目录

Chapter 1. 特征值和图的拉普拉斯算子

1.1 介绍

1.2 拉普拉斯算子和特征值

1.3 Basic facts about the spectrum of Graph

1.4 Eigenvalues of weighted graphs

1.5 Eigenvalues and random walks



谱图论作为图卷积神经网络的理论基础。这个暑假利用时间对这部分内容进行了深入学习,由于谱图论只有英文版,由于时间关系进对其部分进行了翻译,随着理解的深入,会陆续对其进行整理和总结,现总结读书笔记如下,

Chapter 1. 特征值和图的拉普拉斯算子

1.1 介绍

谱图理论有着悠久的历史。在早期,矩阵理论和线性代数被用来分析图的矩阵。代数方法在处理规则和对称图时特别有效。有时,某些特征值被称为图的“代数连通性”[126]。谱图理论在代数方面有大量的文献,如Biggs[25]、Cvetkovic、Doob and Sachs[90,91]和Seidel[222]等几项调查和书籍中都有详细的记录。

在过去的十年中,谱图理论的许多发展往往带有几何色彩。例如,由于Lubotzky-Phillips-Sarnak[191]和Margulis[193]的影响,扩展图的显式构造都是基于图的特征值和等周性。Cheeger不等式的离散模拟在随机游动和快速混合马氏链的研究中得到了广泛的应用[222]。新的光谱技术已经出现,它们功能强大,非常适合处理一般图。从某种意义上说,谱图理论已经进入了一个新的时代。
      正如天文学家研究恒星光谱以确定遥远恒星的构成一样,图论的主要目标之一就是从图的光谱图(或从一长串易于计算的不变量)中推导出图的主要性质和结构。一般图的谱方法就是朝着这个方向迈出的一步。我们将看到特征值与图的几乎所有主要不变量密切相关,它们将一个极值特性与另一个极值特性联系起来。毫无疑问,特征值在我们对图形的基本理解中起着核心作用。
 图特征值的研究实现了与许多数学领域日益丰富的联系。谱图理论和微分几何之间的相互作用是一个特别重要的发展。谱黎曼几何与谱图理论之间有一个有趣的类比。谱几何的概念和方法为研究图的特征值提供了有用的工具和重要的见解,从而导致了谱几何的新方向和结果。代数谱方法也非常有用,特别是对于极值例子和构造。在这本书中,我们采取了一个广泛的方法,强调图形特征值的几何方面,同时也包括代数方面。读者不需要有特殊的几何背景,因为这本书几乎完全是图形理论。
      从一开始,光谱图理论就在化学[27]中得到了应用。特征值与分子的稳定性有关。图谱在理论物理和量子力学的各种问题中也很自然地出现,例如在哈密顿系统的能量最小化中。扩展图和特征值的研究是由通信网络中的一些问题引起的。快速混合马尔可夫链的发展与随机逼近算法的进步交织在一起。图形特征值的应用在许多领域以不同的形式出现。然而,谱图理论的基础数学,通过它与纯的和应用的、连续的和离散的所有联系,可以看作是一个统一的学科。这就是我们打算在本书中讨论的方面。

1.2 拉普拉斯算子和特征值

在我们开始定义特征值之前,需要进行一些解释。我们在本书中考虑的特征值与Biggs[25]或Cvetkovic、Doob和Schs中的特征值并不完全相同[90]。基本上,特征值是在这里定义为一般和“标准化”的形式。虽然这看起来有点复杂,但我们的特征值与一般图的其它图不变量有很好地相关,其他定义(例如邻接矩阵的特征值)通常与该定义的特征值一致可能是由于事实它与光谱几何和随机过程中的特征值一致。许多仅为正则图结果可以推广到所有的图。因此,这为一般图提供了统一的处理。关于定义和标准图论术语,读者可以参考[31]。
        在图G中,让表示顶点的度数。我们首先为没有循环的图定义一个多重边的拉普拉斯矩阵(带有循环的一般加权情况将在第1.4节中讨论)。首先,我们考虑矩阵L,定义如下:

                  

表示矩阵第项的值为。G的拉普拉斯变换被定义为矩阵:

                 

可以记为:

对于 ,约定 。我们说 是一个孤立的顶点。如果一个图至少包含一条边,那么它就被称为非零图(平凡图:仅有一个结点的图的称平凡图;边的集合为空的图叫做零图,1阶零图叫做平凡图。所谓n阶图是指有n个顶点的图)。

  可以视为函数空间的一个算子   满足:

 是 -正则图, 很容易得到:

其中   是 的邻接矩阵 , ( i. e.,  if  is adjacent to , and 0 otherwise,) ,   是一个单位矩阵. 这里所有矩阵的大小都是  ,其中 的定点数 .

