AI 前线导读:随着互联网行业的井喷式发展,数据规模呈现爆炸式增长。大数据中蕴含了巨大的价值,但同时也来了很 “信息过载” 的问题。推荐系统作为一个广泛应用的信息过滤系统,在很多领域取得了巨大的成功。在电子商务上(Amazon,eBay,阿里巴巴),推荐系统为用户提供个性化产品,发掘用户潜在需求。那些电商的 “猜你喜欢” 其实就是推荐系统的应用。简单的说,推荐系统的目标是根据用户的偏好,为其找到并推荐可能感兴趣的项目。

当今机器学习中最有价值的应用之一就是推荐系统。Amazon 将其 35% 的收入归功于其推荐系统。

译注:关于 35% 这一数据详见《The Amazon Recommendations Secret to Selling More Online》(http://rejoiner.com/resources/amazon-recommendations-secret-selling-online/)

评估是研究和开发任何推荐系统的重要组成部分。根据你的业务和可用数据,有很多方法可以评估推荐系统。在本文中,我们会尝试一些评估方法。

评级预测

在我上一篇文章中《Building and Testing Recommender Systems With Surprise, Step-By-Step 》(https://towardsdatascience.com/building-and-testing-recommender-systems-with-surprise-step-by-step-d4ba702ef80b):使用 Surprise 构建和测试推荐系统,Surprise 以各种机器学习算法为中心来预测用户对商品条目的评级(即评级预测)。它要求用户提供明确的反馈,比如让用户在购买图书后对其进行 0~10 星的评级。然后我们用这些数据来建立用户兴趣的档案。问题是,不是每个人都愿意留下评级,因此数据往往是稀疏的,就像我们之前看到的 Book-Crossing 数据集一样:

译注:Book-Crossing 数据集可见 http://www2.informatik.uni-freiburg.de/~cziegler/BX/

大多数推荐系统是这样试图预测的:如果用户对相应的图书进行评级的话,他们会在里面放入什么内容。如果 “NaN” 太多,那么推荐系统就没有足够的数据来理解用户究竟喜欢什么。

但是,如果你能说服用户给你评级,那么明确的评级是很好的。因此,如果你拥有大量的数据和用户评级,那么评估指标应该为 RMSEMAE。让我们展示一个带有 Surprise 库的 Movielens 数据集示例。

movies = pd.read_csv('movielens_data/movies.csv')ratings = pd.read_csv('movielens_data/ratings.csv')df = pd.merge(movies, ratings, on='movieId', how='inner')reader = Reader(rating_scale=(0.5, 5))data = Dataset.load_from_df(df[['userId', 'title', 'rating']], reader)trainSet, testSet = train_test_split(data, test_size=.25, random_state=0)algo = SVD(random_state=0)algo.fit(trainSet)predictions = algo.test(testSet)def MAE(predictions):        return accuracy.mae(predictions, verbose=False)def RMSE(predictions):        return accuracy.rmse(predictions, verbose=False)    print(\u0026quot;RMSE: \u0026quot;, RMSE(predictions))print(\u0026quot;MAE: \u0026quot;, MAE(predictions))

ratings_prediction.py

Top-N

从网上购物网站到视频门户网站,Top-N 推荐系统的身影无处不在。它们为用户提供他们可能感兴趣的 N 个项目的排名列表,以鼓励用户浏览、下单购买。

译注:Top-N 推荐系统的介绍可观看 YouTube 视频:https://www.youtube.com/watch?v=EeXBdQYs0CQ

Amazon 的推荐系统之一就是 “Top-N” 系统,它可以为个人提供顶级结果列表:

Amazon 的 “Top-N” 推荐包括 9 页,第一页有 6 项。一个好的推荐系统应该能够识别某个用户感兴趣的一组 N 个条目。因为我很少在 Amazon 上买书,因此我的 “Top-N” 就差得很远。换言之,我可能只会点击或阅读我的 “Top-N” 列表中的某本书。

