specific" padding value. QUARTER.XMYM    Declares that only one quarter of the mask layout will be used as the simulation
QUARTER.XMYP    domain :
QUARTER.XPYP      QUARTER.XMYM :   1. quadrant
QUARTER.XPYM      QUARTER.XMYP :   2. quadrant QUARTER.XPYP :   3. quadrant QUARTER.XPYM :   4. quadrant When applying one of those parameters, you have to be aware that all mask layerscontained within the mask file selected should also satisfy this symmetry. If youconsider a quarter of the structure, the padding is not applied to the "cut off"sides.REFINEMENTRATIO The list of positive integers divided by symbols ' ', ',', or '\t'. Each numberrepresents refinement ratio between adjacent refinement levels. Total number orrefinement levels in this case is equal to number of elements in the list plusone. The REFINEMENTRATIO parameter together with the mesh resolution (RESOLUTION)specify the maximum achievable resolution of the mesh. The maximum achievableresolution is the resolution divided by (ratio[0] * ratio[1] * ...), where ratio[i]is the i-th element of REFINEMENTRATIO list. This is only the  resolution to resolvegeometrical corners in process mode. Material layers with a thickness down to 1/100of this achievable resolution can be treated successfully by Victory Process. Forinstance, if RESOLUTION="0.01, 0.01, 0.01" REFINEMENTRATIO="4, 4", the geometrical resolution around corners will be 2.5 nm and planar layer with athickness down to 0.25 A can be handled properly. The parameter REFINEMENTRATIO ismutually exclusive with the parameter MESHDEPTH.RESISTIVITY     You can start the simulation with a doped wafer. You can specify this initial dopingby means of the resistivity. Victory Process converts this resistivity into a dopingconcentration using information from the material database (see section <bulk><resistivity>). You must specify the parameter RESISTIVITY together with one parameter <BASICDOPANT> or with the parameter DOPANTS.Note : The parameter DOPANTS my only contain a single dopant with used together with the parameter RESISTIVITY.RESOLUTION      Determines the resolution of the base geometry mesh in all three coordinatedirections. You can refine this mesh further by manual mesh refinement (seeREFINEGEOMESH statement) or by automatic refinement (see parameter  MESHDEPTH). Thebase mesh should not be too anisotropic (less than 2) to ensure proper accuracy ofthe level-set algorithms applied to move the material interfaces. Typically, thebase mesh should contain not less than 30 mesh lines in each direction to sufficientresolution. Conversely, it should not exceed 200 mesh lines to keep the memoryrequirements within reasonable limits.RULEFILE        Specifies the name of the rule file that is used to manipulate the mask layers. Forexample it can be used to define new masks using boolean operations with existing mask layers.SEPARATE.LAYERS Activates the mode that layers should be separated, even when they consist of the same materialSHIFT.X         Shift all layers of loaded mask layout along X axis by the value specified by this parameter.SHIFT.Y         Shift all layers of loaded mask layout along Y axis by the value specified by this parameter.SUB.MISCUT.THETA  The parameters SUB.MISCUT.PHI and SUB_MISCUT.THETA to INIT control the miscutof the substrate. The default values for the miscut depend on the material :Default miscut :sic-4h              :  phi=90°  theta=8°sic-6h              :  phi=90°  theta=4°gan                 :  phi=0°   theta=0.5°all other materials :  phi=0°   theta=0°SUB.MISCUT.PHI  The parameters SUB.MISCUT.PHI and SUB_MISCUT.THETA to INIT control the miscutof the substrate. The default values for the miscut depend on the material :Default miscut :sic-4h              :  phi=90°  theta=8°sic-6h              :  phi=90°  theta=4°gan                 :  phi=0°   theta=0.5°all other materials :  phi=0°   theta=0°SUB.ORI         Determines the crystal orientation of the wafer. You can choose from one of thethree crystal orientations for a diamond type crystal : "100""110""111"And one of the four crystal orientations for a hexagonal type crystal :"0001""000-1""11-20""1-100"Default orientation :diamond substrate   : <100>hexagonal substrate : <0001>SUB.ROT         Determines the crystal orientation of the x-axis of the simulation domain and hencethe alignment of the mask with the substrate.For diamond type crystal : SUB.ROT=0 means that the x-axis of the simulation domain is aligned with the <100> orientation of the silicon crystal. SUB.ROT=45 means that the x-axis of the simulation domain is aligned with the <110> orientation of the silicon crystal.For hexagonal type crystal :Orientation "0001" : This is SiC Si face Rotation 0 deg means that :the x axis of the simulation domain is orthogonal to an m-plane - <1-100>the y axis of the simulation domain is orthogonal to an a-plane - <11_20>Rotation 30 deg means that :the x axis of the simulation domain is orthogonal to an a-plane - <11_20>the y axis of the simulation domain is orthogonal to an m-plane - <1-100>                                  Orientation "000-1" : This is SiC C face                    Rotation 0 deg means that :the x axis of the simulation domain is orthogonal to an m-plane - <1-100>the y axis of the simulation domain is orthogonal to an a-plane - <11_20>Rotation 30 deg means that :the x axis of the simulation domain is orthogonal to an a-plane - <11_20>the y axis of the simulation domain is orthogonal to an m-plane - <1-100>Orientation "11-20" : This is SiC a faceRotation 0 deg means that :the x axis of the simulation domain is orthogonal to an m-plane - <1-100>the y axis of the simulation domain is orthogonal to an Si-plane - <0001>Orientation "1-100" :This is SiC m face Rotation 0 deg means that :the x axis of the simulation domain is orthogonal to an C-plane - <000-1>the y axis of the simulation domain is orthogonal to an a-plane - <11_20>SUB.TYPE        Determines the lattice type of the crystal. You can choose from one of the two crystal types :"diamond""hexagonal"   Victory Process takes the default value from the material database section :<material><bulk><crystaltype>The first crystaline material which appears within the simulation flow determines thethe crystal type.SURFACE.Z       Z coordinate of the initial substrate surface.TO              Defines one end of the simulation domain (see parameter FROM). X.COMP          For the deposition of a composite material, you can set the material composition with
Y.COMP          the X.COMP, Y.COMP and Z.COMP parameter. The correspondence between elements, forming the material
Z.COMP          and these parameters is set in the material database. ExamplesInitialize a new wafer for a 1D simulationINIT MATERIAL="silicon" \DEPTH=0.2 GASHEIGHT=0.8 \RESOLUTION=0.01  MESHDEPTH=2Initialize a new wafer for a 2D simulation in XZ plane.INIT MATERIAL="silicon" \FROM=0.1 TO=1.4 DEPTH=0.2 GASHEIGHT=0.8 \RESOLUTION=0.01  MESHDEPTH=2Initialize a new wafer for a 2D simulation in YZ plane making the 'vertical'
cut through the mask layout at position specified by AT parameter.INIT LAYOUT="masks.lay" MATERIAL="silicon" \RESOLUTION=0.01 FROM=0.2 TO=0.8" AT=0.55 FLOW.DIM=2D_YZInitialize a new wafer for 3D simulation with an automatically set simulation domainINIT LAYOUT="masks.lay" MATERIAL="silicon" \RESOLUTION="0.01, 0.01, 0.01" DEPTH=2  GASHEIGHT=0.8 MESHDEPTH=1 \PADDING=0.05 PADDING.XP=0.1 HALF.XPSpecify multiple dopants:INIT FROM="0, 0" TO="0.9, 0.7" \RESOLUTION="0.1, 0.1, 0.1" MESHDEPTH=2 DOPMESHFACTOR=1.5 \MATERIAL=silicon DEPTH=0.3 GASHEIGHT=0.8 \DOPANTS="boron, arsenic" DOPINGVALUES="1e15, 1e12"Specify single dopant:INIT FROM="0, 0" TO="0.9, 0.7" \RESOLUTION="0.1, 0.1, 0.1" MESHDEPTH=2 DOPMESHFACTOR=1.5 \MATERIAL=silicon DEPTH=0.3 GASHEIGHT=0.8 \DOPANTS=boron DOPINGVALUES=1e15Initialize a new wafer for simulation (mask alignment = <110>)INIT FROM="0, 0" TO="0.9, 0.7" \RESOLUTION="0.1, 0.1, 0.1" MESHDEPTH=2 \MATERIAL=silicon DEPTH=0.3 GASHEIGHT=0.8 \ORIENTATION=100 SUB.ROT=45Initialize a new wafer for double side 3D simulationINIT LAYOUT="masks.lay" MATERIAL="silicon" \FROM="0.1, 0.2" TO="1.2, 1.8" DEPTH=2 GASHEIGHT=0.8 \RESOLUTION=0.01 MESHDEPTH=3 \FLIPInitialize an SiC wafer for 3D simulation :INIT MATERIAL=sic-4h DEPTH=1.0 GASHEIGHT=0.5 SUB.TYPE="HEXAGONAL" SUB.ROT=0. \FROM="-1,-1" TO="1, 1" \RESOLUTION=0.05Initialize a wafer with resistivity :INIT MATERIAL="silicon" BORON RESISTIVITY=150 \FROM=0 TO=0.7  DEPTH=1 GASHEIGHT=1.0 \RESOLUTION=0.01

