$ mkfifo myPipe

myPipe 就是这个管道的名称,基于 Linux 一切皆文件的理念,所以管道也是以文件的方式存在,我们可以用 ls 看一下,这个文件的类型是 p,也就是 pipe(管道) 的意思:

$ ls -l
prw-r--r--. 1 root    root         0 Jul 17 02:45 myPipe

接下来,我们往 myPipe 这个管道写入数据:

$ echo "hello" > myPipe  // 将数据写进管道// 停住了 ...

你操作了后,你会发现命令执行后就停在这了,这是因为管道里的内容没有被读取,只有当管道里的数据被读完后,命令才可以正常退出。

于是,我们执行另外一个命令来读取这个管道里的数据:

$ cat < myPipe  // 读取管道里的数据
hello

可以看到,管道里的内容被读取出来了,并打印在了终端上,另外一方面,echo 那个命令也正常退出了。

我们可以看出,管道这种通信方式效率低,不适合进程间频繁地交换数据。当然,它的好处,自然就是简单,同时也我们很容易得知管道里的数据已经被另一个进程读取了。

那管道如何创建呢,背后原理是什么?

匿名管道的创建,需要通过下面这个系统调用:

int pipe(int fd[2])

这里表示创建一个匿名管道,并返回了两个描述符,一个是管道的读取端描述符 fd[0],另一个是管道的写入端描述符 fd[1]。注意,这个匿名管道是特殊的文件,只存在于内存,不存于文件系统中。

其实,所谓的管道,就是内核里面的一串缓存。从管道的一段写入的数据,实际上是缓存在内核中的,另一端读取,也就是从内核中读取这段数据。另外,管道传输的数据是无格式的流且大小受限。

看到这,你可能会有疑问了,这两个描述符都是在一个进程里面,并没有起到进程间通信的作用,怎么样才能使得管道是跨过两个进程的呢?

我们可以使用 fork 创建子进程,创建的子进程会复制父进程的文件描述符,这样就做到了两个进程各有两个「 fd[0] 与 fd[1]」,两个进程就可以通过各自的 fd 写入和读取同一个管道文件实现跨进程通信了。

管道只能一端写入,另一端读出,所以上面这种模式容易造成混乱,因为父进程和子进程都可以同时写入,也都可以读出。那么,为了避免这种情况,通常的做法是:

  • 父进程关闭读取的 fd[0],只保留写入的 fd[1];
  • 子进程关闭写入的 fd[1],只保留读取的 fd[0];

所以说如果需要双向通信,则应该创建两个管道。

到这里,我们仅仅解析了使用管道进行父进程与子进程之间的通信,但是在我们 shell 里面并不是这样的。

在 shell 里面执行 A | B命令的时候,A 进程和 B 进程都是 shell 创建出来的子进程,A 和 B 之间不存在父子关系,它俩的父进程都是 shell。

所以说,在 shell 里通过「|」匿名管道将多个命令连接在一起,实际上也就是创建了多个子进程,那么在我们编写 shell 脚本时,能使用一个管道搞定的事情,就不要多用一个管道,这样可以减少创建子进程的系统开销。

我们可以得知,对于匿名管道,它的通信范围是存在父子关系的进程。因为管道没有实体,也就是没有管道文件,只能通过 fork 来复制父进程 fd 文件描述符,来达到通信的目的。

另外,对于命名管道,它可以在不相关的进程间也能相互通信。因为命令管道,提前创建了一个类型为管道的设备文件,在进程里只要使用这个设备文件,就可以相互通信。

不管是匿名管道还是命名管道,进程写入的数据都是缓存在内核中,另一个进程读取数据时候自然也是从内核中获取,同时通信数据都遵循先进先出原则,不支持 lseek 之类的文件定位操作。


消息队列

前面说到管道的通信方式是效率低的,因此管道不适合进程间频繁地交换数据。

对于这个问题,消息队列的通信模式就可以解决。比如,A 进程要给 B 进程发送消息,A 进程把数据放在对应的消息队列后就可以正常返回了,B 进程需要的时候再去读取数据就可以了。同理,B 进程要给 A 进程发送消息也是如此。

再来,消息队列是保存在内核中的消息链表,在发送数据时,会分成一个一个独立的数据单元,也就是消息体(数据块),消息体是用户自定义的数据类型,消息的发送方和接收方要约定好消息体的数据类型,所以每个消息体都是固定大小的存储块,不像管道是无格式的字节流数据。如果进程从消息队列中读取了消息体,内核就会把这个消息体删除。

