冈萨雷斯数字图像处理——彩色图像增强3实例

实例一:基于直方图均衡化的彩色图像增强

    要处理的图片:fruit.jpg
   
     
    example1.m:
clc;
RGB=imread('fruit.jpg');    %输入彩色图像,得到三维数组R=RGB(:,:,1);             %分别取三维数组的一维,得到红绿蓝三个分量
G=RGB(:,:,2);             %为R G B
B=RGB(:,:,3);subplot(4,2,1),imshow(RGB);       %绘制各分量的图像及其直方图
title('原始真彩色图像');
subplot(4,2,3),imshow(R);
title('真彩色图像的红色分量');
subplot(4,2,4), imhist(R);
title('真彩色图像的红色分量直方图');
subplot(4,2,5),imshow(G);
title('真彩色图像的绿色分量');
subplot(4,2,6), imhist(G);
title('真彩色图像的绿色分量直方图');
subplot(4,2,7),imshow(B);
title('真彩色图像的蓝色分量');
subplot(4,2,8), imhist(B);
title('真彩色图像的蓝色分量直方图');r=histeq(R);             %对个分量直方图均衡化,得到个分量均衡化图像
g=histeq(G);
b=histeq(B);
figure,
subplot(3,2,1),imshow(r);
title('红色分量均衡化后图像');
subplot(3,2,2), imhist(r);
title('红色分量均衡化后图像直方图');
subplot(3,2,3),imshow(g);
title('绿色分量均衡化后图像');
subplot(3,2,4), imhist(g);
title('绿色分量均衡化后图像直方图');
subplot(3,2,5), imshow(b);
title('蓝色分量均衡化后图像');
subplot(3,2,6), imhist(b);
title('蓝色分量均衡化后图像直方图');figure,       %通过均衡化后的图像还原输出原图像
newimg = cat(3,r,g,b);
imshow(newimg,[]);
title('均衡化后分量图像还原输出原图');

处理效果:

  
    
   

通过matlab仿真,比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。

实例二: 双边滤波(Bilateral Filtering)

双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。
    双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比 高斯滤波 多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波 函数 ,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

    测试用例图:
  
   matlab代码:
   bfilter2.m
% BFILTER2 Two dimensional bilateral filtering.
%    This function implements 2-D bilateral filtering using
%    the method outlined in:
%
%       C. Tomasi and R. Manduchi. Bilateral Filtering for
%       Gray and Color Images. In Proceedings of the IEEE
%       International Conference on Computer Vision, 1998.
%
%    B = bfilter2(A,W,SIGMA) performs 2-D bilateral filtering
%    for the grayscale or color image A. A should be a double
%    precision matrix of size NxMx1 or NxMx3 (i.e., grayscale
%    or color images, respectively) with normalized values in
%    the closed interval [0,1]. The half-size of the Gaussian
%    bilateral filter window is defined by W. The standard
%    deviations of the bilateral filter are given by SIGMA,
%    where the spatial-domain standard deviation is given by
%    SIGMA(1) and the intensity-domain standard deviation is
%    given by SIGMA(2).
%
% Douglas R. Lanman, Brown University, September 2006.
% dlanman@brown.edu, http://mesh.brown.edu/dlanman%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...min(A(:)) < 0 || max(A(:)) > 1error(['Input image A must be a double precision ',...'matrix of size NxMx1 or NxMx3 on the closed ',...'interval [0,1].']);
end% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...numel(w) ~= 1 || w < 1w = 5;
end
w = ceil(w);% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0sigma = [3 0.1];
end% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1B = bfltGray(A,w,sigma(1),sigma(2));
elseB = bfltColor(A,w,sigma(1),sigma(2));
end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)for j = 1:dim(2)% Extract local region.iMin = max(i-w,1);iMax = min(i+w,dim(1));jMin = max(j-w,1);jMax = min(j+w,dim(2));I = A(iMin:iMax,jMin:jMax);% Compute Gaussian intensity weights.H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));% Calculate bilateral filter response.F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);B(i,j) = sum(F(:).*I(:))/sum(F(:));endwaitbar(i/dim(1));
end% Close waitbar.
close(h);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)% Convert input sRGB image to CIELab color space.
if exist('applycform','file')A = applycform(A,makecform('srgb2lab'));
elseA = colorspace('Lab<-RGB',A);
end% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)for j = 1:dim(2)% Extract local region.iMin = max(i-w,1);iMax = min(i+w,dim(1));jMin = max(j-w,1);jMax = min(j+w,dim(2));I = A(iMin:iMax,jMin:jMax,:);% Compute Gaussian range weights.dL = I(:,:,1)-A(i,j,1);da = I(:,:,2)-A(i,j,2);db = I(:,:,3)-A(i,j,3);H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));% Calculate bilateral filter response.F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);norm_F = sum(F(:));B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;endwaitbar(i/dim(1));
end% Convert filtered image back to sRGB color space.
if exist('applycform','file')B = applycform(B,makecform('lab2srgb'));
else  B = colorspace('RGB<-Lab',B);
end% Close waitbar.
close(h);

