##### 谈谈你对安卓签名的理解。

### 2、为什么WebView加载会慢呢?

这是因为在客户端中,加载H5页面之前,需要先初始化WebView,在WebView完全初始化完成之前,后续的界面加载过程都是被阻塞的。

优化手段围绕着以下两个点进行:

- 预加载WebView。
- 加载WebView的同时,请求H5页面数据。

因此常见的方法是:

- 全局WebView。
- 客户端代理页面请求。WebView初始化完成后向客户端请求数据。
- asset存放离线包。

除此之外还有一些其他的优化手段:

- 脚本执行慢,可以让脚本最后运行,不阻塞页面解析。
- DNS链接慢,可以让客户端复用使用的域名与链接。
- React框架代码执行慢,可以将这部分代码拆分出来,提前进行解析。

### 3、如何优化自定义View

为了加速你的view,对于频繁调用的方法,需要尽量减少不必要的代码。先从onDraw开始,需要特别注意不应该在这里做内存分配的事情,因为它会导致GC,从而导致卡顿。在初始化或者动画间隙期间做分配内存的动作。不要在动画正在执行的时候做内存分配的事情。

你还需要尽可能的减少onDraw被调用的次数,大多数时候导致onDraw都是因为调用了invalidate().因此请尽量减少调用invaildate()的次数。如果可能的话,尽量调用含有4个参数的invalidate()方法而不是没有参数的invalidate()。没有参数的invalidate会强制重绘整个view。

另外一个非常耗时的操作是请求layout。任何时候执行requestLayout(),会使得Android UI系统去遍历整个View的层级来计算出每一个view的大小。如果找到有冲突的值,它会需要重新计算好几次。另外需要尽量保持View的层级是扁平化的,这样对提高效率很有帮助。

如果你有一个复杂的UI,你应该考虑写一个自定义的ViewGroup来执行他的layout操作。与内置的view不同,自定义的view可以使得程序仅仅测量这一部分,这避免了遍历整个view的层级结构来计算大小。

### 4、FC(Force Close)什么时候会出现?

Error、OOM,StackOverFlowError、Runtime,比如说空指针异常

解决的办法:

- 注意内存的使用和管理
- 使用Thread.UncaughtExceptionHandler接口

### 5、[Java多线程引发的性能问题,怎么解决](https://blog.csdn.net/luofenghan/article/details/78596950)?

## 二、Android Framework相关

### 1、Android系统架构

![image](https://developer.android.com/guide/platform/images/android-stack_2x.png?hl=zh-cn)

Android 是一种基于 Linux 的开放源代码软件栈,为广泛的设备和机型而创建。下图所示为 Android 平台的五大组件:
    
1.应用程序

Android 随附一套用于电子邮件、短信、日历、互联网浏览和联系人等的核心应用。平台随附的应用与用户可以选择安装的应用一样,没有特殊状态。因此第三方应用可成为用户的默认网络浏览器、短信 Messenger 甚至默认键盘(有一些例外,例如系统的“设置”应用)。

系统应用可用作用户的应用,以及提供开发者可从其自己的应用访问的主要功能。例如,如果您的应用要发短信,您无需自己构建该功能,可以改为调用已安装的短信应用向您指定的接收者发送消息。
      
2、Java API 框架

您可通过以 Java 语言编写的 API 使用 Android OS 的整个功能集。这些 API 形成创建 Android 应用所需的构建块,它们可简化核心模块化系统组件和服务的重复使用,包括以下组件和服务:

- 丰富、可扩展的视图系统,可用以构建应用的 UI,包括列表、网格、文本框、按钮甚至可嵌入的网络浏览器
- 资源管理器,用于访问非代码资源,例如本地化的字符串、图形和布局文件
- 通知管理器,可让所有应用在状态栏中显示自定义提醒
- Activity 管理器,用于管理应用的生命周期,提供常见的导航返回栈
- 内容提供程序,可让应用访问其他应用(例如“联系人”应用)中的数据或者共享其自己的数据

开发者可以完全访问 Android 系统应用使用的框架 API。
      
3、系统运行库

1)原生 C/C++ 库

许多核心 Android 系统组件和服务(例如 ART 和 HAL)构建自原生代码,需要以 C 和 C++ 编写的原生库。Android 平台提供 Java 框架 API 以向应用显示其中部分原生库的功能。例如,您可以通过 Android 框架的 Java OpenGL API 访问 OpenGL ES,以支持在应用中绘制和操作 2D 和 3D 图形。如果开发的是需要 C 或 C++ 代码的应用,可以使用 Android NDK 直接从原生代码访问某些原生平台库。

2)Android Runtime

对于运行 Android 5.0(API 级别 21)或更高版本的设备,每个应用都在其自己的进程中运行,并且有其自己的 Android Runtime (ART) 实例。ART 编写为通过执行 DEX 文件在低内存设备上运行多个虚拟机,DEX 文件是一种专为 Android 设计的字节码格式,经过优化,使用的内存很少。编译工具链(例如 Jack)将 Java 源代码编译为 DEX 字节码,使其可在 Android 平台上运行。

ART 的部分主要功能包括:

- 预先 (AOT) 和即时 (JIT) 编译
- 优化的垃圾回收 (GC)
- 更好的调试支持,包括专用采样分析器、详细的诊断异常和崩溃报告,并且能够设置监视点以监控特定字段

在 Android 版本 5.0(API 级别 21)之前,Dalvik 是 Android Runtime。如果您的应用在 ART 上运行效果很好,那么它应该也可在 Dalvik 上运行,但反过来不一定。

Android 还包含一套核心运行时库,可提供 Java API 框架使用的 Java 编程语言大部分功能,包括一些 Java 8 语言功能。
      
4、硬件抽象层 (HAL)

硬件抽象层 (HAL) 提供标准界面,向更高级别的 Java API 框架显示设备硬件功能。HAL 包含多个库模块,其中每个模块都为特定类型的硬件组件实现一个界面,例如相机或蓝牙模块。当框架 API 要求访问设备硬件时,Android 系统将为该硬件组件加载库模块。
      
5、Linux 内核

Android 平台的基础是 Linux 内核。例如,Android Runtime (ART) 依靠 Linux 内核来执行底层功能,例如线程和低层内存管理。使用 Linux 内核可让 Android 利用主要安全功能,并且允许设备制造商为著名的内核开发硬件驱动程序。

#### 对于Android应用开发来说,最好能手绘下面的系统架构图:
    
![image](https://raw.githubusercontent.com/BeesAndroid/BeesAndroid/master/art/android_system_structure.png)

### 2、View的事件分发机制?滑动冲突怎么解决?

#### 了解Activity的构成

一个Activity包含了一个Window对象,这个对象是由PhoneWindow来实现的。PhoneWindow将DecorView作为整个应用窗口的根View,而这个DecorView又将屏幕划分为两个区域:一个是TitleView,另一个是ContentView,而我们平时所写的就是展示在ContentView中的。

#### 触摸事件的类型

触摸事件对应的是MotionEvent类,事件的类型主要有如下三种:

- ACTION_DOWN
- ACTION_MOVE(移动的距离超过一定的阈值会被判定为ACTION_MOVE操作)
- ACTION_UP

View事件分发本质就是对MotionEvent事件分发的过程。即当一个MotionEvent发生后,系统将这个点击事件传递到一个具体的View上。

#### 事件分发流程

事件分发过程由三个方法共同完成:

dispatchTouchEvent:方法返回值为true表示事件被当前视图消费掉;返回为super.dispatchTouchEvent表示继续分发该事件,返回为false表示交给父类的onTouchEvent处理。

onInterceptTouchEvent:方法返回值为true表示拦截这个事件并交由自身的onTouchEvent方法进行消费;返回false表示不拦截,需要继续传递给子视图。如果return super.onInterceptTouchEvent(ev), 事件拦截分两种情况:  

- 1.如果该View存在子View且点击到了该子View, 则不拦截, 继续分发
给子View 处理, 此时相当于return false。
- 2.如果该View没有子View或者有子View但是没有点击中子View(此时ViewGroup
相当于普通View), 则交由该View的onTouchEvent响应,此时相当于return true。

注意:一般的LinearLayout、 RelativeLayout、FrameLayout等ViewGroup默认不拦截, 而
ScrollView、ListView等ViewGroup则可能拦截,得看具体情况。

onTouchEvent:方法返回值为true表示当前视图可以处理对应的事件;返回值为false表示当前视图不处理这个事件,它会被传递给父视图的onTouchEvent方法进行处理。如果return super.onTouchEvent(ev),事件处理分为两种情况:

- 1.如果该View是clickable或者longclickable的,则会返回true, 表示消费
了该事件, 与返回true一样;
- 2.如果该View不是clickable或者longclickable的,则会返回false, 表示不
消费该事件,将会向上传递,与返回false一样。

注意:在Android系统中,拥有事件传递处理能力的类有以下三种:

- Activity:拥有分发和消费两个方法。
- ViewGroup:拥有分发、拦截和消费三个方法。
- View:拥有分发、消费两个方法。

三个方法的关系用伪代码表示如下:

public boolean dispatchTouchEvent(MotionEvent ev) {
        boolean consume = false;
        if (onInterceptTouchEvent(ev)) {
            consume = onTouchEvent(ev);
        } else {
            coonsume = child.dispatchTouchEvent(ev);
        }
        
        return consume;
    }

通过上面的伪代码,我们可以大致了解点击事件的传递规则:对应一个根ViewGroup来说,点击事件产生后,首先会传递给它,这是它的dispatchTouchEvent就会被调用,如果这个ViewGroup的onInterceptTouchEvent方法返回true就表示它要拦截当前事件,接着事件就会交给这个ViewGroup处理,这时如果它的mOnTouchListener被设置,则onTouch会被调用,否则onTouchEvent会被调用。在onTouchEvent中,如果设置了mOnCLickListener,则onClick会被调用。只要View的CLICKABLE和LONG_CLICKABLE有一个为true,onTouchEvent()就会返回true消耗这个事件。如果这个ViewGroup的onInterceptTouchEvent方法返回false就表示它不拦截当前事件,这时当前事件就会继续传递给它的子元素,接着子元素的dispatchTouchEvent方法就会被调用,如此反复直到事件被最终处理。

#### 一些重要的结论:

1、事件传递优先级:onTouchListener.onTouch > onTouchEvent > onClickListener.onClick。

2、正常情况下,一个时间序列只能被一个View拦截且消耗。因为一旦一个元素拦截了此事件,那么同一个事件序列内的所有事件都会直接交给它处理(即不会再调用这个View的拦截方法去询问它是否要拦截了,而是把剩余的ACTION_MOVE、ACTION_DOWN等事件直接交给它来处理)。特例:通过将重写View的onTouchEvent返回false可强行将事件转交给其他View处理。

3、如果View不消耗除ACTION_DOWN以外的其他事件,那么这个点击事件会消失,此时父元素的onTouchEvent并不会被调用,并且当前View可以持续收到后续的事件,最终这些消失的点击事件会传递给Activity处理。

4、ViewGroup默认不拦截任何事件(返回false)。

5、View的onTouchEvent默认都会消耗事件(返回true),除非它是不可点击的(clickable和longClickable同时为false)。View的longClickable属性默认都为false,clickable属性要分情况,比如Button的clickable属性默认为true,而TextView的clickable默认为false。

6、View的enable属性不影响onTouchEvent的默认返回值。

7、通过requestDisallowInterceptTouchEvent方法可以在子元素中干预父元素的事件分发过程,但是ACTION_DOWN事件除外。

记住这个图的传递顺序,面试的时候能够画出来,就很详细了:

![image](https://upload-images.jianshu.io/upload_images/944365-aea821bbb613c195.png)