下面的脚本为测试集中的每个用户生成了前 10 条推荐。

def GetTopN(predictions, n=10, minimumRating=4.0):    topN = defaultdict(list)    for userID, movieID, actualRating, estimatedRating, _ in predictions:        if (estimatedRating \u0026gt;= minimumRating):            topN[int(userID)].append((int(movieID), estimatedRating))    for userID, ratings in topN.items():        ratings.sort(key=lambda x: x[1], reverse=True)        topN[int(userID)] = ratings[:n]    return topN    LOOCV = LeaveOneOut(n_splits=1, random_state=1)for trainSet, testSet in LOOCV.split(data):    # Train model without left-out ratings    algo.fit(trainSet)    # Predicts ratings for left-out ratings only    leftOutPredictions = algo.test(testSet)    # Build predictions for all ratings not in the training set    bigTestSet = trainSet.build_anti_testset()    allPredictions = algo.test(bigTestSet)    # Compute top 10 recs for each user    topNPredicted = GetTopN(allPredictions, n=10)

top-N.py

下面是我们预测的 userId 2 和 userId 3 的前 10 项。

命中率

让我们看看生成的前 10 项推荐究竟有多好。为评估前 10 项,我们使用命中率这一指标,也就是说,如果用户对我们推荐的前 10 项中的一个进行了评级,那么我们就认为这是一个 “命中”。

计算单个用户命中率的过程如下:

  • 在训练数据中查找此用户历史记录中的所有项。

  • 有意删除其中一项条目(使用留一法,一种交叉验证方法)。

  • 使用所有其他项目为推荐系统提供信息,并要求提供前 10 项推荐。

  • 如果删除的条目出现在前 10 项推荐中,那么它就是命中的。如果没有,那就不算命中。

def HitRate(topNPredicted, leftOutPredictions):    hits = 0    total = 0 # For each left-out rating    for leftOut in leftOutPredictions:        userID = leftOut[0]        leftOutMovieID = leftOut[1]        # Is it in the predicted top 10 for this user?        hit = False        for movieID, predictedRating in topNPredicted[int(userID)]:            if (int(leftOutMovieID) == int(movieID)):                hit = True                break        if (hit) :            hits += 1        total += 1    # Compute overall precision    return hits/totalprint(\u0026quot;\Hit Rate: \u0026quot;, HitRate(topNPredicted, leftOutPredictions))

HitRate.py

系统的总命中率是命中数除以测试用户数。它衡量的是我们推荐删除评级的频率,越高越好。

如果命中率非常低的话,这只是意味着我们没有足够的数据可供使用。就像 Amazon 对我来说,命中率就非常低,因为它没有足够的我购买图书的数据。

基于评级值的命中率

我们还可以通过预测的评级值来细分命中率。在理想情况下,我们希望预测用户喜欢的电影,因此我们关心的是高评级值而不是低评级值。

def RatingHitRate(topNPredicted, leftOutPredictions):    hits = defaultdict(float)    total = defaultdict(float)    # For each left-out rating    for userID, leftOutMovieID, actualRating, estimatedRating, _ in leftOutPredictions:        # Is it in the predicted top N for this user?        hit = False        for movieID, predictedRating in topNPredicted[int(userID)]:            if (int(leftOutMovieID) == movieID):                hit = True                break        if (hit) :            hits[actualRating] += 1        total[actualRating] += 1    # Compute overall precision    for rating in sorted(hits.keys()):        print(rating, hits[rating] / total[rating])print(\u0026quot;Hit Rate by Rating value: \u0026quot;)RatingHitRate(topNPredicted, leftOutPredictions)

