与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问。对于final域,编译器和处理器要遵守两个重排序规则:

  1. 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
  2. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。

下面,我们通过一些示例性的代码来分别说明这两个规则:

 1 public class FinalExample {
 2     int i;                          //普通变量
 3     final int j;                    //final变量
 4     static FinalExample obj;
 5
 6     public void FinalExample() {    //构造函数
 7         i = 1;                      //写普通域
 8         j = 2;                      //写final域
 9     }
10
11     public static void writer() {   //写线程A执行
12         obj = new FinalExample();
13     }
14
15     public static void reader() {   //读线程B执行
16         FinalExample object = obj;  //读对象引用
17         int a = object.i;           //读普通域
18         int b = object.j;           //读final域
19     }
20 }

这里假设一个线程A执行writer ()方法,随后另一个线程B执行reader ()方法。下面我们通过这两个线程的交互来说明这两个规则。

写final域的重排序规则

写final域的重排序规则禁止把final域的写重排序到构造函数之外。这个规则的实现包含下面2个方面:

  • JMM禁止编译器把final域的写重排序到构造函数之外。
  • 编译器会在final域的写之后,构造函数return之前,插入一个StoreStore屏障。这个屏障禁止处理器把final域的写重排序到构造函数之外。

现在让我们分析writer ()方法。writer ()方法只包含一行代码:finalExample = new FinalExample ()。这行代码包含两个步骤:

  1. 构造一个FinalExample类型的对象;
  2. 把这个对象的引用赋值给引用变量obj。
假设线程B读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:

在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误的读取了普通变量i初始化之前的值。而写final域的操作,被写final域的重排序规则“限定”在了构造函数之内,读线程B正确的读取了final变量初始化之后的值。

写final域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的final域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程B“看到”对象引用obj时,很可能obj对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值2还没有写入普通域i)。

读final域的重排序规则

读final域的重排序规则如下:

  • 在一个线程中,初次读对象引用与初次读该对象包含的final域,JMM禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读final域操作的前面插入一个LoadLoad屏障。

初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理器),这个规则就是专门用来针对这种处理器。

reader()方法包含三个操作:

  1. 初次读引用变量obj;
  2. 初次读引用变量obj指向对象的普通域j。
  3. 初次读引用变量obj指向对象的final域i。

现在我们假设写线程A没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程A写入,这是一个错误的读取操作。而读final域的重排序规则会把读对象final域的操作“限定”在读对象引用之后,此时该final域已经被A线程初始化过了,这是一个正确的读取操作。

读final域的重排序规则可以确保:在读一个对象的final域之前,一定会先读包含这个final域的对象的引用。在这个示例程序中,如果该引用不为null,那么引用对象的final域一定已经被A线程初始化过了。

如果final域是引用类型

上面我们看到的final域是基础数据类型,下面让我们看看如果final域是引用类型,将会有什么效果?

请看下列示例代码:

 1 public class FinalReferenceExample {
 2     final int[] intArray;                   //final是引用类型
 3     static FinalReferenceExample obj;
 4
 5     public FinalReferenceExample() {        //构造函数
 6         intArray = new int[1];              //1
 7         intArray[0] = 1;                    //2
 8     }
 9
10     public static void writerOne() {        //写线程A执行
11         obj = new FinalReferenceExample();  //3
12     }
13
14     public static void writerTwo() {        //写线程B执行
15         obj.intArray[0] = 2;                //4
16     }
17
18     public static void reader() {           //读线程C执行
19         if (obj != null) {                  //5
20             int temp1 = obj.intArray[0];    //6
21         }
22     }
23 }

这里final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:

  1. 在构造函数内对一个final引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。

对上面的示例程序,我们假设首先线程A执行writerOne()方法,执行完后线程B执行writerTwo()方法,执行完后线程C执行reader ()方法。下面是一种可能的线程执行时序:

在上图中,1是对final域的写入,2是对这个final域引用的对象的成员域的写入,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。

JMM可以确保读线程C至少能看到写线程A在构造函数中对final引用对象的成员域的写入。即C至少能看到数组下标0的值为1。而写线程B对数组元素的写入,读线程C可能看的到,也可能看不到。JMM不保证线程B的写入对读线程C可见,因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可预知。

如果想要确保读线程C看到写线程B对数组元素的写入,写线程B和读线程C之间需要使用同步原语(lock或volatile)来确保内存可见性。

为什么final引用不能从构造函数内“逸出”

前面我们提到过,写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面示例代码:

 1 public class FinalReferenceEscapeExample {
 2     final int i;
 3     static FinalReferenceEscapeExample obj;
 4
 5     public FinalReferenceEscapeExample() {
 6         i = 1;                              //1写final域
 7         obj = this;                         //2 this引用在此“逸出”
 8     }
 9
10     public static void writer() {
11         new FinalReferenceEscapeExample();
12     }
13
14     public static void reader() {
15         if (obj != null) {                  //3
16             int temp = obj.i;               //4
17         }
18     }
19 }

假设一个线程A执行writer()方法,另一个线程B执行reader()方法。这里的操作2使得对象还未完成构造前就为线程B可见。即使这里的操作2是构造函数的最后一步,且即使在程序中操作2排在操作1后面,执行read()方法的线程仍然可能无法看到final域被初始化后的值,因为这里的操作1和操作2之间可能被重排序。实际的执行时序可能如下图所示:

从上图我们可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的final域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。

final语义在处理器中的实现

现在我们以x86处理器为例,说明final语义在处理器中的具体实现。

上面我们提到,写final域的重排序规则会要求译编器在final域的写之后,构造函数return之前,插入一个StoreStore障屏。读final域的重排序规则要求编译器在读final域的操作前面插入一个LoadLoad屏障。

由于x86处理器不会对写-写操作做重排序,所以在x86处理器中,写final域需要的StoreStore障屏会被省略掉。同样,由于x86处理器不会对存在间接依赖关系的操作做重排序,所以在x86处理器中,读final域需要的LoadLoad屏障也会被省略掉。也就是说在x86处理器中,final域的读/写不会插入任何内存屏障!

