相信有过开发经验的朋友都曾碰到过这样一个需求。假设你正在为一个新闻网站开发一个评论功能,读者可以评论原文甚至相互回复。

  这个需求并不简单,相互回复会导致无限多的分支,无限多的祖先-后代关系。这是一种典型的递归关系数据。

  对于这个问题,以下给出几个解决方案,各位客观可斟酌后选择。

一、邻接表:依赖父节点

  邻接表的方案如下(仅仅说明问题):

  CREATE TABLE Comments(CommentId  int  PK,ParentId   int,    --记录父节点ArticleId  int,CommentBody nvarchar(500),FOREIGN KEY (ParentId)  REFERENCES Comments(CommentId)   --自连接,主键外键都在自己表内FOREIGN KEY (ArticleId) REFERENCES Articles(ArticleId))

  由于偷懒,所以采用了书本中的图了,Bugs就是Articles:

  

  这种设计方式就叫做邻接表。这可能是存储分层结构数据中最普通的方案了。

  下面给出一些数据来显示一下评论表中的分层结构数据。示例表:

  

  图片说明存储结构:

  

  邻接表的优缺分析

  对于以上邻接表,很多程序员已经将其当成默认的解决方案了,但即便是这样,但它在从前还是有存在的问题的。

  分析1:查询一个节点的所有后代(求子树)怎么查呢?

  我们先看看以前查询两层的数据的SQL语句:

  SELECT c1.*,c2.*FROM Comments c1 LEFT OUTER JOIN Comments2 c2ON c2.ParentId = c1.CommentId

  显然,每需要查多一层,就需要联结多一次表。SQL查询的联结次数是有限的,因此不能无限深的获取所有的后代。而且,这种这样联结,执行Count()这样的聚合函数也相当困难。

  说了是以前了,现在什么时代了,在SQLServer 2005之后,一个公用表表达式就搞定了,顺带解决的还有聚合函数的问题(聚合函数如Count()也能够简单实用),例如查询评论4的所有子节点:

WITH COMMENT_CTE(CommentId,ParentId,CommentBody,tLevel)
AS
(--基本语句SELECT CommentId,ParentId,CommentBody,0 AS tLevel FROM CommentWHERE ParentId = 4UNION ALL  --递归语句SELECT c.CommentId,c.ParentId,c.CommentBody,ce.tLevel + 1 FROM Comment AS c INNER JOIN COMMENT_CTE AS ce    --递归查询ON c.ParentId = ce.CommentId
)
SELECT * FROM COMMENT_CTE

  显示结果如下:

  

  那么查询祖先节点树又如何查呢?例如查节点6的所有祖先节点:

WITH COMMENT_CTE(CommentId,ParentId,CommentBody,tLevel)
AS
(--基本语句SELECT CommentId,ParentId,CommentBody,0 AS tLevel FROM CommentWHERE CommentId = 6UNION ALLSELECT c.CommentId,c.ParentId,c.CommentBody,ce.tLevel - 1  FROM Comment AS c INNER JOIN COMMENT_CTE AS ce  --递归查询ON ce.ParentId = c.CommentIdwhere ce.CommentId <> ce.ParentId
)
SELECT * FROM COMMENT_CTE ORDER BY CommentId ASC

  结果如下:

  

  再者,由于公用表表达式能够控制递归的深度,因此,你可以简单获得任意层级的子树。

  OPTION(MAXRECURSION 2)

  看来哥是为邻接表平反来的。

   分析2:当然,邻接表也有其优点的,例如要添加一条记录是非常方便的。

  INSERT INTO Comment(ArticleId,ParentId)...    --仅仅需要提供父节点Id就能够添加了。

  分析3:修改一个节点位置或一个子树的位置也是很简单.