消息队列生命周期随内核,如果没有释放消息队列或者没有关闭操作系统,消息队列会一直存在,而前面提到的匿名管道的生命周期,是随进程的创建而建立,随进程的结束而销毁。

消息这种模型,两个进程之间的通信就像平时发邮件一样,你来一封,我回一封,可以频繁沟通了。

但邮件的通信方式存在不足的地方有两点,一是通信不及时,二是附件也有大小限制,这同样也是消息队列通信不足的点。

消息队列不适合比较大数据的传输,因为在内核中每个消息体都有一个最大长度的限制,同时所有队列所包含的全部消息体的总长度也是有上限。在 Linux 内核中,会有两个宏定义 MSGMAX 和 MSGMNB,它们以字节为单位,分别定义了一条消息的最大长度和一个队列的最大长度。

消息队列通信过程中,存在用户态与内核态之间的数据拷贝开销,因为进程写入数据到内核中的消息队列时,会发生从用户态拷贝数据到内核态的过程,同理另一进程读取内核中的消息数据时,会发生从内核态拷贝数据到用户态的过程。


共享内存

消息队列的读取和写入的过程,都会有发生用户态与内核态之间的消息拷贝过程。那共享内存的方式,就很好的解决了这一问题。

现代操作系统,对于内存管理,采用的是虚拟内存技术,也就是每个进程都有自己独立的虚拟内存空间,不同进程的虚拟内存映射到不同的物理内存中。所以,即使进程 A 和 进程 B 的虚拟地址是一样的,其实访问的是不同的物理内存地址,对于数据的增删查改互不影响。

共享内存的机制,就是拿出一块虚拟地址空间来,映射到相同的物理内存中。这样这个进程写入的东西,另外一个进程马上就能看到了,都不需要拷贝来拷贝去,传来传去,大大提高了进程间通信的速度。


信号量

用了共享内存通信方式,带来新的问题,那就是如果多个进程同时修改同一个共享内存,很有可能就冲突了。例如两个进程都同时写一个地址,那先写的那个进程会发现内容被别人覆盖了。

为了防止多进程竞争共享资源,而造成的数据错乱,所以需要保护机制,使得共享的资源,在任意时刻只能被一个进程访问。正好,信号量就实现了这一保护机制。

信号量其实是一个整型的计数器,主要用于实现进程间的互斥与同步,而不是用于缓存进程间通信的数据

信号量表示资源的数量,控制信号量的方式有两种原子操作:

  • 一个是 P 操作,这个操作会把信号量减去 -1,相减后如果信号量 < 0,则表明资源已被占用,进程需阻塞等待;相减后如果信号量 >= 0,则表明还有资源可使用,进程可正常继续执行。
  • 另一个是 V 操作,这个操作会把信号量加上 1,相加后如果信号量 <= 0,则表明当前有阻塞中的进程,于是会将该进程唤醒运行;相加后如果信号量 > 0,则表明当前没有阻塞中的进程;

P 操作是用在进入共享资源之前,V 操作是用在离开共享资源之后,这两个操作是必须成对出现的。

接下来,举个例子,如果要使得两个进程互斥访问共享内存,我们可以初始化信号量为 1

具体的过程如下:

  • 进程 A 在访问共享内存前,先执行了 P 操作,由于信号量的初始值为 1,故在进程 A 执行 P 操作后信号量变为 0,表示共享资源可用,于是进程 A 就可以访问共享内存。
  • 若此时,进程 B 也想访问共享内存,执行了 P 操作,结果信号量变为了 -1,这就意味着临界资源已被占用,因此进程 B 被阻塞。
  • 直到进程 A 访问完共享内存,才会执行 V 操作,使得信号量恢复为 0,接着就会唤醒阻塞中的线程 B,使得进程 B 可以访问共享内存,最后完成共享内存的访问后,执行 V 操作,使信号量恢复到初始值 1。

可以发现,信号初始化为 1,就代表着是互斥信号量,它可以保证共享内存在任何时刻只有一个进程在访问,这就很好的保护了共享内存。

另外,在多进程里,每个进程并不一定是顺序执行的,它们基本是以各自独立的、不可预知的速度向前推进,但有时候我们又希望多个进程能密切合作,以实现一个共同的任务。

例如,进程 A 是负责生产数据,而进程 B 是负责读取数据,这两个进程是相互合作、相互依赖的,进程 A 必须先生产了数据,进程 B 才能读取到数据,所以执行是有前后顺序的。

那么这时候,就可以用信号量来实现多进程同步的方式,我们可以初始化信号量为 0

具体过程:

  • 如果进程 B 比进程 A 先执行了,那么执行到 P 操作时,由于信号量初始值为 0,故信号量会变为 -1,表示进程 A 还没生产数据,于是进程 B 就阻塞等待;
  • 接着,当进程 A 生产完数据后,执行了 V 操作,就会使得信号量变为 0,于是就会唤醒阻塞在 P 操作的进程 B;
  • 最后,进程 B 被唤醒后,意味着进程 A 已经生产了数据,于是进程 B 就可以正常读取数据了。

