原文地址:http://blog.sina.com.cn/s/blog_54c9ca5f0100dety.html

作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名YAGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。

八木天线定向工作的原理,可依据电磁学理论进行详尽地数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密切相关的是波长λ,长度略长于λ/4整数倍的导线呈电感性,长度略短于λ/4整数倍的导线呈电容性。由于主振子L采用长约λ/2的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器A比主振子略长,呈现感性,假设两者间距a为λ/4,以接收状态为例,从天线前方某点过来的电磁波将先到达主振子,并产生感应电动势ε1和感应电流I1,再经λ/4的距离后电磁波方到达反射器,产生感应电动势ε2和感应电流I2,因空间上相差λ/4的路程,故ε2比ε1滞后90°,又因反射器呈感性I2比ε2滞后90°,所以I2比ε1滞后180°,反射器感应电流I2产生辐射到达主振子形成的磁场H2又比I2滞后90°,根据电磁感应定律H2在主振子上产生的感应电动势ε1'比H2滞后90°,也就是ε1'比ε1滞后360°,即反射器在主振子产生的感应电动势ε1'与电磁信号源直接产生的感应电动势ε1是同相的,天线输出电压为两者之和。同理可推导出,对天线后方某点来的信号,反射器在主振子产生的感应电动势与信号直接产生的感应电动势是反相的,起到了抵消输出的作用。而引向器B、C、D等都比主振子略短,阻抗呈容性,假定振子间距b、c、d也等于λ/4,按上述方法也可推出引向器对前方过来的信号起着增强天线输出的作用。综上所述,反射器能够有效消除天线方向图后瓣,并和引向器共同增强天线对前方信号的灵敏度,使天线具有了强方向性,提高了天线增益。对于发射状态,推导过程亦然。实际制作过程中,通过缜密设计和适当调整各振子的长度及其间距,就能获得工作在不同中心频点、具有一定带宽、一定阻抗值和较好端射方向图的八木天线。

对于设计调整一副天线,我们总希望它能够有较高的效率和增益,足够的带宽,以及较强的信号选择和抗干扰能力,同时与馈线阻抗尽量匹配,竭力降低驻波比和减小信号损耗。然而天线的各项几何参数对其电气性能都有影响,并且往往彼此矛盾、相互牵制,设计调整时不能顾此失彼,要结合实际的用途综合考虑,分清主次,必要时还得牺牲一些次要的性能指标。由于八木天线的增益与轴向长度(从反射器到最末引向器的距离)、单元数目、振子长度及间距密切相关,轴向越长,单元数实际也就是引向器越多,方向越尖锐,增益越高,作用距离越远,但超过四个引向器后,改善效果就不太明显了,而体积、重量、制作成本则大幅增加,对材料强度要求也更严格,同时导致工作频带更窄。一般情况下采用 6 ~ 12 单元就足够了,天线增益可达 10~15 dB,对于高增益的要求,可采用天线阵的办法加以解决。引向器的长度通常为(0.41~0.46)λ,单元数愈多,引向器的最佳长度也就愈短,如果要求工作频段较宽,引向器的长度也应取得短些。引向器的间距一般取(0.15~0.4)λ,大于0.4λ后天线增益将迅速下降,但第一引向器B和主振子的间距应略小于其它间距,例如取b≈0.1λ时,增益将会有所提高。