RatingHitRate.py

我们的命中率细分正是我们所期望的,评级值为 5 的命中率远高于 4 或 3。越高越好。

累积命中率

因为我们关心更高的评级,我们可以忽略低于 4 的预测评级,来计算 \u0026gt; = 4 的评级命中率。

def CumulativeHitRate(topNPredicted, leftOutPredictions, ratingCutoff=0):    hits = 0    total = 0    # For each left-out rating    for userID, leftOutMovieID, actualRating, estimatedRating, _ in leftOutPredictions:        # Only look at ability to recommend things the users actually liked...        if (actualRating \u0026gt;= ratingCutoff):            # Is it in the predicted top 10 for this user?            hit = False            for movieID, predictedRating in topNPredicted[int(userID)]:                if (int(leftOutMovieID) == movieID):                    hit = True                    break            if (hit) :                hits += 1            total += 1        # Compute overall precision    return hits/totalprint(\u0026quot;Cumulative Hit Rate (rating \u0026gt;= 4): \u0026quot;, CumulativeHitRate(topNPredicted, leftOutPredictions, 4.0))

CumulativeHitRate.py

越高越好。

平均对等命中排名(Average Reciprocal Hit Ranking,ARHR)

常用于 Top-N 推荐系统排名评估的指标,只考虑第一个相关结果出现的地方。我们在推荐用户排名靠前而不是靠后的产品获得了更多的好评。越高越好。

def AverageReciprocalHitRank(topNPredicted, leftOutPredictions):    summation = 0    total = 0        # For each left-out rating    for userID, leftOutMovieID, actualRating, estimatedRating, _ in leftOutPredictions:        # Is it in the predicted top N for this user?        hitRank = 0        rank = 0        for movieID, predictedRating in topNPredicted[int(userID)]:            rank = rank + 1            if (int(leftOutMovieID) == movieID):                hitRank = rank                break        if (hitRank \u0026gt; 0) :                summation += 1.0 / hitRank        total += 1    return summation / totalprint(\u0026quot;Average Reciprocal Hit Rank: \u0026quot;, AverageReciprocalHitRank(topNPredicted, leftOutPredictions))view rawAverageReciprocalHitRank.py hosted with ❤ by GitHub

AverageReciprocalHitRank.py

你的第一个真实推荐系统可能质量很低,哪怕是成熟系统,用于新用户的表现也是一样。但是,这仍然比没有推荐系统要好多得多。推荐系统的目的之一,就是在推荐系统中了解用户 / 新用户的偏好,这样他们就可以开始从系统中接收准确的个性化推荐。

然而,如果你刚刚起步的话,那么你的网站就是全新的,这时候推荐系统并不能为任何人提供个性化的推荐,因为这时候并没有任何人的评价。然后,这就变成了一个系统引导问题。

译注:有关系统引导问题可参阅:《Learning Preferences of New Users in RecommenderSystems: An Information Theoretic Approach》(https://www.kdd.org/exploration_files/WebKDD08-Al-Rashid.pdf)

本文的Jupyter Notebook 可以在 Github 上找到:https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/Movielens Recommender Metrics.ipynb。

参考文献:Building Recommender Systems with Machine Learning and AI(《使用机器学习和人工智能构建推荐系统》https://learning.oreilly.com/videos/building-recommender-systems/9781789803273)

原文链接:https://towardsdatascience.com/evaluating-a-real-life-recommender-system-error-based-and-ranking-based-84708e3285b

如何构建一个真实的推荐系统?相关推荐

  1. 万字干货:如何从零开始构建企业级推荐系统?

    「免费学习 60+ 节公开课:投票页面,点击讲师头像」 作者丨gongyouliu 编辑丨zandy 来源 | 大数据与人工智能(ID: ai-big-data) 最近几个月有很多人咨询作者怎么从零开 ...

  2. 【机器学习】使用 Python 构建电影推荐系统

    本文将余弦相似度与 KNN.Seaborn.Scikit-learn 和 Pandas 结合使用,创建一个使用用户评分数据的电影推荐系统. 在日常数据挖掘工作中,除了会涉及到使用Python处理分类或 ...