可以发现,信号初始化为 0,就代表着是同步信号量,它可以保证进程 A 应在进程 B 之前执行。


信号

上面说的进程间通信,都是常规状态下的工作模式。对于异常情况下的工作模式,就需要用「信号」的方式来通知进程。

信号跟信号量虽然名字相似度 66.66%,但两者用途完全不一样,就好像 Java 和 JavaScript 的区别。

在 Linux 操作系统中, 为了响应各种各样的事件,提供了几十种信号,分别代表不同的意义。我们可以通过 kill -l 命令,查看所有的信号:

$ kill -l1) SIGHUP       2) SIGINT       3) SIGQUIT      4) SIGILL       5) SIGTRAP6) SIGABRT      7) SIGBUS       8) SIGFPE       9) SIGKILL     10) SIGUSR1
11) SIGSEGV     12) SIGUSR2     13) SIGPIPE     14) SIGALRM     15) SIGTERM
16) SIGSTKFLT   17) SIGCHLD     18) SIGCONT     19) SIGSTOP     20) SIGTSTP
21) SIGTTIN     22) SIGTTOU     23) SIGURG      24) SIGXCPU     25) SIGXFSZ
26) SIGVTALRM   27) SIGPROF     28) SIGWINCH    29) SIGIO       30) SIGPWR
31) SIGSYS      34) SIGRTMIN    35) SIGRTMIN+1  36) SIGRTMIN+2  37) SIGRTMIN+3
38) SIGRTMIN+4  39) SIGRTMIN+5  40) SIGRTMIN+6  41) SIGRTMIN+7  42) SIGRTMIN+8
43) SIGRTMIN+9  44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9  56) SIGRTMAX-8  57) SIGRTMAX-7
58) SIGRTMAX-6  59) SIGRTMAX-5  60) SIGRTMAX-4  61) SIGRTMAX-3  62) SIGRTMAX-2
63) SIGRTMAX-1  64) SIGRTMAX

运行在 shell 终端的进程,我们可以通过键盘输入某些组合键的时候,给进程发送信号。例如

  • Ctrl+C 产生 SIGINT 信号,表示终止该进程;
  • Ctrl+Z 产生 SIGTSTP 信号,表示停止该进程,但还未结束;

如果进程在后台运行,可以通过 kill 命令的方式给进程发送信号,但前提需要知道运行中的进程 PID 号,例如:

  • kill -9 1050 ,表示给 PID 为 1050 的进程发送 SIGKILL 信号,用来立即结束该进程;

所以,信号事件的来源主要有硬件来源(如键盘 Cltr+C )和软件来源(如 kill 命令)。

信号是进程间通信机制中唯一的异步通信机制,因为可以在任何时候发送信号给某一进程,一旦有信号产生,我们就有下面这几种,用户进程对信号的处理方式。

1.执行默认操作。Linux 对每种信号都规定了默认操作,例如,上面列表中的 SIGTERM 信号,就是终止进程的意思。Core 的意思是 Core Dump,也即终止进程后,通过 Core Dump 将当前进程的运行状态保存在文件里面,方便程序员事后进行分析问题在哪里。

2.捕捉信号。我们可以为信号定义一个信号处理函数。当信号发生时,我们就执行相应的信号处理函数。

3.忽略信号。当我们不希望处理某些信号的时候,就可以忽略该信号,不做任何处理。有两个信号是应用进程无法捕捉和忽略的,即 SIGKILL 和 SEGSTOP,它们用于在任何时候中断或结束某一进程。


Socket

前面提到的管道、消息队列、共享内存、信号量和信号都是在同一台主机上进行进程间通信,那要想跨网络与不同主机上的进程之间通信,就需要 Socket 通信了。

实际上,Socket 通信不仅可以跨网络与不同主机的进程间通信,还可以在同主机上进程间通信。

我们来看看创建 socket 的系统调用:

和 `SEGSTOP`,它们用于在任何时候中断或结束某一进程。* * *### Socket前面提到的管道、消息队列、共享内存、信号量和信号都是在同一台主机上进行进程间通信,那要想**跨网络与不同主机上的进程之间通信,就需要 Socket 通信了。**实际上,Socket 通信不仅可以跨网络与不同主机的进程间通信,还可以在同主机上进程间通信。我们来看看创建 socket 的系统调用:

凉了!张三同学没答好,熬夜整理最新大厂Java高频面试题相关推荐

  1. 凉了!张三同学没答好「进程间通信」,被面试官挂了....

    前言 开场小故事 炎炎夏日,张三骑着单车去面试花了 1 小时,一路上汗流浃背. 结果面试过程只花了 5 分钟就结束了,面完的时候,天还是依然是亮的,还得在烈日下奔波 1 小时回去. 面试五分钟,骑车两 ...

  2. 张三同学没答好「进程间通信」,被面试官挂了....