#### ACTION_CANCEL什么时候触发,触摸button然后滑动到外部抬起会触发点击事件吗,再滑动回去抬起会么?

- 一般ACTION_CANCEL和ACTION_UP都作为View一段事件处理的结束。如果在父View中拦截ACTION_UP或ACTION_MOVE,在第一次父视图拦截消息的瞬间,父视图指定子视图不接受后续消息了,同时子视图会收到ACTION_CANCEL事件。
- 如果触摸某个控件,但是又不是在这个控件的区域上抬起(移动到别的地方了),就会出现action_cancel。

##### 点击事件被拦截,但是想传到下面的View,如何操作?

重写子类的requestDisallowInterceptTouchEvent()方法返回true就不会执行父类的onInterceptTouchEvent(),即可将点击事件传到下面的View。

#### 如何解决View的事件冲突?举个开发中遇到的例子?

常见开发中事件冲突的有ScrollView与RecyclerView的滑动冲突、RecyclerView内嵌同时滑动同一方向。

滑动冲突的处理规则:

- 对于由于外部滑动和内部滑动方向不一致导致的滑动冲突,可以根据滑动的方向判断谁来拦截事件。
- 对于由于外部滑动方向和内部滑动方向一致导致的滑动冲突,可以根据业务需求,规定何时让外部View拦截事件,何时由内部View拦截事件。
- 对于上面两种情况的嵌套,相对复杂,可同样根据需求在业务上找到突破点。

滑动冲突的实现方法:

- 外部拦截法:指点击事件都先经过父容器的拦截处理,如果父容器需要此事件就拦截,否则就不拦截。具体方法:需要重写父容器的onInterceptTouchEvent方法,在内部做出相应的拦截。
- 内部拦截法:指父容器不拦截任何事件,而将所有的事件都传递给子容器,如果子容器需要此事件就直接消耗,否则就交由父容器进行处理。具体方法:需要配合requestDisallowInterceptTouchEvent方法。

[加深理解,GOGOGO](https://jsonchao.github.io/2018/10/17/Android%E8%A7%A6%E6%91%B8%E4%BA%8B%E4%BB%B6%E4%BC%A0%E9%80%92%E6%9C%BA%E5%88%B6/)

### 3、View的绘制流程?

#### DecorView被加载到Window中

- 从Activity的startActivity开始,最终调用到ActivityThread的handleLaunchActivity方法来创建Activity,首先,会调用performLaunchActivity方法,内部会执行Activity的onCreate方法,从而完成DecorView和Activity的创建。然后,会调用handleResumeActivity,里面首先会调用performResumeActivity去执行Activity的onResume()方法,执行完后会得到一个ActivityClientRecord对象,然后通过r.window.getDecorView()的方式得到DecorView,然后会通过a.getWindowManager()得到WindowManager,最终调用其addView()方法将DecorView加进去。
- WindowManager的实现类是WindowManagerImpl,它内部会将addView的逻辑委托给WindowManagerGlobal,可见这里使用了接口隔离和委托模式将实现和抽象充分解耦。在WindowManagerGlobal的addView()方法中不仅会将DecorView添加到Window中,同时会创建ViewRootImpl对象,并将ViewRootImpl对象和DecorView通过root.setView()把DecorView加载到Window中。这里的ViewRootImpl是ViewRoot的实现类,是连接WindowManager和DecorView的纽带。View的三大流程均是通过ViewRoot来完成的。

#### 了解绘制的整体流程

绘制会从根视图ViewRoot的performTraversals()方法开始,从上到下遍历整个视图树,每个View控件负责绘制自己,而ViewGroup还需要负责通知自己的子View进行绘制操作。

#### 理解MeasureSpec

MeasureSpec表示的是一个32位的整形值,它的高2位表示测量模式SpecMode,低30位表示某种测量模式下的规格大小SpecSize。MeasureSpec是View类的一个静态内部类,用来说明应该如何测量这个View。它由三种测量模式,如下:

- EXACTLY:精确测量模式,视图宽高指定为match_parent或具体数值时生效,表示父视图已经决定了子视图的精确大小,这种模式下View的测量值就是SpecSize的值。
- AT_MOST:最大值测量模式,当视图的宽高指定为wrap_content时生效,此时子视图的尺寸可以是不超过父视图允许的最大尺寸的任何尺寸。
- UNSPECIFIED:不指定测量模式, 父视图没有限制子视图的大小,子视图可以是想要的任何尺寸,通常用于系统内部,应用开发中很少用到。

MeasureSpec通过将SpecMode和SpecSize打包成一个int值来避免过多的对象内存分配,为了方便操作,其提供了打包和解包的方法,打包方法为makeMeasureSpec,解包方法为getMode和getSize。

普通View的MeasureSpec的创建规则如下:

![image](https://images2015.cnblogs.com/blog/918357/201706/918357-20170618234001337-203688773.png)

对于DecorView而言,它的MeasureSpec由窗口尺寸和其自身的LayoutParams共同决定;对于普通的View,它的MeasureSpec由父视图的MeasureSpec和其自身的LayoutParams共同决定。

#### View绘制流程之Measure

- 首先,在ViewGroup中的measureChildren()方法中会遍历测量ViewGroup中所有的View,当View的可见性处于GONE状态时,不对其进行测量。
- 然后,测量某个指定的View时,根据父容器的MeasureSpec和子View的LayoutParams等信息计算子View的MeasureSpec。
- 最后,将计算出的MeasureSpec传入View的measure方法,这里ViewGroup没有定义测量的具体过程,因为ViewGroup是一个抽象类,其测量过程的onMeasure方法需要各个子类去实现。不同的ViewGroup子类有不同的布局特性,这导致它们的测量细节各不相同,如果需要自定义测量过程,则子类可以重写这个方法。(setMeasureDimension方法用于设置View的测量宽高,如果View没有重写onMeasure方法,则会默认调用getDefaultSize来获得View的宽高)

##### getSuggestMinimumWidth分析

如果View没有设置背景,那么返回android:minWidth这个属性所指定的值,这个值可以为0;如果View设置了背景,则返回android:minWidth和背景的最小宽度这两者中的最大值。

##### 自定义View时手动处理wrap_content时的情形

直接继承View的控件需要重写onMeasure方法并设置wrap_content时的自身大小,否则在布局中使用wrap_content就相当于使用match_parent。此时,可以在wrap_content的情况下(对应MeasureSpec.AT_MOST)指定内部宽/高(mWidth和mHeight)。

##### LinearLayout的onMeasure方法实现解析(这里仅分析measureVertical核心源码)

系统会遍历子元素并对每个子元素执行measureChildBeforeLayout方法,这个方法内部会调用子元素的measure方法,这样各个子元素就开始依次进入measure过程,并且系统会通过mTotalLength这个变量来存储LinearLayout在竖直方向的初步高度。每测量一个子元素,mTotalLength就会增加,增加的部分主要包括了子元素的高度以及子元素在竖直方向上的margin等。

##### 在Activity中获取某个View的宽高

由于View的measure过程和Activity的生命周期方法不是同步执行的,如果View还没有测量完毕,那么获得的宽/高就是0。所以在onCreate、onStart、onResume中均无法正确得到某个View的宽高信息。解决方式如下:

- Activity/View#onWindowFocusChanged:此时View已经初始化完毕,当Activity的窗口得到焦点和失去焦点时均会被调用一次,如果频繁地进行onResume和onPause,那么onWindowFocusChanged也会被频繁地调用。
- view.post(runnable): 通过post可以将一个runnable投递到消息队列的尾部,始化好了然后等待Looper调用次runnable的时候,View也已经初始化好了。
- ViewTreeObserver#addOnGlobalLayoutListener:当View树的状态发生改变或者View树内部的View的可见性发生改变时,onGlobalLayout方法将被回调。
- View.measure(int widthMeasureSpec, int heightMeasureSpec):match_parent时不知道parentSize的大小,测不出;具体数值时,直接makeMeasureSpec固定值,然后调用view..measure就可以了;wrap_content时,在最大化模式下,用View理论上能支持的最大值去构造MeasureSpec是合理的。

#### View的绘制流程之Layout

首先,会通过setFrame方法来设定View的四个顶点的位置,即View在父容器中的位置。然后,会执行到onLayout空方法,子类如果是ViewGroup类型,则重写这个方法,实现ViewGroup中所有View控件布局流程。

##### LinearLayout的onLayout方法实现解析(layoutVertical核心源码)

其中会遍历调用每个子View的setChildFrame方法为子元素确定对应的位置。其中的childTop会逐渐增大,意味着后面的子元素会被放置在靠下的位置。

注意:在View的默认实现中,View的测量宽/高和最终宽/高是相等的,只不过测量宽/高形成于View的measure过程,而最终宽/高形成于View的layout过程,即两者的赋值时机不同,测量宽/高的赋值时机稍微早一些。在一些特殊的情况下则两者不相等:

- 重写View的layout方法,使最终宽度总是比测量宽/高大100px。
- View需要多次measure才能确定自己的测量宽/高,在前几次测量的过程中,其得出的测量宽/高有可能和最终宽/高不一致,但最终来说,测量宽/高还是和最终宽/高相同。

#### View的绘制流程之Draw

##### Draw的基本流程

绘制基本上可以分为六个步骤:

- 首先绘制View的背景;
- 如果需要的话,保持canvas的图层,为fading做准备;
- 然后,绘制View的内容;
- 接着,绘制View的子View;
- 如果需要的话,绘制View的fading边缘并恢复图层;
- 最后,绘制View的装饰(例如滚动条等等)。

##### setWillNotDraw的作用

如果一个View不需要绘制任何内容,那么设置这个标记位为true以后,系统会进行相应的优化。

- 默认情况下,View没有启用这个优化标记位,但是ViewGroup会默认启用这个优化标记位。
- 当我们的自定义控件继承于ViewGroup并且本身不具备绘制功能时,就可以开启这个标记位从而便于系统进行后续的优化。
- 当明确知道一个ViewGroup需要通过onDraw来绘制内容时,我们需要显示地关闭WILL_NOT_DRAW这个标记位。

#### Requestlayout,onlayout,onDraw,DrawChild区别与联系?

requestLayout()方法 :会导致调用 measure()过程 和 layout()过程,将会根据标志位判断是否需要ondraw。

onLayout()方法:如果该View是ViewGroup对象,需要实现该方法,对每个子视图进行布局。

onDraw()方法:绘制视图本身 (每个View都需要重载该方法,ViewGroup不需要实现该方法)。

drawChild():去重新回调每个子视图的draw()方法。

#### invalidate() 和 postInvalidate()的区别 ?

invalidate()与postInvalidate()都用于刷新View,主要区别是invalidate()在主线程中调用,若在子线程中使用需要配合handler;而postInvalidate()可在子线程中直接调用。

[更详细的内容请点击这里](https://jsonchao.github.io/2018/10/28/Android%20View%E7%9A%84%E7%BB%98%E5%88%B6%E6%B5%81%E7%A8%8B/)

### 4、跨进程通信。

#### Android中进程和线程的关系?区别?

- 线程是CPU调度的最小单元,同时线程是一种有限的系统资源;而进程一般指一个执行单元,在PC和移动设备上指一个程序或者一个应用。
- 一般来说,一个App程序至少有一个进程,一个进程至少有一个线程(包含与被包含的关系),通俗来讲就是,在App这个工厂里面有一个进程,线程就是里面的生产线,但主线程(即主生产线)只有一条,而子线程(即副生产线)可以有多个。
- 进程有自己独立的地址空间,而进程中的线程共享此地址空间,都可以并发执行。