cartoon.m

function C = cartoon(A)% CARTOON Image abstraction using bilateral filtering.
%    This function uses the bilateral filter to abstract
%    an image following the method outlined in:
%
%       Holger Winnemoller, Sven C. Olsen, and Bruce Gooch.
%       Real-Time Video Abstraction. In Proceedings of ACM
%       SIGGRAPH, 2006.
%
%    C = cartoon(A) modifies the color image A to have a
%    cartoon-like appearance. A must be a double precision
%    matrix of size NxMx3 with normalized values in the
%    closed interval [0,1]. Default filtering parameters
%    are defined in CARTOON.M.
%
% Douglas R. Lanman, Brown University, September 2006.
% dlanman@brown.edu, http://mesh.brown.edu/dlanman%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set the image abstraction parameters.% Set bilateral filter parameters.
w     = 5;         % bilateral filter half-width
sigma = [3 0.1];   % bilateral filter standard deviations% Set image abstraction paramters.
max_gradient      = 0.2;    % maximum gradient (for edges)
sharpness_levels  = [3 14]; % soft quantization sharpness
quant_levels      = 8;      % number of quantization levels
min_edge_strength = 0.3;    % minimum gradient (for edges)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || size(A,3) ~= 3 || ...min(A(:)) < 0 || max(A(:)) > 1error(['Input image A must be a double precision ',...'matrix of size NxMx3 on the closed ',...'interval [0,1].']);
end% Apply bilateral filter to input image.
B = bfilter2(A,w,sigma);% Convert sRGB image to CIELab color space.
if exist('applycform','file')B = applycform(B,makecform('srgb2lab'));
elseB = colorspace('Lab<-RGB',B);
end% Determine gradient magnitude of luminance.
[GX,GY] = gradient(B(:,:,1)/100);
G = sqrt(GX.^2+GY.^2);
G(G>max_gradient) = max_gradient;
G = G/max_gradient;% Create a simple edge map using the gradient magnitudes.
E = G; E(E<min_edge_strength) = 0;% Determine per-pixel "sharpening" parameter.
S = diff(sharpness_levels)*G+sharpness_levels(1);% Apply soft luminance quantization.
qB = B; dq = 100/(quant_levels-1);
qB(:,:,1) = (1/dq)*qB(:,:,1);
qB(:,:,1) = dq*round(qB(:,:,1));
qB(:,:,1) = qB(:,:,1)+(dq/2)*tanh(S.*(B(:,:,1)-qB(:,:,1)));% Transform back to sRGB color space.
if exist('applycform','file')Q = applycform(qB,makecform('lab2srgb'));
elseQ = colorspace('RGB<-Lab',qB);
end% Add gradient edges to quantized bilaterally-filtered image.
C = repmat(1-E,[1 1 3]).*Q;