UPDATE Comment SET ParentId = 10 WHERE CommentId = 6  --仅仅修改一个节点的ParentId,其后面的子代节点自动合理。

  分析4:删除子树

  想象一下,如果你删除了一个中间节点,那么该节点的子节点怎么办(它们的父节点是谁),因此如果你要删除一个中间节点,那么不得不查找到所有的后代,先将其删除,然后才能删除该中间节点。

  当然这也能通过一个ON DELETE CASCADE级联删除的外键约束来自动完成这个过程。

  分析5:删除中间节点,并提升子节点

  面对提升子节点,我们要先修改该中间节点的直接子节点的ParentId,然后才能删除该节点:

  SELECT ParentId FROM Comments WHERE CommentId = 6;    --搜索要删除节点的父节点,假设返回4UPDATE Comments SET ParentId = 4 WHERE ParentId = 6;  --修改该中间节点的子节点的ParentId为要删除中间节点的ParentIdDELETE FROM Comments WHERE CommentId = 6;          --终于可以删除该中间节点了

  由上面的分析可以看到,邻接表基本上已经是很强大的了。

二、路径枚举

  路径枚举的设计是指通过将所有祖先的信息联合成一个字符串,并保存为每个节点的一个属性。

  路径枚举是一个由连续的直接层级关系组成的完整路径。如"/home/account/login",其中home是account的直接父亲,这也就意味着home是login的祖先。

  还是有刚才新闻评论的例子,我们用路径枚举的方式来代替邻接表的设计:

  CREATE TABLE Comments(CommentId  int  PK,Path      varchar(100),    --仅仅改变了该字段和删除了外键ArticleId  int,CommentBody nvarchar(500),FOREIGN KEY (ArticleId) REFERENCES Articles(ArticleId))

  简略说明问题的数据表如下:

  CommentId  Path    CommentBody

  1       1/        这个Bug的成因是什么

  2       1/2/     我觉得是一个空指针

  3       1/2/3     不是,我查过了

  4       1/4/     我们需要查无效的输入

  5       1/4/5/    是的,那是个问题

  6       1/4/6/    好,查一下吧。

  7       1/4/6/7/   解决了

  路径枚举的优点:

  对于以上表,假设我们需要查询某个节点的全部祖先,SQL语句可以这样写(假设查询7的所有祖先节点):

SELECT * FROM Comment AS c
WHERE '1/4/6/7/' LIKE c.path + '%'

  结果如下:

  

  假设我们要查询某个节点的全部后代,假设为4的后代:

SELECT * FROM Comment AS c
WHERE c.Path LIKE '1/4/%'

  结果如下:

  

  一旦我们可以很简单地获取一个子树或者从子孙节点到祖先节点的路径,就可以很简单地实现更多查询,比如计算一个字数所有节点的数量(COUNT聚合函数)

  

  插入一个节点也可以像和使用邻接表一样地简单。可以插入一个叶子节点而不用修改任何其他的行。你所需要做的只是复制一份要插入节点的逻辑上的父亲节点路径,并将这个新节点的Id追加到路径末尾就可以了。如果这个Id是插入时由数据库生成的,你可能需要先插入这条记录,然后获取这条记录的Id,并更新它的路径。

  路径枚举的缺点:

  1、数据库不能确保路径的格式总是正确或者路径中的节点确实存在(中间节点被删除的情况,没外键约束)。

  2、要依赖高级程序来维护路径中的字符串,并且验证字符串的正确性的开销很大。

  3、VARCHAR的长度很难确定。无论VARCHAR的长度设为多大,都存在不能够无限扩展的情况。

  路径枚举的设计方式能够很方便地根据节点的层级排序,因为路径中分隔两边的节点间的距离永远是1,因此通过比较字符串长度就能知道层级的深浅。

三、嵌套集

  嵌套集解决方案是存储子孙节点的信息,而不是节点的直接祖先。我们使用两个数字来编码每个节点,表示这个信息。可以将这两个数字称为nsleft和nsright。

  还是以上面的新闻-评论作为例子,对于嵌套集的方式表可以设计为:

  CREATE TABLE Comments(CommentId  int  PK,nsleft    int,  --之前的一个父节点nsright   int,  --变成了两个ArticleId  int,CommentBody nvarchar(500),FOREIGN KEY (ArticleId) REFERENCES Articles(ArticleId))

  nsleft值的确定:nsleft的数值小于该节点所有后代的Id。

  nsright值的确定:nsright的值大于该节点所有后代的Id。

  当然,以上两个数字和CommentId的值并没有任何关联,确定值的方式是对树进行一次深度优先遍历,在逐层入神的过程中依次递增地分配nsleft的值,并在返回时依次递增地分配nsright的值。

  采用书中的图来说明一下情况:

  

  一旦你为每个节点分配了这些数字,就可以使用它们来找到给定节点的祖先和后代。

  嵌套集的优点:

  我觉得是唯一的优点了,查询祖先树和子树方便。

  例如,通过搜索那些节点的ConmentId在评论4的nsleft与nsright之间就可以获得其及其所有后代:

  SELECT c2.* FROM Comments AS c1JOIN Comments AS c2  ON cs.neleft BETWEEN c1.nsleft AND c1.nsrightWHERE c1.CommentId = 1;

  结果如下:

  

  通过搜索评论6的Id在哪些节点的nsleft和nsright范围之间,就可以获取评论6及其所有祖先:

  SELECT c2.* FROM Comment AS c1JOIN Comment AS c2 ON c1.nsleft BETWEEN c2.nsleft AND c2.nsrightWHERE c1.CommentId = 6;

  

  这种嵌套集的设计还有一个优点,就是当你想要删除一个非叶子节点时,它的后代会自动地代替被删除的节点,称为其直接祖先节点的直接后代。

  嵌套集设计并不必须保存分层关系。因此当删除一个节点造成数值不连续时,并不会对树的结构产生任何影响。

  嵌套集缺点:

  1、查询直接父亲。

  在嵌套集的设计中,这个需求的实现的思路是,给定节点c1的直接父亲是这个节点的一个祖先,且这两个节点之间不应该有任何其他的节点,因此,你可以用一个递归的外联结来查询一个节点,它就是c1的祖先,也同时是另一个节点Y的后代,随后我们使y=x就查询,直到查询返回空,即不存在这样的节点,此时y便是c1的直接父亲节点。

  比如,要找到评论6的直接父节点:老实说,SQL语句又长又臭,行肯定是行,但我真的写不动了。

  2、对树进行操作,比如插入和移动节点。

  当插入一个节点时,你需要重新计算新插入节点的相邻兄弟节点、祖先节点和它祖先节点的兄弟,来确保它们的左右值都比这个新节点的左值大。同时,如果这个新节点是一个非叶子节点,你还要检查它的子孙节点。

  够了,够了。就凭查直接父节点都困难,这个东西就很冷门了。我确定我不会使用这种设计了。

四、闭包表

  闭包表是解决分层存储一个简单而又优雅的解决方案,它记录了表中所有的节点关系,并不仅仅是直接的父子关系。
  在闭包表的设计中,额外创建了一张TreePaths的表(空间换取时间),它包含两列,每一列都是一个指向Comments中的CommentId的外键。

CREATE TABLE Comments(CommentId int PK,ArticleId int,CommentBody int,FOREIGN KEY(ArticleId) REFERENCES Articles(Id)
)

  父子关系表:

CREATE TABLE TreePaths(ancestor    int,descendant int,PRIMARY KEY(ancestor,descendant),    --复合主键FOREIGN KEY (ancestor) REFERENCES Comments(CommentId),FOREIGN KEY (descendant) REFERENCES Comments(CommentId)
)

  在这种设计中,Comments表将不再存储树结构,而是将书中的祖先-后代关系存储为TreePaths的一行,即使这两个节点之间不是直接的父子关系;同时还增加一行指向节点自己,理解不了?就是TreePaths表存储了所有祖先-后代的关系的记录。如下图:

  

  Comment表:

  

  TreePaths表:

  

  优点:

  1、查询所有后代节点(查子树):

SELECT c.* FROM Comment AS cINNER JOIN TreePaths t on c.CommentId = t.descendantWHERE t.ancestor = 4

  结果如下:

  

  2、查询评论6的所有祖先(查祖先树):

SELECT c.* FROM Comment AS cINNER JOIN TreePaths t on c.CommentId = t.ancestorWHERE t.descendant = 6

  显示结果如下:

  

  3、插入新节点:

  要插入一个新的叶子节点,应首先插入一条自己到自己的关系,然后搜索TreePaths表中后代是评论5的节点,增加该节点与要插入的新节点的"祖先-后代"关系。

  比如下面为插入评论5的一个子节点的TreePaths表语句:

INSERT INTO TreePaths(ancestor,descendant)SELECT t.ancestor,8FROM TreePaths AS tWHERE t.descendant = 5UNION ALLSELECT 8,8

  执行以后:

  

  至于Comment表那就简单得不说了。

  4、删除叶子节点:

  比如删除叶子节点7,应删除所有TreePaths表中后代为7的行:

  DELETE FROM TreePaths WHERE descendant = 7

  5、删除子树:

  要删除一颗完整的子树,比如评论4和它的所有后代,可删除所有在TreePaths表中的后代为4的行,以及那些以评论4的后代为后代的行:

  DELETE FROM TreePathsWHERE descendant IN(SELECT descendant FROM TreePaths WHERE ancestor = 4)

  另外,移动节点,先断开与原祖先的关系,然后与新节点建立关系的SQL语句都不难写。

  另外,闭包表还可以优化,如增加一个path_length字段,自我引用为0,直接子节点为1,再一下层为2,一次类推,查询直接自子节点就变得很简单。

总结

  其实,在以往的工作中,曾见过不同类型的设计,邻接表,路径枚举,邻接表路径枚举一起来的都见过。

  每种设计都各有优劣,如果选择设计依赖于应用程序中哪种操作最需要性能上的优化。 

  下面给出一个表格,来展示各种设计的难易程度:

设计 表数量 查询子 查询树 插入 删除 引用完整性
邻接表 1 简单 简单 简单 简单
枚举路径 1 简单 简单 简单 简单
嵌套集 1 困难 简单 困难 困难
闭包表 2 简单 简单 简单 简单

  1、邻接表是最方便的设计,并且很多软件开发者都了解它。并且在递归查询的帮助下,使得邻接表的查询更加高效。

  2、枚举路径能够很直观地展示出祖先到后代之间的路径,但由于不能确保引用完整性,使得这个设计比较脆弱。枚举路径也使得数据的存储变得冗余。

  3、嵌套集是一个聪明的解决方案,但不能确保引用完整性,并且只能使用于查询性能要求较高,而其他要求一般的场合使用它。

  4、闭包表是最通用的设计,并且最灵活,易扩展,并且一个节点能属于多棵树,能减少冗余的计算时间。但它要求一张额外的表来存储关系,是一个空间换取时间的方案。

转载于:https://www.cnblogs.com/yinggu/p/11498981.html

逻辑数据库设计 - 单纯的树(邻接表、路径枚举、嵌套集、闭包表)(引)相关推荐

  1. 数据库设计——将用户名和密码与用户其他信息分成两张表

    数据库设计--将用户名和密码与用户其他信息分成两张表 好处 (1)面向对象方面考虑用户信息就是用户本身,用户名和密码只是登陆钥匙. (2)性能方面考虑登陆验证的时候列较少,查询速度快. (3)安全性考 ...

  2. 《教妹学数据库系统》(五)逻辑数据库设计(上)

    hello大家好,今天我们来学习逻辑数据库设计.教妹学数据库,没见过这么酷炫的标题吧?"语不惊人死不休",没错,标题就是这么酷炫. 我的妹妹小埋18岁,校园中女神一般的存在,成绩优 ...