#### 如何开启多进程?应用是否可以开启N个进程?

在AndroidManifest中给四大组件指定属性android:process开启多进程模式,在内存允许的条件下可以开启N个进程。

#### 为何需要IPC?多进程通信可能会出现的问题?

所有运行在不同进程的四大组件(Activity、Service、Receiver、ContentProvider)共享数据都会失败,这是由于Android为每个应用分配了独立的虚拟机,不同的虚拟机在内存分配上有不同的地址空间,这会导致在不同的虚拟机中访问同一个类的对象会产生多份副本。比如常用例子(通过开启多进程获取更大内存空间、两个或者多个应用之间共享数据、微信全家桶)。

一般来说,使用多进程通信会造成如下几方面的问题:

- 静态成员和单例模式完全失效:独立的虚拟机造成。
- 线程同步机制完全失效:独立的虚拟机造成。
- SharedPreferences的可靠性下降:这是因为Sp不支持两个进程并发进行读写,有一定几率导致数据丢失。
- Application会多次创建:Android系统在创建新的进程时会分配独立的虚拟机,所以这个过程其实就是启动一个应用的过程,自然也会创建新的Application。

#### Android中IPC方式、各种方式优缺点?

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c1ab2aabf780?imageslim)

#### 讲讲AIDL?如何优化多模块都使用AIDL的情况?

AIDL(Android Interface Definition Language,Android接口定义语言):如果在一个进程中要调用另一个进程中对象的方法,可使用AIDL生成可序列化的参数,AIDL会生成一个服务端对象的代理类,通过它客户端可以实现间接调用服务端对象的方法。

AIDL的本质是系统提供了一套可快速实现Binder的工具。关键类和方法:

- AIDL接口:继承IInterface。
- Stub类:Binder的实现类,服务端通过这个类来提供服务。
- Proxy类:服务端的本地代理,客户端通过这个类调用服务端的方法。
- asInterface():客户端调用,将服务端返回的Binder对象,转换成客户端所需要的AIDL接口类型的对象。如果客户端和服务端位于同一进程,则直接返回Stub对象本身,否则返回系统封装后的Stub.proxy对象。
- asBinder():根据当前调用情况返回代理Proxy的Binder对象。
- onTransact():运行在服务端的Binder线程池中,当客户端发起跨进程请求时,远程请求会通过系统底层封装后交由此方法来处理。
- transact():运行在客户端,当客户端发起远程请求的同时将当前线程挂起。之后调用服务端的onTransact()直到远程请求返回,当前线程才继续执行。

当有多个业务模块都需要AIDL来进行IPC,此时需要为每个模块创建特定的aidl文件,那么相应的Service就会很多。必然会出现系统资源耗费严重、应用过度重量级的问题。解决办法是建立Binder连接池,即将每个业务模块的Binder请求统一转发到一个远程Service中去执行,从而避免重复创建Service。

工作原理:每个业务模块创建自己的AIDL接口并实现此接口,然后向服务端提供自己的唯一标识和其对应的Binder对象。服务端只需要一个Service并提供一个queryBinder接口,它会根据业务模块的特征来返回相应的Binder对象,不同的业务模块拿到所需的Binder对象后就可以进行远程方法的调用了。

#### 为什么选择Binder?

为什么选用Binder,在讨论这个问题之前,我们知道Android也是基于Linux内核,Linux现有的进程通信手段有以下几种:

- 管道:在创建时分配一个page大小的内存,缓存区大小比较有限;
- 消息队列:信息复制两次,额外的CPU消耗;不合适频繁或信息量大的通信;
- 共享内存:无须复制,共享缓冲区直接附加到进程虚拟地址空间,速度快;但进程间的同步问题操作系统无法实现,必须各进程利用同步工具解决;
- 套接字:作为更通用的接口,传输效率低,主要用于不同机器或跨网络的通信;
- 信号量:常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 不适用于信息交换,更适用于进程中断控制,比如非法内存访问,杀死某个进程等;

既然有现有的IPC方式,为什么重新设计一套Binder机制呢。主要是出于以上三个方面的考量:

- 1、效率:传输效率主要影响因素是内存拷贝的次数,拷贝次数越少,传输速率越高。从Android进程架构角度分析:对于消息队列、Socket和管道来说,数据先从发送方的缓存区拷贝到内核开辟的缓存区中,再从内核缓存区拷贝到接收方的缓存区,一共两次拷贝,如图:

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c427354bbec4?imageslim)

而对于Binder来说,数据从发送方的缓存区拷贝到内核的缓存区,而接收方的缓存区与内核的缓存区是映射到同一块物理地址的,节省了一次数据拷贝的过程,如图:

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c428e3c4a95a?imageView2/0/w/1280/h/960/format/webp/ignore-error/1)

共享内存不需要拷贝,Binder的性能仅次于共享内存。

- 2、稳定性:上面说到共享内存的性能优于Binder,那为什么不采用共享内存呢,因为共享内存需要处理并发同步问题,容易出现死锁和资源竞争,稳定性较差。Socket虽然是基于C/S架构的,但是它主要是用于网络间的通信且传输效率较低。Binder基于C/S架构 ,Server端与Client端相对独立,稳定性较好。
- 3、安全性:传统Linux IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身份;而Binder机制为每个进程分配了UID/PID,且在Binder通信时会根据UID/PID进行有效性检测。

#### Binder机制的作用和原理?

Linux系统将一个进程分为用户空间和内核空间。对于进程之间来说,用户空间的数据不可共享,内核空间的数据可共享,为了保证安全性和独立性,一个进程不能直接操作或者访问另一个进程,即Android的进程是相互独立、隔离的,这就需要跨进程之间的数据通信方式。普通的跨进程通信方式一般需要2次内存拷贝,如下图所示:

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c1ab41198d5c?imageslim)

一次完整的 Binder IPC 通信过程通常是这样:

- 首先 Binder 驱动在内核空间创建一个数据接收缓存区。
- 接着在内核空间开辟一块内核缓存区,建立内核缓存区和内核中数据接收缓存区之间的映射关系,以及内核中数据接收缓存区和接收进程用户空间地址的映射关系。
- 发送方进程通过系统调用 copyfromuser() 将数据 copy 到内核中的内核缓存区,由于内核缓存区和接收进程的用户空间存在内存映射,因此也就相当于把数据发送到了接收进程的用户空间,这样便完成了一次进程间的通信。

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c1ab2efe8dc5?imageslim)

#### Binder框架中ServiceManager的作用?

Binder框架 是基于 C/S 架构的。由一系列的组件组成,包括 Client、Server、ServiceManager、Binder驱动,其中 Client、Server、Service Manager 运行在用户空间,Binder 驱动运行在内核空间。如下图所示:

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c1ab50cf525f?imageslim)

- Server&Client:服务器&客户端。在Binder驱动和Service Manager提供的基础设施上,进行Client-Server之间的通信。
- ServiceManager(如同DNS域名服务器)服务的管理者,将Binder名字转换为Client中对该Binder的引用,使得Client可以通过Binder名字获得Server中Binder实体的引用。
- Binder驱动(如同路由器):负责进程之间binder通信的建立,计数管理以及数据的传递交互等底层支持。

最后,结合[Android跨进程通信:图文详解 Binder机制 ](https://blog.csdn.net/carson_ho/article/details/73560642)的总结图来综合理解一下:

![image](https://user-gold-cdn.xitu.io/2019/3/8/1695c1ab5abdf775?imageslim)

#### Binder 的完整定义

- 从进程间通信的角度看,Binder 是一种进程间通信的机制;
- 从 Server 进程的角度看,Binder 指的是 Server 中的 Binder 实体对象;
- 从 Client 进程的角度看,Binder 指的是 Binder 代理对象,是 Binder 实体对象的一个远程代理;
- 从传输过程的角度看,Binder 是一个可以跨进程传输的对象;Binder 驱动会对这个跨越进程边界的对象对一点点特殊处理,自动完成代理对象和本地对象之间的转换。

#### 手写实现简化版AMS(AIDL实现)

与Binder相关的几个类的职责:

- IBinder:跨进程通信的Base接口,它声明了跨进程通信需要实现的一系列抽象方法,实现了这个接口就说明可以进行跨进程通信,Client和Server都要实现此接口。
- IInterface:这也是一个Base接口,用来表示Server提供了哪些能力,是Client和Server通信的协议。
- Binder:提供Binder服务的本地对象的基类,它实现了IBinder接口,所有本地对象都要继承这个类。
- BinderProxy:在Binder.java这个文件中还定义了一个BinderProxy类,这个类表示Binder代理对象它同样实现了IBinder接口,不过它的很多实现都交由native层处理。Client中拿到的实际上是这个代理对象。
- Stub:这个类在编译aidl文件后自动生成,它继承自Binder,表示它是一个Binder本地对象;它是一个抽象类,实现了IInterface接口,表明它的子类需要实现Server将要提供的具体能力(即aidl文件中声明的方法)。
- Proxy:它实现了IInterface接口,说明它是Binder通信过程的一部分;它实现了aidl中声明的方法,但最终还是交由其中的mRemote成员来处理,说明它是一个代理对象,mRemote成员实际上就是BinderProxy。

aidl文件只是用来定义C/S交互的接口,Android在编译时会自动生成相应的Java类,生成的类中包含了Stub和Proxy静态内部类,用来封装数据转换的过程,实际使用时只关心具体的Java接口类即可。为什么Stub和Proxy是静态内部类呢?这其实只是为了将三个类放在一个文件中,提高代码的聚合性。通过上面的分析,我们其实完全可以不通过aidl,手动编码来实现Binder的通信,下面我们通过编码来实现ActivityManagerService:

1、首先定义IActivityManager接口:

public interface IActivityManager extends IInterface {
        //binder描述符
        String DESCRIPTOR = "android.app.IActivityManager";
        //方法编号
        int TRANSACTION_startActivity = IBinder.FIRST_CALL_TRANSACTION + 0;
        //声明一个启动activity的方法,为了简化,这里只传入intent参数
        int startActivity(Intent intent) throws RemoteException;
    }
    
 
2、然后,实现ActivityManagerService侧的本地Binder对象基类:

// 名称随意,不一定叫Stub
    public abstract class ActivityManagerNative extends Binder implements IActivityManager {
    
        public static IActivityManager asInterface(IBinder obj) {
            if (obj == null) {
                return null;
            }
            IActivityManager in = (IActivityManager) obj.queryLocalInterface(IActivityManager.DESCRIPTOR);
            if (in != null) {
                return in;
            }
            //代理对象,见下面的代码
            return new ActivityManagerProxy(obj);
        }
    
        @Override
        public IBinder asBinder() {
            return this;
        }
    
        @Override
        protected boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws RemoteException {
            switch (code) {
                // 获取binder描述符
                case INTERFACE_TRANSACTION:
                    reply.writeString(IActivityManager.DESCRIPTOR);
                    return true;
                // 启动activity,从data中反序列化出intent参数后,直接调用子类startActivity方法启动activity。
                case IActivityManager.TRANSACTION_startActivity:
                    data.enforceInterface(IActivityManager.DESCRIPTOR);
                    Intent intent = Intent.CREATOR.createFromParcel(data);
                    int result = this.startActivity(intent);
                    reply.writeNoException();
                    reply.writeInt(result);
                    return true;
            }
            return super.onTransact(code, data, reply, flags);
        }
    }

3、接着,实现Client侧的代理对象:

public class ActivityManagerProxy implements IActivityManager {
        private IBinder mRemote;
    
        public ActivityManagerProxy(IBinder remote) {
            mRemote = remote;
        }
    
        @Override
        public IBinder asBinder() {
            return mRemote;
        }
    