对于一般图来说,

我们注意到可以写成

其中 是一个矩阵,其行由的顶点索引,其列由的边索引  such that each column corresponding to an edge  has an entry , in the row corresponding to , an entry  in the row corresponding to , and has zero entries elsewhere. (As it turns out, the choice of signs can be arbitrary as long as one is positive and the other is negative.) Also, denotes the transpose of .

For readers who are familiar with terminology in homology theory, we remark that  can be viewed as a “boundary operator” mapping “1-chains” defined on edges (denoted by ) of a graph to “0-chains” defined on vertices (denoted by ). Then,  is the corresponding “coboundary operator” and we have

Since  is symmetric, its eigenvalues are all real and non-negative. We can use the variational characterizations of those eigenvalues in terms of the Rayleigh quotient of  (see, e.g. [162]). Let  denote an arbitrary function which assigns to each vertex u of  a real value  . We can view  as a column vector. Then

where  f  and  denotes the sum over all unordered pairs   for which   and  are adjacent. Here  denotes the standard inner product in . The sum  is sometimes called the Dirichlet (狄利克雷) sum of  and the ratio on the left-hand side of (1.1) is often called the Rayleigh quotient(瑞利商). (We note that we can also use the inner product  for complex-valued functions.

From equation (1.1) we see that all eigenvalues are non-negative. In fact, we can easily deduce from equation (1.1) that 0 is an eigenvalue of  . We denote the eigenvalues of  by . The set of the  ‘s is usually called the spectrum of   (or the spectrum of the associated graph G .) Let 1 denote the constant function which assumes the value 1 on each vertex. Then   is an eigenfunction of   with eigenvalue 0. Furthermore,

The corresponding eigenfunction is  as in (1.1). It is sometimes convenient to consider the nontrivial function  achieving (1.2), in which case we call  a harmonic eigenfunction of .

The above formulation for  corresponds in a natural way to the eigenvalues of the Laplace-Beltrami operator for Riemannian manifolds:

where  ranges over functions satisfying

We remark that the corresponding measure here for each edge is 1 although in the general case for weighted graphs the measure for an edge is associated with the edge weight (see Section 1.4.) The measure for each vertex is the degree of the vertex. A more general notion of vertex weights will be considered in Section 2.5.

We note that (1.2) has several different formulations:

      1.3

              1.4

Where

and vol G denotes the volume of the graph , given by

By substituting for  and using the fact that 2, for  we have the following expression (which generalizes the one in [126]):

       1.5

Where  denotes the sum over all unordered pairs of vertices  in . We can characterize the other eigenvalues of  in terms of the Rayleigh quotient. The largest eigenvalue satisfies:

             1.6

For a general , we have

         1.7

               1.8

where  is the subspace generated by the harmonic eigenfunctions corresponding to , for .

The different formulations for eigenvalues given above are useful in different settings and they will be used in later chapters. Here are some examples of special graphs and their eigenvalues.

Example 1.1.

For the complete graph on vertices, the eigenvalues are 0 and  (with multiplicity ).

Example 1.2.

For the complete bipartite graph on  vertices, the eigenvalues are 0, 1 (with multiplicity ), and 2.

Example 1.3.

For the star on vertices, the eigenvalues are 0,1 (with multiplicity n - 2), and 2.

Example 1.4.

For the path on vertices, the eigenvalues are   for .

Example 1.5.

For the cycle on vertices, the eigenvalues are    for .

Example 1.6.

For the n-cube on vertices, the eigenvalues are  (with multiplicity for .

More examples can be found in Chapter 6 on explicit constructions.

1.3 Basic facts about the spectrum of Graph

Roughly speaking, half of the main problems of spectral theory lie in deriving bounds on the distributions of eigenvalues. The other half concern the impact and consequences of the eigenvalue bounds as well as their applications. In this section, we start with a few basic facts about eigenvalues. Some simple upper bounds and lower bounds are stated. For example, we will see that the eigenvalues of any graph lie between 0 and 2. The problem of narrowing the range of the eigenvalues for special classes of graphs offers an open-ended challenge. Numerous questions can be asked either in terms of other graph invariants or under further assumptions imposed on the graphs. Some of these will be discussed in subsequent chapters.

Lemma 1.7.

For a graph  on  vertices, we have

with equality holding if and only if  has no isolated vertices.( 当且仅当没有孤立顶点时,上式取等号。)

,

with equality holding if and only if  is the complete graph on  vertices.

Also, for a graph  without isolated vertices, we have

(ⅲ): For a graph which is not a complete graph, we have .