    前言 开场小故事 炎炎夏日,张三骑着单车去面试花了 1 小时,一路上汗流浃背. 结果面试过程只花了 5 分钟就结束了,面完的时候,天还是依然是亮的,还得在烈日下奔波 1 小时回去. 面试五分钟,骑车两 ...

  3. 分享阿里HR熬夜整理76道软件测试常见面试题

    1.问:你在测试中发现了一个bug,但是开发经理认为这不是一个bug,你应该怎样解决? 首先,将问题提交到缺陷管理库里面进行备案. 然后,要获取判断的依据和标准: ·根据需求说明书.产品说明.设计文档 ...

  4. 五面拿下阿里飞猪offer,熬夜整理Java高频面试题

    前言 Spring如何解决的循环依赖,是近两年流行起来的一道Java面试题.其实笔者本人对这类框架源码题还是持一定的怀疑态度的.如果笔者作为面试官,可能会问一些诸如"如果注入的属性为null ...

  5. 阿里HR熬夜整理76道软件测试常见面试题

    1.问:你在测试中发现了一个bug,但是开发经理认为这不是一个bug,你应该怎样解决? 首先,将问题提交到缺陷管理库里面进行备案. 然后,要获取判断的依据和标准: ·根据需求说明书.产品说明.设计文档 ...

  6. 没答好「进程间通信」,被面试官挂了....

    作者 | 小林coding 来源 | 小林coding 前言 (图片来自公众号小林coding) 炎炎夏日,张三骑着单车去面试花了 1 小时,一路上汗流浃背. 结果面试过程只花了 5 分钟就结束了,面 ...

  7. c++ fork 进程时 共享内存_因为没答好进程间通信,面试挂了...

    前言 开场小故事 炎炎夏日,张三骑着单车去面试花了 1 小时,一路上汗流浃背. 结果面试过程只花了 5 分钟就结束了,面完的时候,天还是依然是亮的,还得在烈日下奔波 1 小时回去. 面试五分钟,骑车两 ...

  8. 面试被问Mysql没答上来?阿里P5:总结了55道常见面试题,收藏一波

    转载自  面试被问Mysql没答上来?阿里P5:总结了55道常见面试题,收藏一波 正文开始前,分享阿里 P8 高级架构师吐血总结的 <Java 核心知识体系&面试资料.pdf>, ...

  9. 面试官问了我几道Java基础没答上来

    面试官问了我几道Java基础没答上来 文章目录 面试官问了我几道Java基础没答上来 1.面向对象的三大特性,分别解释下? 2.说到多态,再来说下方法重载和重写的区别? 3.Java是面向对象的语言, ...

最新文章

  1. centos7 使用无线wifi连接
  2. Spark Streaming 执行流程
  3. docker tomcat jvm 使用 visualVM监控
  4. 苹果手机怎么拍星空_手机拍星空,看这篇教程就够了!
  5. 部署和调优 3.4 腾讯企业邮箱免费版 未完
  6. NLP之电影评分数据的情感分析
  7. CSS世界Bug般的存在——字母x与“居中”
  8. 奇迹mu开服教程:服务端的架设及开服注意事项
  9. UniAPP支付宝H5支付
  10. 【视频目标检测数据集收集】B站、YouTube等各大网站视频下载工具:Annie(现更名为lux)的下载与安装教程
  11. 老毛桃发帖子 去广告
  12. Js 中null 和underfined的区别
  13. 初中计算机期末质量分析,信息技术期末质量分析
  14. 计算机网络-自定向下方法之应用层
  15. 一秒钟看懂SaaS、CRM、OA、ERP、HR、进销存
  16. 菜鸟学数电1-如何看懂TTL名称
  17. 2023春季美赛(MCM/ICM)问题Y:了解二手帆船的价格
  18. 等保2.0必须了解的40个问题
  19. 【日常小问题1】U盘写入速度变慢的解决方法(适用于win10)
  20. 计算机basic基本指令,DOS的Interlnk、Intersvr、Qbasic命令使用说明 -电脑资料

热门文章

  1. 中国双重增亮膜(DBEF)市场趋势报告、技术动态创新及市场预测
  2. linux下搭建uvm环境,转:使用QuestaSIM进行UVM仿真环境搭建
  3. dell服务器t330进入不了系统,Re: 戴尔T330服务器故障
  4. 文本加密算法matlab,matlab希尔加密算法
  5. 2021大二实训part01
  6. iOS 跨平台开发,该用 Flutter 还是 Swift?
  7. “内”忧“外”患,3 万台 Mac 有危险!
  8. CSDN学院全面改版啦!这次真的“搞大”了!
  9. 下一代数据备份方式会是DNA吗?
  10. 一张图搞懂 Redis 缓存雪崩、缓存穿透、缓存击穿