        @Override
        public int startActivity(Intent intent) throws RemoteException {
            Parcel data = Parcel.obtain();
            Parcel reply = Parcel.obtain();
            int result;
            try {
                // 将intent参数序列化,写入data中
                intent.writeToParcel(data, 0);
                // 调用BinderProxy对象的transact方法,交由Binder驱动处理。
                mRemote.transact(IActivityManager.TRANSACTION_startActivity, data, reply, 0);
                reply.readException();
                // 等待server执行结束后,读取执行结果
                result = reply.readInt();
            } finally {
                data.recycle();
                reply.recycle();
            }
            return result;
        }
    }
    
 
4、最后,实现Binder本地对象(IActivityManager接口):

public class ActivityManagerService extends ActivityManagerNative {
        @Override
        public int startActivity(Intent intent) throws RemoteException {
            // 启动activity
            return 0;
        }
    }

简化版的ActivityManagerService到这里就已经实现了,剩下就是Client只需要获取到AMS的代理对象IActivityManager就可以通信了。

请按顺序仔细阅读下列文章提升对Binder机制的理解程度:

[写给 Android 应用工程师的 Binder 原理剖析](https://juejin.im/post/5acccf845188255c3201100f)

[Binder学习指南](http://weishu.me/2016/01/12/binder-index-for-newer/)

[Binder设计与实现](https://blog.csdn.net/universus/article/details/6211589)

[老罗Binder机制分析系列或Android系统源代码情景分析Binder章节](https://blog.csdn.net/luoshengyang/article/details/6618363)

### 5、Android系统启动流程是什么?(提示:init进程 -> Zygote进程 –> SystemServer进程 –> 各种系统服务 –> 应用进程)

Android系统启动的核心流程如下:

- 1、**启动电源以及系统启动**:当电源按下时引导芯片从预定义的地方(固化在ROM)开始执行,加载引导程序BootLoader到RAM,然后执行。
- 2、**引导程序BootLoader**:BootLoader是在Android系统开始运行前的一个小程序,主要用于把系统OS拉起来并运行。
- 3、**Linux内核启动**:当内核启动时,设置缓存、被保护存储器、计划列表、加载驱动。当其完成系统设置时,会先在系统文件中寻找init.rc文件,并启动init进程。
- 4、**init进程启动**:初始化和启动属性服务,并且启动Zygote进程。
- 5、**Zygote进程启动**:创建JVM并为其注册JNI方法,创建服务器端Socket,启动SystemServer进程。
- 6、**SystemServer进程启动**:启动Binder线程池和SystemServiceManager,并且启动各种系统服务。
- 7、**Launcher启动**:被SystemServer进程启动的AMS会启动Launcher,Launcher启动后会将已安装应用的快捷图标显示到系统桌面上。

#### 需要更详细的分析请查看以下系列文章:

[Android系统启动流程之init进程启动](https://jsonchao.github.io/2019/02/18/Android%E7%B3%BB%E7%BB%9F%E5%90%AF%E5%8A%A8%E6%B5%81%E7%A8%8B%E4%B9%8Binit%E8%BF%9B%E7%A8%8B%E5%90%AF%E5%8A%A8/)

[Android系统启动流程之Zygote进程启动](https://jsonchao.github.io/2019/02/24/Android%E7%B3%BB%E7%BB%9F%E5%90%AF%E5%8A%A8%E6%B5%81%E7%A8%8B%E4%B9%8BZygote%E8%BF%9B%E7%A8%8B%E5%90%AF%E5%8A%A8/)

[Android系统启动流程之SystemServer进程启动](https://jsonchao.github.io/2019/03/03/Android%E7%B3%BB%E7%BB%9F%E5%90%AF%E5%8A%A8%E6%B5%81%E4%B9%8BSystemServer%E8%BF%9B%E7%A8%8B%E5%90%AF%E5%8A%A8/)

[Android系统启动流程之Launcher进程启动](https://jsonchao.github.io/2019/03/09/Android%E7%B3%BB%E7%BB%9F%E5%90%AF%E5%8A%A8%E6%B5%81%E7%A8%8B%E4%B9%8BLauncher%E8%BF%9B%E7%A8%8B%E5%90%AF%E5%8A%A8/)

### 6、启动一个程序,可以主界面点击图标进入,也可以从一个程序中跳转过去,二者有什么区别?

是因为启动程序(主界面也是一个app),发现了在这个程序中存在一个设置为<category android:name="android.intent.category.LAUNCHER" />的activity,
所以这个launcher会把icon提出来,放在主界面上。当用户点击icon的时候,发出一个Intent:
    
    Intent intent = mActivity.getPackageManager().getLaunchIntentForPackage(packageName);
    mActivity.startActivity(intent);   
    
跳过去可以跳到任意允许的页面,如一个程序可以下载,那么真正下载的页面可能不是首页(也有可能是首页),这时还是构造一个Intent,startActivity。这个intent中的action可能有多种view,download都有可能。系统会根据第三方程序向系统注册的功能,为你的Intent选择可以打开的程序或者页面。所以唯一的一点
不同的是从icon的点击启动的intent的action是相对单一的,从程序中跳转或者启动可能样式更多一些。本质是相同的。

### 7、AMS家族重要术语解释。

1.ActivityManagerServices,简称AMS,服务端对象,负责系统中所有Activity的生命周期。

2.ActivityThread,App的真正入口。当开启App之后,调用main()开始运行,开启消息循环队列,这就是传说的UI线程或者叫主线程。与ActivityManagerService一起完成Activity的管理工作。

3.ApplicationThread,用来实现ActivityManagerServie与ActivityThread之间的交互。在ActivityManagerSevice需要管理相关Application中的Activity的生命周期时,通过ApplicationThread的代理对象与ActivityThread通信。

4.ApplicationThreadProxy,是ApplicationThread在服务器端的代理,负责和客户端的ApplicationThread通信。AMS就是通过该代理与ActivityThread进行通信的。

5.Instrumentation,每一个应用程序只有一个Instrumetation对象,每个Activity内都有一个对该对象的引用,Instrumentation可以理解为应用进程的管家,ActivityThread要创建或暂停某个Activity时,都需要通过Instrumentation来进行具体的操作。

6.ActivityStack,Activity在AMS的栈管理,用来记录经启动的Activity的先后关系,状态信息等。通过ActivtyStack决定是否需要启动新的进程。

7.ActivityRecord,ActivityStack的管理对象,每个Acivity在AMS对应一个ActivityRecord,来记录Activity状态以及其他的管理信息。其实就是服务器端的Activit对象的映像。

8.TaskRecord,AMS抽象出来的一个“任务”的概念,是记录ActivityRecord的栈,一个“Task”包含若干个ActivityRecord。AMS用TaskRecord确保Activity启动和退出的顺序。如果你清楚Activity的4种launchMode,那么对这概念应该不陌生。

### 8、App启动流程(Activity的冷启动流程)。

点击应用图标后会去启动应用的Launcher Activity,如果Launcer Activity所在的进程没有创建,还会创建新进程,整体的流程就是一个Activity的启动流程。

Activity的启动流程图(放大可查看)如下所示:

![image](https://github.com/guoxiaoxing/android-open-source-project-analysis/raw/master/art/app/component/activity_start_flow.png)

整个流程涉及的主要角色有:

- Instrumentation: 监控应用与系统相关的交互行为。
- AMS:组件管理调度中心,什么都不干,但是什么都管。
- ActivityStarter:Activity启动的控制器,处理Intent与Flag对Activity启动的影响,具体说来有:1 寻找符合启动条件的Activity,如果有多个,让用户选择;2 校验启动参数的合法性;3 返回int参数,代表Activity是否启动成功。
- ActivityStackSupervisior:这个类的作用你从它的名字就可以看出来,它用来管理任务栈。
- ActivityStack:用来管理任务栈里的Activity。
- ActivityThread:最终干活的人,Activity、Service、BroadcastReceiver的启动、切换、调度等各种操作都在这个类里完成。

注:这里单独提一下ActivityStackSupervisior,这是高版本才有的类,它用来管理多个ActivityStack,早期的版本只有一个ActivityStack对应着手机屏幕,后来高版本支持多屏以后,就有了多个ActivityStack,于是就引入了ActivityStackSupervisior用来管理多个ActivityStack。

整个流程主要涉及四个进程:

- 调用者进程,如果是在桌面启动应用就是Launcher应用进程。
- ActivityManagerService等待所在的System Server进程,该进程主要运行着系统服务组件。
- Zygote进程,该进程主要用来fork新进程。
- 新启动的应用进程,该进程就是用来承载应用运行的进程了,它也是应用的主线程(新创建的进程就是主线程),处理组件生命周期、界面绘制等相关事情。

有了以上的理解,整个流程可以概括如下:

- 1、点击桌面应用图标,Launcher进程将启动Activity(MainActivity)的请求以Binder的方式发送给了AMS。
- 2、AMS接收到启动请求后,交付ActivityStarter处理Intent和Flag等信息,然后再交给ActivityStackSupervisior/ActivityStack 处理Activity进栈相关流程。同时以Socket方式请求Zygote进程fork新进程。
- 3、Zygote接收到新进程创建请求后fork出新进程。
- 4、在新进程里创建ActivityThread对象,新创建的进程就是应用的主线程,在主线程里开启Looper消息循环,开始处理创建Activity。
- 5、ActivityThread利用ClassLoader去加载Activity、创建Activity实例,并回调Activity的onCreate()方法,这样便完成了Activity的启动。

最后,再看看另一幅启动流程图来加深理解:

![image](http://img.mp.itc.cn/upload/20170329/ca9567ce3bf04c4abdb4d124cebfee76_th.jpeg)

### 9、ActivityThread工作原理。

### 10、说下四大组件的启动过程,四大组件的启动与销毁的方式。

#### 广播发送和接收的原理了解吗?

- 继承BroadcastReceiver,重写onReceive()方法。
- 通过Binder机制向ActivityManagerService注册广播。
- 通过Binder机制向ActivityMangerService发送广播。
- ActivityManagerService查找符合相应条件的广播(IntentFilter/Permission)的BroadcastReceiver,将广播发送到BroadcastReceiver所在的消息队列中。
- BroadcastReceiver所在消息队列拿到此广播后,回调它的onReceive()方法。

### 11、AMS是如何管理Activity的?

### 12、理解Window和WindowManager。

1.Window用于显示View和接收各种事件,Window有三种型:应用Window(每个Activity对应一个Window)、子Widow(不能单独存在,附属于特定Window)、系统window(toast和状态栏)

2.Window分层级,应用Window在1-99、子Window在1000-1999、系统Window在2000-2999.WindowManager提供了增改View的三个功能。

3.Window是个抽象概念:每一个Window对应着一个ViewRootImpl,Window通过ViewRootImpl来和View建立联系,View是Window存在的实体,只能通过WindowManager来访问Window。

4.WindowManager的实现是WindowManagerImpl,其再委托WindowManagerGlobal来对Window进行操作,其中有四种List分别储存对应的View、ViewRootImpl、WindowManger.LayoutParams和正在被删除的View。

5.Window的实体是存在于远端的WindowMangerService,所以增删改Window在本端是修改上面的几个List然后通过ViewRootImpl重绘View,通过WindowSession(每Window个对应一个)在远端修改Window。

6.Activity创建Window:Activity会在attach()中创建Window并设置其回调(onAttachedToWindow()、dispatchTouchEvent()),Activity的Window是由Policy类创建PhoneWindow实现的。然后通过Activity#setContentView()调用PhoneWindow的setContentView。

### 13、WMS是如何管理Window的?

### 14、大体说清一个应用程序安装到手机上时发生了什么?

APK的安装流程如下所示:

![image](https://github.com/guoxiaoxing/android-open-source-project-analysis/raw/master/art/app/package/apk_install_structure.png)