  3. 从零开始构建企业级推荐系统

    作者丨gongyouliu 编辑丨zandy 这是作者的第26篇文章,约1.2w字,阅读需60分钟 最近几个月有很多人咨询作者怎么从零开始搭建工业级推荐系统,有做音视频的.有做新闻资讯的.有做在线教育 ...

  4. Mahout构建图书推荐系统

    前言 本文是Mahout实现推荐系统的又一案例,用Mahout构建图书推荐系统.与之前的两篇文章,思路上面类似,侧重点在于图书的属性如何利用.本文的数据在自于Amazon网站,由爬虫抓取获得. 目录 ...

  5. Python实现基于用户的协同过滤推荐算法构建电影推荐系统

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取. 1.项目背景 基于用户的协同过滤推荐(User-based CF)的原理假设: ...

  6. Python实现基于物品的协同过滤推荐算法构建电影推荐系统

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取. 1.项目背景 基于物品的协同过滤推荐(Item-based CF)的假设原理为 ...

  7. 从0构建AI推荐系统demo(数据准备)

    前言 推荐系统一直以来都是人工智能领域中较为火热的研究方向之一,最近公司需要构建常见的资讯类推荐系统,本人也从无到有.从0开始构建AI推荐系统demo版.此篇主要讲述最基本的数据准备中,最最最最基本的 ...

  8. 「构建企业级推荐系统系列」深度学习在推荐系统中的应用

    点击上方"数据与智能","星标或置顶公众号" 第一时间获取好内容 作者 | gongyouliu 编辑 | auroral-L 2016年DeepMind开发的 ...

  9. 王家林人工智能AI第19课:使用决策树在Social Network上构建汽车销售推荐系统老师微信13928463918

    王家林人工智能AI第19课:使用决策树在Social Network上构建汽车销售推荐系统老师微信13928463918

最新文章

  1. HTTP 错误 404.2 - Not Found
  2. 创业者:创业要疯狂融资要理性
  3. css3动画、2D与3D效果
  4. java多线程原子操作_Java 多线程 - 原子操作CAS
  5. Android开发中无处不在的设计模式——动态代理模式
  6. ASP.NET MVC中的路由IRouteConstraint方法应用实例
  7. java算程序运行时间_关于计算Java程序运行时间
  8. python处理json数据 乱码报错_python json.loads json.dumps(ensure_ascii = False) 汉字乱码问题解决...
  9. cahrt框架 ios_iOS - Charts(一) - BarChartView
  10. Linux —— 文件系统(特殊文件)、tree
  11. mysql断言命令_mysql的触发模拟断言
  12. Kubernetes基于EFK进行统一的日志管理方案
  13. 解决ubuntu不能远程连接
  14. python PPT学习资料分享
  15. Vue实现的问题解决方案的查询文库
  16. ps 毛发 边缘_【常用抠图小技巧】PS调整边缘扣毛发
  17. 获取多边形的最大最小坐标
  18. 项目实战(一)HTML5+CSS3+JS完成前端网站的制作
  19. 制作二维码过程的详解(基于python)_基于opencv+python的二维码识别
  20. 联想数字化转型之路:从传统IT到“新IT”

热门文章

  1. 红外传感器型号和参数_红外传感器参数|热释电红外传感器参数
  2. c语言 如何创建adt_编程那些事儿:面向对象编程基石之数据抽象(ADT)
  3. table tr省略后鼠标移入显示相应信息_中考来了,人机对话、信息技术考试要求看过来...
  4. python中np没有定义_python中的np.empty_python – np.empty,np.zeros和np.one
  5. wince怎么刷carplay_Carplay支持仪表/HUD显示 宝马为全球超750000辆车发布OTA升级
  6. 苹果电脑基本设置+Linux 命令+Android 实战集锦
  7. 模意义下的FFT算法
  8. here文档 here doc EOF重定向
  9. 初次使用cocoapods注意事项
  10. js 实现 复制 功能 (zeroclipboard)