一般来说,反射器A的长度及与主振子的间距对天线增益影响不大,而对前后辐射比和输入阻抗却有较大的影响,反射器长度通常为(0.5~0.55)λ,与主振子的间距为(0.15~0.23)λ。反射器较长或间距较小可有效地抑制后向辐射,但输入阻抗较低,难于和馈线良好匹配,因而要采取折衷措施。对某些前后辐射比要求较高的使用场合,可以在与天线平面垂直方向上上下安装两个反射器,或者干脆采用反射网的形式。有时为了着重改善天线带宽的低频端特性,还会在主振子的后面不同距离处排列两个长度不等的反射器,其中较短的要离主振子近些。若想改善天线的高频端特性,可适当调短引向器的长度。多元八木天线中引向器的长度和间距可以相等也可不等,从而分成均匀结构和不均匀结构两种形式,不均匀结构的引向器,离主振子越远长度越短,间隔越大,使得工作频带向高频端方向拓展,调整起来相对灵活机动。天线增益越高,带宽也会越窄,有时为展宽频带,还可采用两个激励振子,称为双激,或者直接选用复合式引向天线。考虑到八木天线的各项电气指标在频带低端比较稳定,而高端变化较快,所以最初设计时频率通常要稍高于中心频率。另外振子所用金属管材越粗,其特性阻抗越低,天线带宽也就越大,振子直径通常为(1/100~1/150)λ,当然实际选择时还要考虑天线的整体机械特性。振子的粗细还会影响振子的实用最佳长度,这是因为电波在金属中行进的速度与真空中不尽相同,实际制作长度都要在理论值上减去一个缩短系数,而导线越粗缩短系数越大,振子长度越小,对阻抗特性也造成一定影响。

输入阻抗是天线的一个重要特性指标,它主要由有源振子固有的自阻抗及与其邻近的几个无源振子间的互阻抗来决定的。远处的引向器,由于和主振子耦合较弱,互阻抗可忽略不计。通常主振子有半波对称振子和半波折合振子两种形式,单独谐振状态下,输入阻抗都为纯电阻,半波对称振子的Zin = 73.1 欧,标称 75 欧,半波折合振子的Zin = 292.4 欧,标称300欧,是半波对称振子的四倍。而加了引向器、反射器无源振子后,由于相互之间的电磁耦合,阻抗关系变得比较复杂,输入阻抗显著降低,并且八木天线各单元间距越小阻抗也越低。为了增大输入阻抗,提高天线效率,故主振子多选用半波折合振子的形式,这样也能同时增加天线的带宽。只要适当选择折合振子的长度,两导体的直径比及其间距,并结合调整反射器及附近几个引向振子的尺寸,就可以使输入阻抗变换到等于或接近馈线特性阻抗的数值。尤其值得一提的是,虽然无线电通信机天线端口及采用的同轴电缆特性阻抗都设计成50Ω,而广播电视接收和传输同轴电缆特性阻抗为75Ω,但是对于任一天线,人们总可以通过阻抗调试,在要求频率范围内,使天馈线良好匹配,获得满意的驻波比,所以实用中并不十分注意八木天线输入阻抗的具体数值,而主要以馈线上的驻波比为依据进行尺寸选择或试验调整。如果选用同轴电缆馈电,为保证天线的对称性及与馈线的阻抗匹配,就必须在馈线和天线接口处加入“平衡—不平衡”转换器,例如半波U型环式匹配器、变压器式匹配器等,否则高频信号在传输中衰减严重。因半波U型环式匹配器只需一段λ/2的同轴电缆,结构简单,应用广泛,具体接线方法如图2所示。

由于引向器阵列对增益、后向辐射、输入阻抗等都有影响,故实验调整是八木天线投入使用前必不可少的一个步骤。调试时注意一定要把天线架起来,离开地面高度两、三米以上,以免影响天线的阻抗和仰角。架设八木天线时,振子所在的天线平面既可以和大地平行又可以垂直,只要收、发双方的天线保持相同姿势就行,平行则辐射水平极化波,垂直则辐射垂直极化波,因有足够的隔离度,还可共杆架设两副相互垂直的引向天线,使用起来十分方便。为避免相位关系更加复杂化,降低调整难度,通常折合振子平面要与横梁垂直。因为各振子长度都约为半个波长,振子中点恰好位于电波感应信号电压的零点,所以振子的中点能用金属螺栓和铝质横梁直接固定,不必绝缘,这样还能方便地泄放感应静电。若主振子采用半波对称振子,与馈线相接的地方必须和横梁保持良好绝缘,若采用半波折合振子,中点仍与横梁相通。金属横梁与端射方向上的电场极化方向垂直,因此对天线辐射场不会产生显著的影响。另外需要注意的是,由于天线一般架设在楼顶、阳台等室外环境,受风吹日晒雨淋后接口容易氧化生锈,影响信号的传输和天线的匹配,使收发效果变差,需用防水胶带提前处理,同时还应注意防雷。