复制APK到/data/app目录下,解压并扫描安装包。

资源管理器解析APK里的资源文件。

解析AndroidManifest文件,并在/data/data/目录下创建对应的应用数据目录。

然后对dex文件进行优化,并保存在dalvik-cache目录下。

将AndroidManifest文件解析出的四大组件信息注册到PackageManagerService中。

安装完成后,发送广播。

### 15、Android的打包流程?(即描述清点击 Android Studio 的 build 按钮后发生了什么?)apk里有哪些东西?签名算法的原理?

#### apk打包流程

Android的包文件APK分为两个部分:代码和资源,所以打包方面也分为资源打包和代码打包两个方面,下面就来分析资源和代码的编译打包原理。

APK整体的的打包流程如下图所示:

![image](https://github.com/guoxiaoxing/android-open-source-project-analysis/raw/master/art/native/vm/apk_package_flow.png)

具体说来:

- 通过AAPT工具进行资源文件(包括AndroidManifest.xml、布局文件、各种xml资源等)的打包,生成R.java文件。
- 通过AIDL工具处理AIDL文件,生成相应的Java文件。
- 通过Java Compiler编译R.java、Java接口文件、Java源文件,生成.class文件。
- 通过dex命令,将.class文件和第三方库中的.class文件处理生成classes.dex,该过程主要完成Java字节码转换成Dalvik字节码,压缩常量池以及清除冗余信息等工作。
- 通过ApkBuilder工具将资源文件、DEX文件打包生成APK文件。
- 通过Jarsigner工具,利用KeyStore对生成的APK文件进行签名。
- 如果是正式版的APK,还会利用ZipAlign工具进行对齐处理,对齐的过程就是将APK文件中所有的资源文件距离文件的起始距位置都偏移4字节的整数倍,这样通过内存映射访问APK文件的速度会更快,并且会减少其在设备上运行时的内存占用。

#### apk组成

- dex:最终生成的Dalvik字节码。
- res:存放资源文件的目录。
- asserts:额外建立的资源文件夹。
- lib:如果存在的话,存放的是ndk编出来的so库。   
- META-INF:存放签名信息

MANIFEST.MF(清单文件):其中每一个资源文件都有一个SHA-256-Digest签名,MANIFEST.MF文件的SHA256(SHA1)并base64编码的结果即为CERT.SF中的SHA256-Digest-Manifest值。

CERT.SF(待签名文件):除了开头处定义的SHA256(SHA1)-Digest-Manifest值,后面几项的值是对MANIFEST.MF文件中的每项再次SHA256并base64编码后的值。

CERT.RSA(签名结果文件):其中包含了公钥、加密算法等信息。首先对前一步生成的MANIFEST.MF使用了SHA256(SHA1)-RSA算法,用开发者私钥签名,然后在安装时使用公钥解密。最后,将其与未加密的摘要信息(MANIFEST.MF文件)进行对比,如果相符,则表明内容没有被修改。

- androidManifest:程序的全局清单配置文件。
- resources.arsc:编译后的二进制资源文件。

#### [签名算法的原理](https://www.jianshu.com/p/286d2b372334)

##### 为什么要签名?

- 确保Apk来源的真实性。
- 确保Apk没有被第三方篡改。

##### 什么是签名?

在Apk中写入一个“指纹”。指纹写入以后,Apk中有任何修改,都会导致这个指纹无效,Android系统在安装Apk进行签名校验时就会不通过,从而保证了安全性。

##### 数字摘要

对一个任意长度的数据,通过一个Hash算法计算后,都可以得到一个固定长度的二进制数据,这个数据就称为“摘要”。

补充:
- 散列算法的基础原理:将数据(如一段文字)运算变为另一固定长度值。
- SHA-1:在密码学中,SHA-1(安全散列算法1)是一种加密散列函数,它接受输入并产生一个160 位(20 字节)散列值,称为消息摘要 。
- MD5:MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。
- SHA-2:名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,其下又可再分为六个不同的算法标准,包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

特征:

- 唯一性
- 固定长度:比较常用的Hash算法有MD5和SHA1,MD5的长度是128拉,SHA1的长度是160位。
- 不可逆性

##### 签名和校验的主要过程

签名就是在摘要的基础上再进行一次加密,对摘要加密后的数据就可以当作数字签名。

##### 签名过程:

- 1、计算摘要:通过Hash算法提取出原始数据的摘要。
- 2、计算签名:再通过基于密钥(私钥)的非对称加密算法对提取出的摘要进行加密,加密后的数据就是签名信息。
- 3、写入签名:将签名信息写入原始数据的签名区块内。

##### 校验过程:

- 1、首先用同样的Hash算法从接收到的数据中提取出摘要。
- 2、解密签名:使用发送方的公钥对数字签名进行解密,解密出原始摘要。
- 3、比较摘要:如果解密后的数据和提取的摘要一致,则校验通过;如果数据被第三方篡改过,解密后的数据和摘要将会不一致,则校验不通过。

##### 数字证书

如何保证公钥的可靠性呢?答案是数字证书,数字证书是身份认证机构(Certificate Authority)颁发的,包含了以下信息:

- 证书颁发机构
- 证书颁发机构签名
- 证书绑定的服务器域名
- 证书版本、有效期
- 签名使用的加密算法(非对称算法,如RSA)
- 公钥等

接收方收到消息后,先向CA验证证书的合法性,再进行签名校验。

注意:Apk的证书通常是自签名的,也就是由开发者自己制作,没有向CA机构申请。Android在安装Apk时并没有校验证书本身的合法性,只是从证书中提取公钥和加密算法,这也正是对第三方Apk重新签名后,还能够继续在没有安装这个Apk的系统中继续安装的原因。

##### keystore和证书格式

keystore文件中包含了私钥、公钥和数字证书。根据编码不同,keystore文件分为很多种,Android使用的是Java标准keystore格式JKS(Java Key Storage),所以通过Android Studio导出的keystore文件是以.jks结尾的。

keystore使用的证书标准是X.509,X.509标准也有多种编码格式,常用的有两种:pem(Privacy Enhanced Mail)和der(Distinguished Encoding Rules)。jks使用的是der格式,Android也支持直接使用pem格式的证书进行签名。

两种证书编码格式的区别:

- DER(Distinguished Encoding Rules)

二进制格式,所有类型的证书和私钥都可以存储为der格式。

- PEM(Privacy Enhanced Mail)

base64编码,内容以-----BEGIN xxx----- 开头,以-----END xxx----- 结尾。

##### jarsigner和apksigner的区别

Android提供了两种对Apk的签名方式,一种是基于JAR的签名方式,另一种是基于Apk的签名方式,它们的主要区别在于使用的签名文件不一样:jarsigner使用keystore文件进行签名;apksigner除了支持使用keystore文件进行签名外,还支持直接指定pem证书文件和私钥进行签名。

##### 在签名时,除了要指定keystore文件和密码外,也要指定alias和key的密码,这是为什么呢?

keystore是一个密钥库,也就是说它可以存储多对密钥和证书,keystore的密码是用于保护keystore本身的,一对密钥和证书是通过alias来区分的。所以jarsigner是支持使用多个证书对Apk进行签名的,apksigner也同样支持。

##### Android Apk V1 签名原理

- 1、解析出 CERT.RSA 文件中的证书、公钥,解密 CERT.RSA 中的加密数据。
- 2、解密结果和 CERT.SF 的指纹进行对比,保证 CERT.SF 没有被篡改。
- 3、而 CERT.SF 中的内容再和 MANIFEST.MF 指纹对比,保证 MANIFEST.MF 文件没有被篡改。
- 4、MANIFEST.MF 中的内容和 APK 所有文件指纹逐一对比,保证 APK 没有被篡改。

### 16、[说下安卓虚拟机和java虚拟机的原理和不同点](https://blog.csdn.net/jason0539/article/details/50440669)?(JVM、Davilk、ART三者的原理和区别)

#### JVM 和Dalvik虚拟机的区别

JVM:.java -> javac -> .class -> jar -> .jar
    
架构: 堆和栈的架构.

DVM:.java -> javac -> .class -> dx.bat -> .dex

架构: 寄存器(cpu上的一块高速缓存)

#### Android2个虚拟机的区别(一个5.0之前,一个5.0之后)

什么是Dalvik:Dalvik是Google公司自己设计用于Android平台的Java虚拟机。Dalvik虚拟机是Google等厂商合作开发的Android移动设备平台的核心组成部分之一,它可以支持已转换为.dex(即Dalvik Executable)格式的Java应用程序的运行,.dex格式是专为Dalvik应用设计的一种压缩格式,适合内存和处理器速度有限的系统。Dalvik经过优化,允许在有限的内存中同时运行多个虚拟机的实例,并且每一个Dalvik应用作为独立的Linux进程执行。独立的进程可以防止在虚拟机崩溃的时候所有程序都被关闭。

什么是ART:Android操作系统已经成熟,Google的Android团队开始将注意力转向一些底层组件,其中之一是负责应用程序运行的Dalvik运行时。Google开发者已经花了两年时间开发更快执行效率更高更省电的替代ART运行时。ART代表Android Runtime,其处理应用程序执行的方式完全不同于Dalvik,Dalvik是依靠一个Just-In-Time(JIT)编译器去解释字节码。开发者编译后的应用代码需要通过一个解释器在用户的设备上运行,这一机制并不高效,但让应用能更容易在不同硬件和架构上运行。ART则完全改变了这套做法,在应用安装的时候就预编译字节码为机器语言,这一机制叫Ahead-Of-Time(AOT)编译。在移除解释代码这一过程后,应用程序执行将更有效率,启动更快。

ART优点:

- 系统性能的显著提升。
- 应用启动更快、运行更快、体验更流畅、触感反馈更及时。
- 更长的电池续航能力。
- 支持更低的硬件。

ART缺点:

- 更大的存储空间占用,可能会增加10%-20%。
- 更长的应用安装时间。

### 17、安卓采用自动垃圾回收机制,请说下安卓内存管理的原理?

### 18、Android中App是如何沙箱化的,为何要这么做?

### 19、[一个图片在app中调用R.id后是如何找到的](https://my.oschina.net/u/255456/blog/608229)?

### 20、JNI

#### Java调用C++

- 在Java中声明Native方法(即需要调用的本地方法)
- 编译上述 Java源文件javac(得到 .class文件) 3。 通过 javah 命令导出JNI的头文件(.h文件)
- 使用 Java需要交互的本地代码 实现在 Java中声明的Native方法
- 编译.so库文件
- 通过Java命令执行 Java程序,最终实现Java调用本地代码

#### C++调用Java

- 从classpath路径下搜索ClassMethod这个类,并返回该类的Class对象。
- 获取类的默认构造方法ID。
- 查找实例方法的ID。
- 创建该类的实例。
- 调用对象的实例方法。

JNIEXPORT void JNICALL Java_com_study_jnilearn_AccessMethod_callJavaInstaceMethod  
      (JNIEnv *env, jclass cls)  
      {  
        jclass clazz = NULL;  
        jobject jobj = NULL;  
        jmethodID mid_construct = NULL;  
        jmethodID mid_instance = NULL;  
        jstring str_arg = NULL;  
        // 1、从classpath路径下搜索ClassMethod这个类,并返回该类的Class对象  
        clazz = (*env)->FindClass(env, "com/study/jnilearn/ClassMethod");  
        if (clazz == NULL) {  
            printf("找不到'com.study.jnilearn.ClassMethod'这个类");  
            return;  
        }  
        
        // 2、获取类的默认构造方法ID  
        mid_construct = (*env)->GetMethodID(env,clazz, "<init>","()V");  
        if (mid_construct == NULL) {  
            printf("找不到默认的构造方法");  
            return;  
        }  
    