  3. 【数据库设计】学生学籍信息和学期学年课程成绩信息表以及插入数据的python脚本生成设计

    [数据库设计]学生学籍信息和学年学期课程成绩信息设计 参考登陆用户信息设计 学籍信息设计 课程成绩信息设计 其他表的补充 专业-学院对照表 班级信息表 课程表 插入数据脚本 错误提示 参考登陆用户信息 ...

  4. 目录树结构的数据库设计思考

    昨天一同事遇到一问题,找我帮忙解决一下,他的需求是这样的,服务器将收集好的数据返回回来,客户端要解析并展现成树状的,类似于QQ客户端那样,大概就如下面这张图,这是他们网页端实现的界面. 其实需求挺简单 ...

  5. 网站评论功能数据库设计和开发

    本文主要分享了我在设计评论模块中的一些心得,希望对读者有些许帮助. 需求分析 现阶段评论做的最好的我想应该是网易新闻(app)里面的评论模块了,其"盖楼"的方式让人印象深刻,评论已 ...

  6. 数据库设计系列9--将ER模型映射为表

    在前面的步骤中,我们创建了数据库的ER模型,ER模型属于概念级别的模型,需要映射为表才能被计算机存储.本章节的目标就是从ER模型中创建表,并检查这些表的结构.这组表应该代表逻辑数据库模型中的实体,关系 ...

  7. 数据库设计中的英文术语表

    Access method(访问方法):此步骤包括从文件中存储和检索记录. Alias(别名):某属性的另一个名字.在SQL中,可以用别名替换表名. Alternate keys(备用键,ER/关系模 ...

  8. 数据库设计中的范式、关联与nosql分析【转】

    原文:http://chaochaoblog.com/archives/1745 对于信息管理类的程序来说,一个系统就是一个信息库.在大量的信息中为了索引.区别,最好的办法就是用数据库.然而建立一个简 ...

  9. 数据库 设计中的英文术语

    2019独角兽企业重金招聘Python工程师标准>>> Access method(访问方法):  此步骤包括从文件中存储和检索记载. Alias(别名):  某属性的另一个名字.在 ...

最新文章

  1. div 隐藏_注入WordPress网站的隐藏垃圾邮件链接
  2. android 详细构建过程,Android构建模块详细步骤概述
  3. 给共享程序集延迟签名
  4. Java 动态调试技术原理及实践
  5. HashMap之三问为什么及性能问题
  6. 福建职称计算机评聘任,职称聘任工作的有关补充规定(试行)
  7. 【渝粤教育】国家开放大学2018年春季 0014-22T秘书学(一) 参考试题
  8. python火柴人打架代码_python火柴人
  9. 23亿美元大市场,NFV做好了准备吗?
  10. 【编译原理笔记12】中间代码生成:简单赋值语句的翻译,数组引用的翻译
  11. 「陶哲軒實分析」 習題 3.5.9
  12. 【LeetCode】75. 颜色分类,使得相同颜色的元素相邻
  13. c 语言翻译软件,分享一款 程序员秒懂 很优雅的翻译软件
  14. linux 系统安装Iso,linux系统安装iso文件方法
  15. 关于光模块用单模光纤和多模光纤小知识
  16. 十进制转换的三种方法,共同进步~
  17. 计算机启动太慢的原因是,电脑启动慢的原因分析
  18. flutter源码下载(最新)
  19. uni-app 动画
  20. rop和rop2的题目的wp

热门文章

  1. 获取参数(可以是中文)
  2. Binary Agents
  3. C++类的成员变量和成员函数的介绍
  4. 处理和引发事件的规范
  5. Mac远程服务器文件上传rz和sz的安装使用
  6. Vue报错:3 errors and 0 warnings potentially fixable with the `--fix` option.
  7. JavaScript学习(三十七)—实现右键自定义菜单的功能
  8. lvs的调度算法有几种_LVS支持哪些调度算法?
  9. frame中src怎么设置成一个变量_webpack中Css的处理
  10. 性能指标之速率、带宽、吞吐量