(ⅳ): If  is connected, then . If  and , then  has exactly connected components.

(ⅴ): For all ,we have

With λn-1=2  if and only if a connected component of G is bipartite and nontrivial.

(ⅵ): The spectrum of a graph is the union of the spectra of its connected com­ponents.

For bipartite graphs, the following slightly stronger result holds:

Lemma 1.8.

The following statements are equivalent:

(i):  is bipartite.

(ii):  has connected components and  for .

(iii): For each   the value   is also an eigenvalue of .

Lemma 1.9.

For a connected graph  with diameter , we have

Lemma 1.10.

Let  denote a harmonic eigenfunction achieving in (1.2). Then, for any vertex , we have

One can also prove the statement in Lemma 1.10 by recalling that , where  Then

,

and examining the entries gives the desired result.

With a little linear algebra, we can improve the bounds on eigenvalues in terms of the degrees of the vertices.

We consider the trace of . We have

          1.9

where

On the other hand,

      1.10

where  is the adjacency matrix. From this, we immediately deduce

Lemma 1.11.

For a -regular graph  on n vertices, we have

       1.11

This follows from the fact that

Let  denote the harmonic mean of the ’s, i.e.,

It is tempting to consider generalizing (1.12) with  replaced by  This, however, is not true as shown by the following example due to Elizabeth Wilmer.

Example 1.12.

Consider the -petal graph on  vertices,  with edges  and    for , This graph has eigenvalues 0,1/2  (with multiplicity ), and 2 (with multiplicity ). So we have . However,

Still, for a general graph, we can use the fact that

       1.2

Combining (1.10), (1.11) and (1.13), we obtain the following:

Lemma 1.13.

For a graph  on n vertices,  satisfies

where  denotes the average degree of .

There are relatively easy ways to improve the upper bound for .From the characterization in the preceding section, we can choose any function , and its Rayleigh quotient will serve as an upper bound for . Here we describe an upper bound for  (see [202]).

Lemma 1.14.

Let  be a graph with diameter , and let  denote the maximum degree of . Then

One way to bound eigenvalues from above is to consider "contracting" the graph  into a weighted graph H (which will be defined in the next section). Then the eigenvalues of  can be upper-bounded by the eigenvalues of H or by various upper bounds on them, which might be easier to obtain.

1.4 Eigenvalues of weighted graphs

Before defining weighted graphs, we will say a few words about two different approaches for giving definitions. We could have started from the very beginning with weighted graphs, from which simple graphs arise as a special case in which the weights are 0 or 1. However, the unique characteristics and special strength of graph theory is its ability to deal with the -problems arising in many natural situations. The clean formulation of a simple graph has conceptual advantages. Furthermore, as we shall see, all definitions and subsequent theorems for simple graphs can usually be easily carried out for weighted graphs. A weighted undirected graph  (possibly with loops) has associated with it a weight function . Satisfying

And

We note that if  , then . Unweighted graphs are just the special case where all the weights are 0 or 1.

In the present context, the degree  of a vertex  is defined to be:

We generalize the definitions of previous sections, so that

                           

if u and v are adjacent, otherwise.

In particular, for a function  we have

Let  denote the diagonal matrix with the -th entry having value . The Laplacian of  is defined to be

In other words, we have

                          

We can still use the same characterizations for the eigenvalues of the generalized versions of L. For example,

1.13

A contraction of a graph  is formed by identifying two distinct vertices, say  and , into a single vertex . The weights of edges incident to are defined as follows:

Lemma(引理) 1.15.

If  is formed by contractions from a graph , then

 

1.5 Eigenvalues and random walks

In a graph , a walk is just a sequence of vertices with  for all . A random walk is determined by the transition probabilities , which are independent of . Clearly, for each vertex ,

 

For any initial distribution  with  , the distribution after k steps is just  (i.e., a matrix multiplication with f  viewed as a row vector where  is the matrix of transition probabilities). The random walk is said to be ergodic if there is a unique stationary distribution  satisfying

It is easy to see that necessary conditions for the ergodicity of  are (i) irre­ducibility,i.e., for any , there exists some  such that , (ii) aperiodicity i.e., g.c.d. . As it turns out, these are also sufficient conditions. A major problem of interest is to determine the number of steps s required for Ps to be close to its stationary distribution, given an arbitrary initial distribution.