        // 3、查找实例方法的ID  
        mid_instance = (*env)->GetMethodID(env, clazz, "callInstanceMethod", "(Ljava/lang/String;I)V");  
        if (mid_instance == NULL) {  
    
            return;  
        }  
    
        // 4、创建该类的实例  
        jobj = (*env)->NewObject(env,clazz,mid_construct);  
        if (jobj == NULL) {  
            printf("在com.study.jnilearn.ClassMethod类中找不到callInstanceMethod方法");  
            return;  
        }  
    
        // 5、调用对象的实例方法  
        str_arg = (*env)->NewStringUTF(env,"我是实例方法");  
        (*env)->CallVoidMethod(env,jobj,mid_instance,str_arg,200);  
    
        // 删除局部引用  
        (*env)->DeleteLocalRef(env,clazz);  
        (*env)->DeleteLocalRef(env,jobj);  
        (*env)->DeleteLocalRef(env,str_arg);  
      }  
   
    
#### 如何在jni中注册native函数,有几种注册方式?

### 21、请介绍一下NDK?

## 三、Android优秀三方库源码

### 1、你项目中用到哪些开源库?说说其实现原理?

#### 一、[网络底层框架:OkHttp实现原理](https://jsonchao.github.io/2018/12/01/Android%E4%B8%BB%E6%B5%81%E4%B8%89%E6%96%B9%E5%BA%93%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%EF%BC%88%E4%B8%80%E3%80%81%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3OKHttp%E6%BA%90%E7%A0%81%EF%BC%89/)

##### 这个库是做什么用的?

网络底层库,它是基于http协议封装的一套请求客户端,虽然它也可以开线程,但根本上它更偏向真正的请求,跟HttpClient, HttpUrlConnection的职责是一样的。其中封装了网络请求get、post等底层操作的实现。

##### 为什么要在项目中使用这个库?

- OkHttp 提供了对最新的 HTTP 协议版本 HTTP/2 和 SPDY 的支持,这使得对同一个主机发出的所有请求都可以共享相同的套接字连接。
- 如果 HTTP/2 和 SPDY 不可用,OkHttp 会使用连接池来复用连接以提高效率。
- OkHttp 提供了对 GZIP 的默认支持来降低传输内容的大小。
- OkHttp 也提供了对 HTTP 响应的缓存机制,可以避免不必要的网络请求。
- 当网络出现问题时,OkHttp 会自动重试一个主机的多个 IP 地址。

##### 这个库都有哪些用法?对应什么样的使用场景?

get、post请求、上传文件、上传表单等等。

##### 这个库的优缺点是什么,跟同类型库的比较?

- 优点:在上面
- 缺点:使用的时候仍然需要自己再做一层封装。

##### 这个库的核心实现原理是什么?如果让你实现这个库的某些核心功能,你会考虑怎么去实现?

OkHttp内部的请求流程:使用OkHttp会在请求的时候初始化一个Call的实例,然后执行它的execute()方法或enqueue()方法,内部最后都会执行到getResponseWithInterceptorChain()方法,这个方法里面通过拦截器组成的责任链,依次经过用户自定义普通拦截器、重试拦截器、桥接拦截器、缓存拦截器、连接拦截器和用户自定义网络拦截器以及访问服务器拦截器等拦截处理过程,来获取到一个响应并交给用户。其中,除了OKHttp的内部请求流程这点之外,缓存和连接这两部分内容也是两个很重要的点,掌握了这3点就说明你理解了OkHttp。

##### 各个拦截器的作用:

- interceptors:用户自定义拦截器
- retryAndFollowUpInterceptor:负责失败重试以及重定向
- BridgeInterceptor:请求时,对必要的Header进行一些添加,接收响应时,移除必要的Header
- CacheInterceptor:负责读取缓存直接返回(根据请求的信息和缓存的响应的信息来判断是否存在缓存可用)、更新缓存
- ConnectInterceptor:负责和服务器建立连接

ConnectionPool:

1、判断连接是否可用,不可用则从ConnectionPool获取连接,ConnectionPool无连接,创建新连接,握手,放入ConnectionPool。

2、它是一个Deque,add添加Connection,使用线程池负责定时清理缓存。

3、使用连接复用省去了进行 TCP 和 TLS 握手的一个过程。

- networkInterceptors:用户定义网络拦截器
- CallServerInterceptor:负责向服务器发送请求数据、从服务器读取响应数据

##### 你从这个库中学到什么有价值的或者说可借鉴的设计思想?

使用责任链模式实现拦截器的分层设计,每一个拦截器对应一个功能,充分实现了功能解耦,易维护。

##### 手写拦截器?

##### 网络请求缓存处理,okhttp如何处理网络缓存的?

##### HttpUrlConnection 和 okhttp关系?

##### Volley与OkHttp的对比:

Volley:支持HTTPS。缓存、异步请求,不支持同步请求。协议类型是Http/1.0, Http/1.1,网络传输使用的是 HttpUrlConnection/HttpClient,数据读写使用的IO。
OkHttp:支持HTTPS。缓存、异步请求、同步请求。协议类型是Http/1.0, Http/1.1, SPDY, Http/2.0, WebSocket,网络传输使用的是封装的Socket,数据读写使用的NIO(Okio)。
SPDY协议类似于HTTP,但旨在缩短网页的加载时间和提高安全性。SPDY协议通过压缩、多路复用和优先级来缩短加载时间。

Okhttp的子系统层级结构图如下所示:

![image](https://github.com/guoxiaoxing/android-open-framwork-analysis/raw/master/art/okhttp/okhttp_structure.png)

网络配置层:利用Builder模式配置各种参数,例如:超时时间、拦截器等,这些参数都会由Okhttp分发给各个需要的子系统。
重定向层:负责重定向。
Header拼接层:负责把用户构造的请求转换为发送给服务器的请求,把服务器返回的响应转换为对用户友好的响应。
HTTP缓存层:负责读取缓存以及更新缓存。
连接层:连接层是一个比较复杂的层级,它实现了网络协议、内部的拦截器、安全性认证,连接与连接池等功能,但这一层还没有发起真正的连接,它只是做了连接器一些参数的处理。
数据响应层:负责从服务器读取响应的数据。
在整个Okhttp的系统中,我们还要理解以下几个关键角色:

OkHttpClient:通信的客户端,用来统一管理发起请求与解析响应。
Call:Call是一个接口,它是HTTP请求的抽象描述,具体实现类是RealCall,它由CallFactory创建。
Request:请求,封装请求的具体信息,例如:url、header等。
RequestBody:请求体,用来提交流、表单等请求信息。
Response:HTTP请求的响应,获取响应信息,例如:响应header等。
ResponseBody:HTTP请求的响应体,被读取一次以后就会关闭,所以我们重复调用responseBody.string()获取请求结果是会报错的。
Interceptor:Interceptor是请求拦截器,负责拦截并处理请求,它将网络请求、缓存、透明压缩等功能都统一起来,每个功能都是一个Interceptor,所有的Interceptor最 终连接成一个Interceptor.Chain。典型的责任链模式实现。
StreamAllocation:用来控制Connections与Streas的资源分配与释放。
RouteSelector:选择路线与自动重连。
RouteDatabase:记录连接失败的Route黑名单。

##### 自己去设计网络请求框架,怎么做?

##### 从网络加载一个10M的图片,说下注意事项?

##### http怎么知道文件过大是否传输完毕的响应?

##### 谈谈你对WebSocket的理解?

##### WebSocket与socket的区别?

#### 二、[网络封装框架:Retrofit实现原理](https://jsonchao.github.io/2018/12/09/Android%E4%B8%BB%E6%B5%81%E4%B8%89%E6%96%B9%E5%BA%93%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%EF%BC%88%E4%BA%8C%E3%80%81%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3Retrofit%E6%BA%90%E7%A0%81%EF%BC%89/)

##### 这个库是做什么用的?

Retrofit 是一个 RESTful 的 HTTP 网络请求框架的封装。Retrofit 2.0 开始内置 OkHttp,前者专注于接口的封装,后者专注于网络请求的高效。

##### 为什么要在项目中使用这个库?

1、功能强大:

- 支持同步、异步
- 支持多种数据的解析 & 序列化格式
- 支持RxJava

2、简洁易用:

- 通过注解配置网络请求参数
- 采用大量设计模式简化使用

3、可扩展性好:

- 功能模块高度封装
- 解耦彻底,如自定义Converters

##### 这个库都有哪些用法?对应什么样的使用场景?

任何网络场景都应该优先选择,特别是后台API遵循Restful API设计风格 & 项目中使用到RxJava。

##### 这个库的优缺点是什么,跟同类型库的比较?

- 优点:在上面
- 缺点:扩展性差,高度封装所带来的必然后果,如果服务器不能给出统一的API形式,会很难处理。

##### 这个库的核心实现原理是什么?如果让你实现这个库的某些核心功能,你会考虑怎么去实现?

Retrofit主要是在create方法中采用动态代理模式(通过访问代理对象的方式来间接访问目标对象)实现接口方法,这个过程构建了一个ServiceMethod对象,根据方法注解获取请求方式,参数类型和参数注解拼接请求的链接,当一切都准备好之后会把数据添加到Retrofit的RequestBuilder中。然后当我们主动发起网络请求的时候会调用okhttp发起网络请求,okhttp的配置包括请求方式,URL等在Retrofit的RequestBuilder的build()方法中实现,并发起真正的网络请求。

##### 你从这个库中学到什么有价值的或者说可借鉴的设计思想?

内部使用了优秀的架构设计和大量的设计模式,在我分析过Retrofit最新版的源码和大量优秀的Retrofit源码分析文章后,我发现,要想真正理解Retrofit内部的核心源码流程和设计思想,首先,需要对它使用到的九大设计模式有一定的了解,下面我简单说一说:

1、创建Retrofit实例:

- 使用建造者模式通过内部Builder类建立了一个Retroift实例。
- 网络请求工厂使用了工厂方法模式。

2、创建网络请求接口的实例:

- 首先,使用外观模式统一调用创建网络请求接口实例和网络请求参数配置的方法。
- 然后,使用动态代理动态地去创建网络请求接口实例。
- 接着,使用了建造者模式 & 单例模式创建了serviceMethod对象。
- 再者,使用了策略模式对serviceMethod对象进行网络请求参数配置,即通过解析网络请求接口方法的参数、返回值和注解类型,从Retrofit对象中获取对应的网络的url地址、网络请求执行器、网络请求适配器和数据转换器。
- 最后,使用了装饰者模式ExecuteCallBack为serviceMethod对象加入线程切换的操作,便于接受数据后通过Handler从子线程切换到主线程从而对返回数据结果进行处理。

3、发送网络请求:

- 在异步请求时,通过静态delegate代理对网络请求接口的方法中的每个参数使用对应的ParameterHanlder进行解析。

4、解析数据

5、切换线程:

- 使用了适配器模式通过检测不同的Platform使用不同的回调执行器,然后使用回调执行器切换线程,这里同样是使用了装饰模式。

6、处理结果

##### Android:主流网络请求开源库的对比(Android-Async-Http、Volley、OkHttp、Retrofit)

https://www.jianshu.com/p/050c6db5af5a

#### 三、[响应式编程框架:RxJava实现原理](https://jsonchao.github.io/2019/01/01/Android%E4%B8%BB%E6%B5%81%E4%B8%89%E6%96%B9%E5%BA%93%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%EF%BC%88%E4%BA%94%E3%80%81%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3RxJava%E6%BA%90%E7%A0%81%EF%BC%89/)

##### RxJava 变换操作符 map flatMap concatMap buffer?

- map:【数据类型转换】将被观察者发送的事件转换为另一种类型的事件。
- flatMap:【化解循环嵌套和接口嵌套】将被观察者发送的事件序列进行拆分 & 转换 后合并成一个新的事件序列,最后再进行发送。
- concatMap:【有序】与 flatMap 的 区别在于,拆分 & 重新合并生成的事件序列 的顺序与被观察者旧序列生产的顺序一致。
- buffer:定期从被观察者发送的事件中获取一定数量的事件并放到缓存区中,然后把这些数据集合打包发射。