虽然说八木天线结构并不复杂,但是若想做好做精也不是一件轻而易举的事,如果自行设计没有足够的把握,可以完全仿照工程理论书籍给出的尺寸,或者借助于一些现成的设计软件,如国外的yagi(下载地址http://www.ve3sqb.com/)等,只需直接输入频率、单元数和振子直径,就能得到各个单元的最佳尺寸和位置,如图3所示,确保你也能制造出一副优秀的YAGI。理论归理论,只有实践才能出真知,怎么样,还不抓紧动手试一试!

八木天線分配器(雙排定向天線製作)

許多人在成功的製作完定向天線後, 其野心也越來越大, 因為既然一個陣列的定向天線已經成功, 何不做做雙排的定向天線呢? 沒錯! 我們就是要本著一顆龐大的野心, 朝著想要達到的目標前進, 這樣我們的技術才會提昇, 這也是業餘無線電玩家的精神.

只要你完成了前一個單元的實驗144MHZ 九節八木天線, 那你要製作一個雙排定向天線, 絕不是一件難事. 只要你有了分配器, 想要做幾排定向天線都沒問題.

兩排定向天線合併, 中間一定要有一個分配器, 而兩排定向天線的距離大約是天線本身主桿的80%~90%長, 而且分配器兩端75歐姆的同軸電纜線要等長.

注意事項:

分配器兩端的長度最好是奇數個電子上的四分之一波長, 當你算出物理上的四分之一波長天線長度(也就是第一單元所講的四分之一波長的算法), 還要用此長度算出電子上的四分之一波長的長度, 來運用在75歐姆同軸電纜線的長度.

例如:天線頻率144MHZ, 它的四分之一波長為 0.5 公尺(物理上的), 而我使用的75歐姆同軸電纜線規格為 RG-59, 而RG-59的速率因素為 0.66 (75歐姆同軸電纜線規格有很多種,其速率因素也不同, 請參考出廠規格說明), 所以我還要將剛剛算出的 0.5 公尺再乘上 0.66 , 所以求出在電子上的四分之一波長的長度為0.33公尺. 假設我所需要的電纜線從天線的供電點到T型接頭的長度為1.98公尺, 這個長度剛好是6個電子的四分之一波長, 是個偶數, 而我們不要偶數倍, 我們要奇數倍, 所以我們把長度加到2.3公尺(這個長度是7個電子的四分之一波長), 讓它成為奇數倍, 這樣的效率才是最好的.

浅谈八木天线的特点、原理与制作调整相关推荐

  1. 浅谈Rem 及其转换原理

    浅谈Rem 及其转换原理 今天有小伙伴问了我Rem的转换原理,那我就写篇博客记录一下吧! rem 是 CSS3 新增的相对长度单位,是指相对于元素 html 的 font-size 计算值 的大小. ...

  2. 浅谈人工智能的工作原理

    众所周知人工智能现在快速发展,并且为众人所熟知,不仅如此,人工智能也在各行各业中广泛使用.那么人工智能的工作原理是什么呢? 浅谈人工智能的工作原理 人类智能由三个部分构成(还有些其他生物学和科学现象也 ...

  3. 动态磅是怎么原理_浅谈动态地磅的原理及未来发展方向

    浅谈动态地磅的原理及未来发展方向: 文章介绍了动态地磅的结构和工作原理,针对动态地磅的分类做了全面的概述,分别对不同的动态地磅做了对比及详细的阐述,说明选择和使用动态地磅器的注意事项,凸显了轴组式动态 ...