We say a random walk is reversible if

An alternative description for a reversible random walk can be given by considering a weighted connected graph with edge weights satisfying

where  can be any constant chosen for the purpose of simplifying the values. (For example, we can take  to be the average of  over all  with , so that the values for  are either 0 or 1 for a simple graph.) The random walk on a weighted graph has as its transition probabilities

where   is the (weighted) degree of . The two conditions for ergodicity are equivalent to the conditions that the graph be (i) connected and (ii) non-bipartite. From Lemma 1.7, we see that (i) is equivalent to  and (ii) implies . As we will see later in (1.15), together (i) and (ii) deduce ergodicity.

We remind the reader that an unweighted graph has  equal to either 0 or 1. The usual random walk on an unweighted graph has transition probability  of moving from a vertex  to any one of its neighbors. The transition matrix  then satisfies

                         

In other words,

 

For any

It is easy to check that

where  is the adjacency matrix.

In a random walk with an associated weighted connected graph , the transi­tion matrix  satisfies

where 1 is the vector with all coordinates 1. Therefore the stationary distribution is exactly , We want to show that when k is large enough, for any initial distribution ,  converges to the stationary distribution.

First we consider convergence in the (or Euclidean) norm. Suppose we write

where  denotes the orthonormal eigenfunction associated with .

Recall that  and  denotes the - norm, so

since . We then have

 G

2

2

      1.14

Where

      

So, after steps, the  distance between  and its stationary distribution is at most .

Although  occurs in the above upper bound for the distance between the stationary distribution and the -step distribution, in fact, only  is crucial in the following sense. Note that  is either  or . Suppose the latter holds, i.e., . We can consider a modified random walk, called the lazy walk, on the graph  formed by adding a loop of weight dv to each vertex . The new graph has Laplacian eigenvalues , which follows from equation (1.14). Therefore,

and the convergence bound in  distance in (1.15) for the modified random walk becomes

In general, suppose a weighted graph with edge weights  has eigenvalues , with  . We can then modify the weights by choosing, for some constant ,

The resulting weighted graph has eigenvalues

where

Then we have

Since , and we have  for . In particular we set

Therefore the modified random walk corresponding to the weight function  has an improved bound for the convergence rate in  distance:

We remark that for many applications in sampling, the convergence in  distance seems to be too weak since it does not require convergence at each vertex. There are several stronger notions of distance several of which we will mention.

A strong notion of convergence that is often used is measured by the relative pointwise distance (see [225]): After s steps, the relative pointwise distance (r.p.d.) of P to the stationary distribution  is given by

Let  denote the characteristic function of x defined by:

Suppose

where ’s denote the eigenfunction of the Laplacian  of the weighted graph asso­ciated with the random walk. In particular,

Let A* denote the transpose of A. We have

where . So if we choose t such that

then, after t  steps, we have

When  we can improve the above bound by using a lazy walk as described in (1.16). The proof is almost identical to the above calculation except for using the Laplacian of the modified weighted graph associated with the lazy walk. This can. be summarized by the following theorem:

Theorem(定理)1.16.

For a weighted graph , we can choose a modified random walk P so that the relative pairwise distance  is bounded above by:

where  and   otherwise.

CORLOLLARY(推论) 1.17.

For a weight graphG, we can choose a modified random walk P  so that have

if

where  and   otherwise.

We remark that for any initial distribution      with  and

, we have, for any ,

Another notion of distance for measuring convergence is the so-called total variation distance, which is just half of the  distance:

The total variation distance is bounded above by the relative pointwise distance, since

Therefore, any convergence bound using relative pointwise distance implies the same convergence bound using total variation distance. There is yet another notion of distance, sometimes called -squared distance, denoted by  and defined by:

using the Cauchy-Schwarz inequality. is also dominated by the relative point­wise distance (which we will mainly use in this book).

We note that

where  denotes the projection onto the eigenfunction  denotes the -th orthonormal eigenfunction of L  and  denotes the characteristic function of . Since

We have

       1.16

Equality in (1.16) holds if, for example,  is vertex-transitive, i.e., there is an automorphism mapping u  to  for any two vertices in , (for more discussions, see Chapter 7 on symmetrical graphs). Therefore, we conclude

《谱图论》读书笔记(第一章)相关推荐

  1. 《人人都是产品经理》读书笔记 Part 1

    Part1--产品经理入门  之前读了一本书叫做<人人都是产品经理>,最近整理了一下人人都是产品经理的读书笔记.今天分享的是第一部分:产品经理入门.  该部分的思维导图下图所示: 为什么要 ...

  2. 《人人都是产品经理》读书笔记 Part 4

    Part4--本书剩余的其他部分  今天分享的是<人人都是产品经理>读书笔记剩余部分:第四.五.六章.照例先给出各部分的思维导图.  <人人都是产品经理>的整本书总共六章,参考 ...