##### [RxJava中map和flatmap操作符的区别及底层实现](https://www.jianshu.com/p/af13a8278a05)

##### 手写rxjava遍历数组。

##### 你认为Rxjava的线程池与你们自己实现任务管理框架有什么区别?

#### 四、[图片加载框架:Glide实现原理](https://jsonchao.github.io/2018/12/16/Android%E4%B8%BB%E6%B5%81%E4%B8%89%E6%96%B9%E5%BA%93%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%EF%BC%88%E4%B8%89%E3%80%81%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3Glide%E6%BA%90%E7%A0%81%EF%BC%89/)

##### 这个库是做什么用的?

Glide是Android中的一个图片加载库,用于实现图片加载。

##### 为什么要在项目中使用这个库?

1、多样化媒体加载:不仅可以进行图片缓存,还支持Gif、WebP、缩略图,甚至是Video。

2、通过设置绑定生命周期:可以使加载图片的生命周期动态管理起来。

3、高效的缓存策略:支持内存、Disk缓存,并且Picasso只会缓存原始尺寸的图片,内Glide缓存的是多种规格,也就是Glide会根据你ImageView的大小来缓存相应大小的图片尺寸。

4、内存开销小:默认的Bitmap格式是RGB_565格式,而Picasso默认的是ARGB_8888格式,内存开销小一半。

##### 这个库都有哪些用法?对应什么样的使用场景?

1、图片加载:Glide.with(this).load(imageUrl).override(800, 800).placeholder().error().animate().into()。

2、多样式媒体加载:asBitamp、asGif。

3、生命周期集成。

4、可以配置磁盘缓存策略ALL、NONE、SOURCE、RESULT。

##### 这个库的优缺点是什么,跟同类型库的比较?

库比较大,源码实现复杂。

##### 这个库的核心实现原理是什么?如果让你实现这个库的某些核心功能,你会考虑怎么去实现?

- Glide&with:

1、初始化各式各样的配置信息(包括缓存,请求线程池,大小,图片格式等等)以及glide对象。

2、将glide请求和application/SupportFragment/Fragment的生命周期绑定在一块。

- Glide&load:

设置请求url,并记录url已设置的状态。

3、Glide&into:

1、首先根据转码类transcodeClass类型返回不同的ImageViewTarget:BitmapImageViewTarget、DrawableImageViewTarget。

2、递归建立缩略图请求,没有缩略图请求,则直接进行正常请求。

3、如果没指定宽高,会根据ImageView的宽高计算出图片宽高,最终执行到onSizeReay()方法中的engine.load()方法。

4、engine是一个负责加载和管理缓存资源的类

- 常规三级缓存的流程:强引用->软引用->硬盘缓存

当我们的APP中想要加载某张图片时,先去LruCache中寻找图片,如果LruCache中有,则直接取出来使用,如果LruCache中没有,则去SoftReference中寻找(软引用适合当cache,当内存吃紧的时候才会被回收。而weakReference在每次system.gc()就会被回收)(当LruCache存储紧张时,会把最近最少使用的数据放到SoftReference中),如果SoftReference中有,则从SoftReference中取出图片使用,同时将图片重新放回到LruCache中,如果SoftReference中也没有图片,则去硬盘缓存中中寻找,如果有则取出来使用,同时将图片添加到LruCache中,如果没有,则连接网络从网上下载图片。图片下载完成后,将图片保存到硬盘缓存中,然后放到LruCache中。

- Glide的三层缓存机制:

Glide缓存机制大致分为三层:内存缓存、弱引用缓存、磁盘缓存。

取的顺序是:内存、弱引用、磁盘。

存的顺序是:弱引用、内存、磁盘。

三层存储的机制在Engine中实现的。先说下Engine是什么?Engine这一层负责加载时做管理内存缓存的逻辑。持有MemoryCache、Map<Key, WeakReference<EngineResource<?>>>。通过load()来加载图片,加载前后会做内存存储的逻辑。如果内存缓存中没有,那么才会使用EngineJob这一层来进行异步获取硬盘资源或网络资源。EngineJob类似一个异步线程或observable。Engine是一个全局唯一的,通过Glide.getEngine()来获取。

需要一个图片资源,如果Lrucache中有相应的资源图片,那么就返回,同时从Lrucache中清除,放到activeResources中。activeResources map是盛放正在使用的资源,以弱引用的形式存在。同时资源内部有被引用的记录。如果资源没有引用记录了,那么再放回Lrucache中,同时从activeResources中清除。如果Lrucache中没有,就从activeResources中找,找到后相应资源引用加1。如果Lrucache和activeResources中没有,那么进行资源异步请求(网络/diskLrucache),请求成功后,资源放到diskLrucache和activeResources中。

##### Glide源码机制的核心思想:

使用一个弱引用map activeResources来盛放项目中正在使用的资源。Lrucache中不含有正在使用的资源。资源内部有个计数器来显示自己是不是还有被引用的情况,把正在使用的资源和没有被使用的资源分开有什么好处呢??因为当Lrucache需要移除一个缓存时,会调用resource.recycle()方法。注意到该方法上面注释写着只有没有任何consumer引用该资源的时候才可以调用这个方法。那么为什么调用resource.recycle()方法需要保证该资源没有任何consumer引用呢?glide中resource定义的recycle()要做的事情是把这个不用的资源(假设是bitmap或drawable)放到bitmapPool中。bitmapPool是一个bitmap回收再利用的库,在做transform的时候会从这个bitmapPool中拿一个bitmap进行再利用。这样就避免了重新创建bitmap,减少了内存的开支。而既然bitmapPool中的bitmap会被重复利用,那么肯定要保证回收该资源的时候(即调用资源的recycle()时),要保证该资源真的没有外界引用了。这也是为什么glide花费那么多逻辑来保证Lrucache中的资源没有外界引用的原因。

##### 你从这个库中学到什么有价值的或者说可借鉴的设计思想?

Glide的高效的三层缓存机制,如上。

##### Glide如何确定图片加载完毕?

##### Glide使用什么缓存?

##### Glide内存缓存如何控制大小?

##### 计算一张图片的大小
    
图片占用内存的计算公式:图片高度 * 图片宽度 * 一个像素占用的内存大小。所以,计算图片占用内存大小的时候,要考虑图片所在的目录跟设备密度,这两个因素其实影响的是图片的宽高,android会对图片进行拉升跟压缩。
    
    
##### 加载bitmap过程(怎样保证不产生内存溢出)
    
由于Android对图片使用内存有限制,若是加载几兆的大图片便内存溢出。Bitmap会将图片的所有像素(即长x宽)加载到内存中,如果图片分辨率过大,会直接导致内存OOM,只有在BitmapFactory加载图片时使用BitmapFactory.Options对相关参数进行配置来减少加载的像素。
    
BitmapFactory.Options相关参数详解:
    
(1).Options.inPreferredConfig值来降低内存消耗。
    
比如:默认值ARGB_8888改为RGB_565,节约一半内存。
    
(2).设置Options.inSampleSize 缩放比例,对大图片进行压缩 。
    
(3).设置Options.inPurgeable和inInputShareable:让系统能及时回收内存。
    
    A:inPurgeable:设置为True时,表示系统内存不足时可以被回收,设置为False时,表示不能被回收。
    
    B:inInputShareable:设置是否深拷贝,与inPurgeable结合使用,inPurgeable为false时,该参数无意义。
    
(4).使用decodeStream代替decodeResource等其他方法。

### Android中软引用与弱引用的应用场景。

Java 引用类型分类:

![image](https://user-gold-cdn.xitu.io/2017/10/10/29c884389e96babb2759b95014628aae?imageslim)

在 Android 应用的开发中,为了防止内存溢出,在处理一些占用内存大而且生命周期较长的对象时候,可以尽量应用软引用和弱引用技术。

- 1、软/弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收,Java 虚拟机就会把这个软引用加入到与之关联的引用队列中。利用这个队列可以得知被回收的软/弱引用的对象列表,从而为缓冲器清除已失效的软 / 弱引用。
- 2、如果只是想避免 OOM 异常的发生,则可以使用软引用。如果对于应用的性能更在意,想尽快回收一些占用内存比较大的对象,则可以使用弱引用。
- 3、可以根据对象是否经常使用来判断选择软引用还是弱引用。如果该对象可能会经常使用的,就尽量用软引用。如果该对象不被使用的可能性更大些,就可以用弱引用。

##### Android里的内存缓存和磁盘缓存是怎么实现的。

内存缓存基于LruCache实现,磁盘缓存基于DiskLruCache实现。这两个类都基于Lru算法和LinkedHashMap来实现。

LRU算法可以用一句话来描述,如下所示:

LRU是Least Recently Used的缩写,最近最少使用算法,从它的名字就可以看出,它的核心原则是如果一个数据在最近一段时间没有使用到,那么它在将来被访问到的可能性也很小,则这类数据项会被优先淘汰掉。

##### LruCache原理
    
之前,我们会使用内存缓存技术实现,也就是软引用或弱引用,在Android 2.3(APILevel 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用和弱引用变得不再可靠。

其实LRU缓存的实现类似于一个特殊的栈,把访问过的元素放置到栈顶(若栈中存在,则更新至栈顶;若栈中不存在则直接入栈),然后如果栈中元素数量超过限定值,则删除栈底元素(即最近最少使用的元素)。

它的内部存在一个 LinkedHashMap 和 maxSize,把最近使用的对象用强引用存储在 LinkedHashMap 中,给出来 put 和 get 方法,每次 put 图片时计算缓存中所有图片的总大小,跟 maxSize 进行比较,大于 maxSize,就将最久添加的图片移除,反之小于 maxSize 就添加进来。

LruCache的原理就是利用LinkedHashMap持有对象的强引用,按照Lru算法进行对象淘汰。具体说来假设我们从表尾访问数据,在表头删除数据,当访问的数据项在链表中存在时,则将该数据项移动到表尾,否则在表尾新建一个数据项。当链表容量超过一定阈值,则移除表头的数据。

详细来说就是LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队头元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队尾。

##### LruCache put方法核心逻辑

在添加过缓存对象后,调用trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的对象。trimToSize()方法不断地删除LinkedHashMap中队头的元素,即近期最少访问的,直到缓存大小小于最大值(maxSize)。

##### LruCache get方法核心逻辑

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序的。

为什么会选择LinkedHashMap呢?