  4. 浅谈 git 底层工作原理

    浅谈 git 底层工作原理 系统复习到这里也快差不多了,大概就剩下两三个 sections,这里学习一下 git 的 hashing 和对象. 当然,跳过问题也不大. config 文件 这里还是会用 ...

  5. 伺服驱动器生产文件_浅谈伺服驱动器的工作原理

    原标题:浅谈伺服驱动器的工作原理 目前,主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化.网络化和智能化.功率器件普遍采用以智能功率模块(IPM)为核 ...

  6. 深入浅谈,CPU设计原理

    首先,声明这是一篇转载文,这篇文章是,从卡饭论坛 看到的一篇文章<深入浅谈,CPU设计原理>,是一篇连载,文章,卡饭论坛,是我高中的时候,经常去的论坛,里面有很多好的文章,推荐给大家.也许 ...

  7. 浅谈代理服务器工作的原理

    浅谈代理服务器工作的原理 (1) 代理服务原理 代理服务器有很多种,大体来说有http,ftp,socks代理三种,其中又分透明代理和不透明代理.其中透明代理一般是网关,是硬件.所以这里讨论不透明代理 ...

  8. 浅谈《微信抢红包原理》

    现在很多人手机可能都安装了抢红包软件,为了过年抢红包不错过,当然会下载来用用,其实,现在的抢红包软件,基本都是通过监听通知栏消息"[微信红包]"字样,作为识别是红包的依据的,可能大 ...

  9. 浅谈elasticsearch的分词原理

    这篇文章主要是来浅谈一下elasticsearch的分词原理,让各位同学对分词不再陌生~ 废话不多说,我们直接上干货 前言一 我们创建一个文档 PUT test/_doc/1 {"msg&q ...

最新文章

  1. 详解rsync算法--如何减少同步文件时的网络传输量
  2. Boost:将自定义占位符_1复制到arg <1>的测试程序
  3. RMI原理揭秘之远程方法调用
  4. 《心欢喜,灵快乐》出版
  5. Spring Boot完成示例
  6. Anaconda多环境多版本python配置笔记
  7. wpf判断一个窗体是否运行_算法8 判断一个数是否是回文数
  8. iOS集成支付宝H5支付实现跳转与回调的解决方案
  9. juel java_Juel基本使用
  10. 7.java基本数据类型转换包含哪两类?
  11. 创意小发明:DIY小型激光雕刻机-超牛的电子制作 (工作原理,制作过程,注意事项,上位机,C源代码等)
  12. 应用物理学属于计算机,应用物理学专业属于什么学科
  13. 最新官方版本Fliqlo 炫酷翻盖时钟屏保 多平台
  14. epub文件是什么文件?如何在windows系统上打开?
  15. 如何制定个人学习计划?
  16. Python之文件操作(常用操作)
  17. 北漂去帝都大医院求医到底有多难?我的真实经历,真的是一路坎坷与辛酸~
  18. Redis实战篇一 (短信登录)
  19. IC验证之测试点分解
  20. bloomFilter和哈希函数murmur3

热门文章

  1. 压缩及解压的几种方法
  2. OGC标准地图服务介绍
  3. bigemap 如何将卫星影像变换为国家2000坐标(CGCS2000)
  4. ICASSP 2022丨多通道多方会议转录(M2Met)国际挑战赛
  5. RecyclerView系列(三): 滑动事件检测
  6. 《Python程序设计(第3版)》[美] 约翰·策勒(John Zelle) 第 3 章 答案
  7. Failed to find configured root that contains 安装apk报错
  8. Vue根据word模板导出页面所需文档
  9. 读《阿里巴巴java开发手册》有感。1.3.0
  10. 向量、矩阵的基本意义