最新文章

  1. Ubuntu 18 snap 占用 100%,卸载 snap
  2. oracle 2日dba 11g,Oracle 11gR2 注意revoke dba 会一并回收通过”quota“分配的表空间限额...
  3. 7-4 找到共同的选修课-hebust (10 分)
  4. typescript利用接口类型声明变量_TypeScript入门指南(基础篇)
  5. Kafka解惑之Old Producer(4)——Case Analysis
  6. 7个HTML你可能不知道的使用技巧
  7. 2011年计算机二级试题,2011年3月全国计算机二级C++考试真题
  8. bzoj1003题解
  9. Python 列表 index( )方法
  10. isecure center 综合安防管理平台_企业综合安全管理平台
  11. Thread调用SaveFileDialog
  12. 惊!使用nw.js将vue项目打包为可在xp系统运行的桌面程序
  13. nios 双核 烧录_Nios程序烧写到EPCS方法
  14. 训练little wihte:events.out.tfevents到底是什么文件?
  15. android app消息推送,如何进行app消息推送(push)?
  16. MATLAB 自动控制原理 传递函数单位阶跃响应曲线绘制
  17. [Unix下C/C++开发] unix编程书籍推荐
  18. python数据导入与清洗_Python学习之 数据清洗之增删改查
  19. 基于android的电子词典设计_基于Android平台下的电子词典的设计与实现
  20. word如何快速统一图片大小

热门文章

  1. 应用物理学属于计算机,应用物理学专业属于什么学科
  2. 记一次edusrc实战cookie伪造
  3. chromebook安装devos和chrome os双启动经验分享
  4. java同步器有哪些_java 同步器 Semaphore、
  5. c语言编写温度监测界面,基于51单片机的温度检测系统_单片机C语言课题设计报告.doc...
  6. hikaricp使用
  7. 超简单的jquery 点击文本复制文本
  8. 串口485接法图_RS232转换为RS485的接线方法最好有图
  9. 【人月神话】01 人月神话
  10. 在 CentOS 中部署 KMS 服务器(vlmcsd)