这跟LinkedHashMap的特性有关,LinkedHashMap的构造函数里有个布尔参数accessOrder,当它为true时,LinkedHashMap会以访问顺序为序排列元素,否则以插入顺序为序排序元素。

##### LinkedHashMap原理

LinkedHashMap 几乎和 HashMap 一样:从技术上来说,不同的是它定义了一个 Entry<K,V> header,这个 header 不是放在 Table 里,它是额外独立出来的。LinkedHashMap 通过继承 hashMap 中的 Entry<K,V>,并添加两个属性 Entry<K,V> before,after,和 header 结合起来组成一个双向链表,来实现按插入顺序或访问顺序排序。

##### DisLruCache原理

DiskLruCache与LruCache原理相似,只是多了一个journal文件来做磁盘文件的管理,如下所示:

libcore.io.DiskLruCache
    1
    1
    1
    
    DIRTY 1517126350519
    CLEAN 1517126350519 5325928
    REMOVE 1517126350519
    
注:这里的缓存目录是应用的缓存目录/data/data/pckagename/cache,未root的手机可以通过以下命令进入到该目录中或者将该目录整体拷贝出来:

//进入/data/data/pckagename/cache目录
    adb shell
    run-as com.your.packagename 
    cp /data/data/com.your.packagename/
    
    //将/data/data/pckagename目录拷贝出来
    adb backup -noapk com.your.packagename
    
我们来分析下这个文件的内容:

第一行:libcore.io.DiskLruCache,固定字符串。
第二行:1,DiskLruCache源码版本号。
第三行:1,App的版本号,通过open()方法传入进去的。
第四行:1,每个key对应几个文件,一般为1.
第五行:空行
第六行及后续行:缓存操作记录。
第六行及后续行表示缓存操作记录,关于操作记录,我们需要了解以下三点:

DIRTY 表示一个entry正在被写入。写入分两种情况,如果成功会紧接着写入一行CLEAN的记录;如果失败,会增加一行REMOVE记录。注意单独只有DIRTY状态的记录是非法的。
当手动调用remove(key)方法的时候也会写入一条REMOVE记录。
READ就是说明有一次读取的记录。
CLEAN的后面还记录了文件的长度,注意可能会一个key对应多个文件,那么就会有多个数字。

##### Bitmap 压缩策略

加载 Bitmap 的方式:

BitmapFactory 四类方法:

- decodeFile( 文件系统 )
- decodeResourece( 资源 )
- decodeStream( 输入流 ) 
- decodeByteArray( 字节数 )

BitmapFactory.options 参数:

- inSampleSize 采样率,对图片高和宽进行缩放,以最小比进行缩放(一般取值为 2 的指数)。通常是根据图片宽高实际的大小/需要的宽高大小,分别计算出宽和高的缩放比。但应该取其中最小的缩放比,避免缩放图片太小,到达指定控件中不能铺满,需要拉伸从而导致模糊。  
- inJustDecodeBounds 获取图片的宽高信息,交给  inSampleSize 参数选择缩放比。通过 inJustDecodeBounds = true,然后加载图片就可以实现只解析图片的宽高信息,并不会真正的加载图片,所以这个操作是轻量级的。当获取了宽高信息,计算出缩放比后,然后在将 inJustDecodeBounds = false,再重新加载图片,就可以加载缩放后的图片。

高效加载 Bitmap 的流程:

- 1、将 BitmapFactory.Options 的 inJustDecodeBounds 参数设为 true 并加载图片
- 2、从 BitmapFactory.Options 中取出图片原始的宽高信息,对应于 outWidth 和 outHeight 参数
- 3、根据采样率规则并结合目标 view 的大小计算出采样率 inSampleSize
- 4、将 BitmapFactory.Options 的 inJustDecodeBounds 设置为 false 重新加载图片

##### Bitmap的处理:

当使用ImageView的时候,可能图片的像素大于ImageView,此时就可以通过BitmapFactory.Option来对图片进行压缩,inSampleSize表示缩小2^(inSampleSize-1)倍。

BitMap的缓存:

1.使用LruCache进行内存缓存。

2.使用DiskLruCache进行硬盘缓存。

##### 实现一个ImageLoader的流程

同步异步加载、图片压缩、内存硬盘缓存、网络拉取

- 1.同步加载只创建一个线程然后按照顺序进行图片加载
- 2.异步加载使用线程池,让存在的加载任务都处于不同线程
- 3.为了不开启过多的异步任务,只在列表静止的时候开启图片加载

具体为:

- 1、ImageLoader作为一个单例,提供了加载图片到指定控件的方法:直接从内存缓存中获取对象,如果没有则用一个ThreadPoolExecutor去执行Runnable任务来加载图片。ThreadPoolExecutor的创建需要指定核心线程数CPU数+1,最大线程数CPU数*2+1,线程闲置超市时长10s,这几个关键数据,还可以加入ThreadFactory参数来创建定制化的线程。
- 2、ImageLoader的具体实现loadBitmap:先从内存缓存LruCache中加载,如果为空再从磁盘缓存中加载,加载成功后记得存入内存缓存,如果为空则从网络中直接下载输出流到磁盘缓存,然后再从磁盘中加载,如果为空并且磁盘缓存没有被创建的话,直接通过BitmapFactory的decodeStream获取网络请求的输入流获取Bitmap对象。
- 3、v4包的LruCache可以兼容到2.2版本,LruCache采用LinkedHashMap存储缓存对象。创建对象只需要提供缓存容量并重写sizeOf方法:作用是计算缓存对象的大小。有时需要重写entryRemoved方法,用于回收一些资源。
- 4、DiskLruCache通过open方法创建,设置缓存路径,缓存容量。缓存添加通过Editor对象创建输出流,下载资源到输出流完成后,commit,如果失败则abort撤回。然后刷新磁盘缓存。缓存查找通过Snapshot对象获取输入流,获取FileDescriptor,通过FileDescriptor解析出Bitmap对象。
- 5、列表中需要加载图片的时候,当列表在滑动中不进行图片加载,当滑动停止后再去加载图片。
    
    
##### Bitmap在decode的时候申请的内存如何复用,释放时机
    
    
##### 图片库对比

http://stackoverflow.com/questions/29363321/picasso-v-s-imageloader-v-s-fresco-vs-glide

http://www.trinea.cn/android/android-image-cache-compare/

##### Fresco与Glide的对比:

Glide:相对轻量级,用法简单优雅,支持Gif动态图,适合用在那些对图片依赖不大的App中。
Fresco:采用匿名共享内存来保存图片,也就是Native堆,有效的的避免了OOM,功能强大,但是库体积过大,适合用在对图片依赖比较大的App中。

Fresco的整体架构如下图所示:

![image](https://github.com/guoxiaoxing/android-open-framwork-analysis/raw/master/art/fresco/fresco_structure.png)

DraweeView:继承于ImageView,只是简单的读取xml文件的一些属性值和做一些初始化的工作,图层管理交由Hierarchy负责,图层数据获取交由负责。
DraweeHierarchy:由多层Drawable组成,每层Drawable提供某种功能(例如:缩放、圆角)。
DraweeController:控制数据的获取与图片加载,向pipeline发出请求,并接收相应事件,并根据不同事件控制Hierarchy,从DraweeView接收用户的事件,然后执行取消网络请求、回收资源等操作。
DraweeHolder:统筹管理Hierarchy与DraweeHolder。
ImagePipeline:Fresco的核心模块,用来以各种方式(内存、磁盘、网络等)获取图像。
Producer/Consumer:Producer也有很多种,它用来完成网络数据获取,缓存数据获取、图片解码等多种工作,它产生的结果由Consumer进行消费。
IO/Data:这一层便是数据层了,负责实现内存缓存、磁盘缓存、网络缓存和其他IO相关的功能。
纵观整个Fresco的架构,DraweeView是门面,和用户进行交互,DraweeHierarchy是视图层级,管理图层,DraweeController是控制器,管理数据。它们构成了整个Fresco框架的三驾马车。当然还有我们 幕后英雄Producer,所有的脏活累活都是它干的,最佳劳模

Android高级特性笔记相关推荐

  1. android 新特性笔记

    此篇文章,只作为个人笔记之用 Android 9.0 新特性 链接:https://baijiahao.baidu.com/s?id=1610506662242386397&wfr=spide ...

  2. 《深入理解Java虚拟机 - Jvm高级特性与最佳实践(第三版)》阅读笔记

    <深入理解Java虚拟机>阅读笔记 本repository为<深入理解Java虚拟机 - Jvm高级特性与最佳实践(第三版)>阅读笔记,因为第一章主要讲的是Java的发展历史, ...

  3. Android高级终端开发学习笔记(《疯狂Android讲义》第11章-第17章)

    Android高级终端开发笔记 2021/6/19 下午 13:34开始 多媒体应用开发 Android支持的音频格式有:MP3 WAV 3GP等.支持的视频格式有MP4 3GP等. 多媒体数据既可以 ...

  4. Android群英传笔记——第十二章:Android5.X 新特性详解,Material Design UI的新体验

    Android群英传笔记--第十二章:Android5.X 新特性详解,Material Design UI的新体验 第十一章为什么不写,因为我很早之前就已经写过了,有需要的可以去看 Android高 ...

  5. Educoder–Java高级特性(第一章)- IO流【笔记+参考代码】

    Educoder–Java高级特性(第一章)- IO流[笔记+参考代码] 第一关 1.下列关于字节和字符的说法正确的是(BC) A.字节 = 字符 + 编码 B.字符 = 字节 + 编码 C.字节 = ...

  6. 《Android高级进阶》读书笔记

    <Android高级进阶>是据我所知的市面上唯一一本技术工具书,比较的高大全,作者的目的是为了对全领域有个初步的概念 No1: 在Android系统中,拥有事件传递处理能力的类有以下三种 ...

  7. 读书笔记之《深入理解Java虚拟机:JVM高级特性与最佳实践》

    本篇带来的是周志明老师编写的<深入理解Java虚拟机:JVM高级特性与最佳实践>,十分硬核! 全书共分为 5 部分,围绕内存管理.执行子系统.程序编译与优化.高效并发等核心主题对JVM进行 ...

  8. 深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)读书笔记

    前言 我在读 深入理解java虚拟机 这本书,把整体其中的关键点标记了,希望自己对它有个不一样的理解,也希望大家能看看这本写的很好的书 深入理解Java虚拟机:JVM高级特性与最佳实践(第3版) pd ...

  9. Educoder–Java高级特性(第二章)- 集合框架【笔记+参考代码】

    Educoder–Java高级特性(第二章)- 集合框架[笔记+参考代码] 第一关 编程要求 请仔细阅读右侧代码,根据方法内的提示,在Begin - End区域内进行代码补充,创建ArrayList集 ...

最新文章

  1. keras,在 fit 和 evaluate 中 都有 verbose 这个参数标记是否打印进度条
  2. 【拔刀吧少年】之条件语句
  3. freecodecamp_如何对freeCodeCamp文章提供反馈
  4. 成为Google认证机器学习工程师,零基础只需要2步?
  5. 开源不止,前进不息:2018 OpenInfra Days China来了!
  6. 「知识图谱」领域近期值得读的 6 篇顶会论文
  7. 【caffe学习】caffe第二个比较典型的识别例子CIFAR_10的运行详解
  8. 递归--练习6--noi1755菲波那契数列
  9. QT表格QTableWidget在win10下纵横表头无分隔线的问题
  10. 设置div背景色为半透明
  11. win7家庭版升级旗舰的密钥
  12. 分布式事务处理框架之LCN
  13. Win7电脑定时关机
  14. Python爬虫之网易云歌单音频爬取(解决urlretrieve爬取文件不能播放问题)
  15. 一个强大的小程序-Phun
  16. thinkphp 面包屑导航
  17. 总结下花了大约半年的时间从零开始的unity游戏开发(1)
  18. 开荒手册3——构思一篇小论文
  19. 【稳定性day14】BASIC技术架构—蚂蚁金服十五年的演进之路
  20. (转) 选择 NET Framework 3.5 SP1 系统必备,ClickOnce 发布提示缺少文件的解决方案

热门文章

  1. 百万在线:大型游戏服务端开发
  2. 《最好的告别》是有尊严的离开
  3. 太原科技大学调剂计算机,2016年太原科技大学考研调剂信息
  4. matlab中对于xf(x)的积分,[matlab 积分]MATLAB求积分?
  5. URL encode 编码
  6. Sprite Atlas与Sprite Mask详解
  7. lightGBM简述
  8. 多时点DID实证流程笔记(Aggregate Effects from Public Works: Evidence from India)
  9. 艾永亮:经济型酒店风光不再,亚朵锁定中端酒店市场打造超级产品
  10. c语言怎么让程序停止3秒,求助!!!!用单片机的定时器T1怎么写一个LED亮2秒灭3秒的程序 C语言...