  3. 《人人都是产品经理》读书笔记 Part 3

    Part3--项目的坎坷一生  今天分享的是<人人都是产品经理>读书笔记第三部分:项目.照例先给出本部分的思维导图.  这一部分主要讲了从产品到项目.项目启动.需求开发.项目周期.产品经理 ...

  4. 《MAC OS X 技术内幕》读书笔记第一章:MAC OS X的起源

    <MAC OS X 技术内幕>读书笔记第一章:MAC OS X的起源 前言 1 System x.x系列 1.1System 1.0(1984年1月24日) 1.2System 2.x(1 ...

  5. Android群英传神兵利器读书笔记——第一章:程序员小窝——搭建高效的开发环境

    Android群英传神兵利器读书笔记--第一章:程序员小窝--搭建高效的开发环境 目录 1.1 搭建高效的开发环境之操作系统 1.2 搭建开发环境之高效配置 基本环境配置 基本开发工具 1.3 搭建程 ...

  6. 《B端产品经理必修课》读书笔记 (第一章)

    第一章 点亮:了解B端产品经理 1.1 什么是B端产品 1. B端产品将已有的商业运行逻辑进行系统化.信息化.高效化处理: 2. B端产品可以为公司管理服务(例:HR系统.OA),也可以为公司运营服务 ...

  7. B端产品实战课读书笔记05:第四章需求调研

    目录 一.调研准备 1.提炼原始信息 2.设定调研目标 2.1价值共识 2.2需求共识 2.3理解共识 3.规范调研准则 3.1全程参与 3.2相互尊重 3.3聚焦问题 3.4开放包容 二.快速掌握业 ...

  8. 《解构产品经理》读书笔记

    本文是刘涵宇先生所著的<解构产品经理>的读书笔记 I 解构产品经理 1 解构基本概念 1.1 什么是产品 产品是指可以满足某种用户需求,由人类加工生产,可供给市场用于交换的任何东西. 1. ...

  9. 《人人都是产品经理》读书笔记 Part 2

    Part2--一个需求的奋斗史  昨天分享了第一部分的读书笔记产品经理的入门,今天分享第二部分,关于产品需求.同样,先给出这一部分的思维导图.  第二部分作者主要介绍了五部分内容: 什么是用户,什么是 ...

  10. 产品:《人人都是产品经理》读书笔记

    互联网中每个角色都有自己的思维,比如: 产品思维:解决用户痛点的思维(满足用户的需求): 用户思维:好玩的.操作爽的思维: 运营思维:用户能自然增长的思维: 美工思维:长得好看.用色规范.界面精美的思 ...

最新文章

  1. 终于看见光的速度了:每秒一万亿帧的相机,拍摄到光的运行状态!
  2. iis websocket同时连线人数_【NBA云专访】沈洋连线76人CEO 疫情期间如何管理球队?...
  3. 单多晶之争:光伏技术要靠市场检验
  4. 第二个一千行总结-数据结构C复习--知识点总结2--五到七章
  5. 云开发的数据库权限机制解读丨云开发101
  6. Java实战-山寨QQ
  7. mysql explain分析
  8. python ConfigParser模块详解
  9. 设计一个成功的微服务,堪称必备的9大基础知识
  10. Netty原理:pipeline
  11. Android studio 打包 uni App 修改apk名称,app名称及图标
  12. mariadb相关说明
  13. Annovar软件注释肿瘤基因突变(一):COSMIC数据库最新版下载与使用
  14. 自由职业接单,大平台,有保障
  15. android usb type-c
  16. 大数据模型交易平台案例:消费贷款客户营销分析解决方案
  17. 用HOSTS文件屏蔽网站
  18. laravel集成Telegram Bot 机器人
  19. 1.7 Photoshop参考线的使用 [Ps教程]
  20. 使用DQL命令查询数据(二)

热门文章

  1. unity拖拽UI生成Cube并跟随鼠标移动,放置点可放下
  2. Golang后台单元测试实践
  3. 梁昌勇 软件工程_梁昌勇简介_研究领域_学术成果_合肥工业大学管理学院教授-教师点评 - 人大经济论坛...
  4. ios王者荣耀更新服务器维护,王者荣耀苹果更新不了 苹果无法进行版本更新如何解决...
  5. 中考计算机应用技术有前途吗,计不计入中考成绩,信息技术等科目不再进行考试,今年中考总分会有多少...
  6. 入门UI设计要学习什么内容?
  7. 小宝贝流鼻血,治疗方法
  8. 【题解】CF1181D Irrigation
  9. 微信公众平台SDK.net版本(weixinSDK.net)
  10. AI项目被谷歌撂挑子 美国防部愤而狂挖硅谷AI人才