JSR-133为什么要增强final的语义

在旧的Java内存模型中 ,最严重的一个缺陷就是线程可能看到final域的值会改变。比如,一个线程当前看到一个整形final域的值为0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个final域的值时,却发现值变为了1(被某个线程初始化之后的值)。最常见的例子就是在旧的Java内存模型中,String的值可能会改变(参考文献2中有一个具体的例子,感兴趣的读者可以自行参考,这里就不赘述了)。

为了修补这个漏洞,JSR-133专家组增强了final的语义。通过为final域增加写和读重排序规则,可以为java程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保证任意线程都能看到这个final域在构造函数中被初始化之后的值。

转载自:http://www.infoq.com/cn/articles/java-memory-model-6

转载于:https://www.cnblogs.com/darknebula/p/8622125.html

【转载】深入理解Java内存模型——final相关推荐

  1. 深入理解 Java 内存模型(转载)

    摘要: 原创出处 http://www.54tianzhisheng.cn/2018/02/28/Java-Memory-Model/ 「zhisheng」欢迎转载,保留摘要,谢谢! 0. 前提 &l ...

  2. 深入理解 Java内存模型

    深入理解 Java内存模型 原文地址:http://www.54tianzhisheng.cn/2018/02/28/Java-Memory-Model/ 本文主要内容有 Java 内存模型的基础.重 ...

  3. 深入理解 Java 内存模型 JMM

    前提 <深入理解 Java 内存模型>程晓明著,该书在以前看过一遍,现在学的东西越多,感觉那块越重要,于是又再细看一遍,于是便有了下面的读书笔记总结.全书页数虽不多,内容讲得挺深的.细看的 ...

  4. 《深入理解 Java 内存模型》读书笔记(上)(干货,万字长文)

    目录 0. 前提 1. 基础 1.1 并发编程的模型分类 1.1.1 通信 1.1.2 同步 1.2 JAVA 内存模型的抽象 2. 重排序 2.1 处理器重排序 2.2 内存屏障指令 2.3 HAP ...

  5. 聊聊高并发(三十三)Java内存模型那些事(一)从一致性(Consistency)的角度理解Java内存模型

    可以说并发系统要解决的最核心问题之一就是一致性的问题,关于一致性的研究已经有几十年了,有大量的理论,算法支持.这篇说说一致性这个主题一些经常提到的概念,理清Java内存模型在其中的位置. 一致性问题更 ...

  6. 深入理解Java内存模型

    深入理解Java内存模型(一)--基础 深入理解Java内存模型(二)--重排序深 入理解Java内存模型(三)--顺序一致性 深入理解Java内存模型(四)--volatile 深入理解Java内存 ...

  7. 全面理解Java内存模型(JMM)及volatile关键字

    [版权申明]未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/72772461 出自[zejian ...

  8. 深入理解Java内存模型--转载

    原文地址:http://www.infoq.com/cn/articles/java-memory-model-1 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之 ...

  9. java 内存模型6_深入理解Java内存模型(六)——final

    与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象 ...

最新文章

  1. Oracle执行计划突变诊断之统计信息收集问题
  2. 写一个脚本定时自动备份mysql到指定目录
  3. 自拟计算机作文100字,我的电脑作文100字五篇
  4. 鸿蒙系统还会推出吗,华为明年所有自研设备都升级鸿蒙系统,还会推出基于鸿蒙系统的新机...
  5. 信号调制产生边频的原理及希尔伯特解调
  6. analog filter
  7. Must 和 have to的疑问句_55 1
  8. Facebook 公开 APT32 身份,疑为越南本地一家 IT 公司
  9. Windows用户密码基础知识
  10. 主机window7 64位 虚拟机下安装Ubuntu系统如何实现网络共享ixi
  11. 使用计算机时,突然断电,存储在下列设备中的信息将丢失的是,下列存储设备中断电后其保存的信息会丢失的是哪一项...
  12. [网络流24题] 洛谷P3356 火星探险问题 费用流
  13. java读取txt文件乱码解决方案
  14. java毕业设计学生考勤系统Mybatis+系统+数据库+调试部署
  15. 洛谷P2141珠心算测验 C++解法
  16. 手把手实操系列|贷中逾期风险预测模型开发流程(上)
  17. 【苹果相册推】您只需使用证书并发布证书描述文件(无需发布)上传PEM范例文件
  18. 2022年国家社会/自然科学基金立项名单
  19. js 写一个简单的搜索关键字
  20. 进阶版Shell脚本合集

热门文章

  1. php 数据库时间具体到分钟,php – 在设定的到期时间后删除数据库行(例如5分钟)...
  2. LA 2572 Viva Confetti (Geometry.Circle)
  3. 用泛型的sort与binarySearch方法
  4. [C++][基础]8_容器
  5. Android中AMS工作原理,Android AMS启动详解
  6. 可多语句执行下不用单引号outfile写shell
  7. 热议创新 众专家再谈 “中国企业如何创造”
  8. 接口——从事物的共同点出发
  9. ssm框架重定向_精选 SSM 框架面试题整理
  10. FPGA开源IP核下载opencores.org