colorspace.m

function varargout = colorspace(Conversion,varargin)
%COLORSPACE  Convert a color image between color representations.
%   B = COLORSPACE(S,A) converts the color representation of image A
%   where S is a string specifying the conversion.  S tells the
%   source and destination color spaces, S = 'dest<-src', or
%   alternatively, S = 'src->dest'.  Supported color spaces are
%
%     'RGB'              R'G'B' Red Green Blue (ITU-R BT.709 gamma-corrected)
%     'YPbPr'            Luma (ITU-R BT.601) + Chroma
%     'YCbCr'/'YCC'      Luma + Chroma ("digitized" version of Y'PbPr)
%     'YUV'              NTSC PAL Y'UV Luma + Chroma
%     'YIQ'              NTSC Y'IQ Luma + Chroma
%     'YDbDr'            SECAM Y'DbDr Luma + Chroma
%     'JPEGYCbCr'        JPEG-Y'CbCr Luma + Chroma
%     'HSV'/'HSB'        Hue Saturation Value/Brightness
%     'HSL'/'HLS'/'HSI'  Hue Saturation Luminance/Intensity
%     'XYZ'              CIE XYZ
%     'Lab'              CIE L*a*b* (CIELAB)
%     'Luv'              CIE L*u*v* (CIELUV)
%     'Lch'              CIE L*ch (CIELCH)
%
%  All conversions assume 2 degree observer and D65 illuminant.  Color
%  space names are case insensitive.  When R'G'B' is the source or
%  destination, it can be omitted. For example 'yuv<-' is short for
%  'yuv<-rgb'.
%
%  MATLAB uses two standard data formats for R'G'B': double data with
%  intensities in the range 0 to 1, and uint8 data with integer-valued
%  intensities from 0 to 255.  As MATLAB's native datatype, double data is
%  the natural choice, and the R'G'B' format used by colorspace.  However,
%  for memory and computational performance, some functions also operate
%  with uint8 R'G'B'.  Given uint8 R'G'B' color data, colorspace will
%  first cast it to double R'G'B' before processing.
%
%  If A is an Mx3 array, like a colormap, B will also have size Mx3.
%
%  [B1,B2,B3] = COLORSPACE(S,A) specifies separate output channels.
%  COLORSPACE(S,A1,A2,A3) specifies separate input channels.% Pascal Getreuer 2005-2006%%% Input parsing %%%
if nargin < 2, error('Not enough input arguments.'); end
[SrcSpace,DestSpace] = parse(Conversion);if nargin == 2Image = varargin{1};
elseif nargin >= 3Image = cat(3,varargin{:});
elseerror('Invalid number of input arguments.');
endFlipDims = (size(Image,3) == 1);if FlipDims, Image = permute(Image,[1,3,2]); end
if ~isa(Image,'double'), Image = double(Image)/255; end
if size(Image,3) ~= 3, error('Invalid input size.'); endSrcT = gettransform(SrcSpace);
DestT = gettransform(DestSpace);if ~ischar(SrcT) & ~ischar(DestT)% Both source and destination transforms are affine, so they% can be composed into one affine operationT = [DestT(:,1:3)*SrcT(:,1:3),DestT(:,1:3)*SrcT(:,4)+DestT(:,4)];      Temp = zeros(size(Image));Temp(:,:,1) = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);Temp(:,:,2) = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);Temp(:,:,3) = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);Image = Temp;
elseif ~ischar(DestT)Image = rgb(Image,SrcSpace);Temp = zeros(size(Image));Temp(:,:,1) = DestT(1)*Image(:,:,1) + DestT(4)*Image(:,:,2) + DestT(7)*Image(:,:,3) + DestT(10);Temp(:,:,2) = DestT(2)*Image(:,:,1) + DestT(5)*Image(:,:,2) + DestT(8)*Image(:,:,3) + DestT(11);Temp(:,:,3) = DestT(3)*Image(:,:,1) + DestT(6)*Image(:,:,2) + DestT(9)*Image(:,:,3) + DestT(12);Image = Temp;
elseImage = feval(DestT,Image,SrcSpace);
end%%% Output format %%%
if nargout > 1varargout = {Image(:,:,1),Image(:,:,2),Image(:,:,3)};
elseif FlipDims, Image = permute(Image,[1,3,2]); endvarargout = {Image};
end
return;function [SrcSpace,DestSpace] = parse(Str)
% Parse conversion argumentif isstr(Str)Str = lower(strrep(strrep(Str,'-',''),' ',''));k = find(Str == '>');if length(k) == 1         % Interpret the form 'src->dest'SrcSpace = Str(1:k-1);DestSpace = Str(k+1:end);elsek = find(Str == '<');if length(k) == 1      % Interpret the form 'dest<-src'DestSpace = Str(1:k-1);SrcSpace = Str(k+1:end);elseerror(['Invalid conversion, ''',Str,'''.']);end   endSrcSpace = alias(SrcSpace);DestSpace = alias(DestSpace);
elseSrcSpace = 1;             % No source pre-transformDestSpace = Conversion;if any(size(Conversion) ~= 3), error('Transformation matrix must be 3x3.'); end
end
return;function Space = alias(Space)
Space = strrep(Space,'cie','');if isempty(Space)Space = 'rgb';
endswitch Space
case {'ycbcr','ycc'}Space = 'ycbcr';
case {'hsv','hsb'}Space = 'hsv';
case {'hsl','hsi','hls'}Space = 'hsl';
case {'rgb','yuv','yiq','ydbdr','ycbcr','jpegycbcr','xyz','lab','luv','lch'}return;
end
return;function T = gettransform(Space)
% Get a colorspace transform: either a matrix describing an affine transform,
% or a string referring to a conversion subroutine
switch Space
case 'ypbpr'T = [0.299,0.587,0.114,0;-0.1687367,-0.331264,0.5,0;0.5,-0.418688,-0.081312,0];
case 'yuv'% R'G'B' to NTSC/PAL YUV% Wikipedia: http://en.wikipedia.org/wiki/YUVT = [0.299,0.587,0.114,0;-0.147,-0.289,0.436,0;0.615,-0.515,-0.100,0];
case 'ydbdr'% R'G'B' to SECAM YDbDr% Wikipedia: http://en.wikipedia.org/wiki/YDbDrT = [0.299,0.587,0.114,0;-0.450,-0.883,1.333,0;-1.333,1.116,0.217,0];
case 'yiq'% R'G'B' in [0,1] to NTSC YIQ in [0,1];[-0.595716,0.595716];[-0.522591,0.522591];% Wikipedia: http://en.wikipedia.org/wiki/YIQT = [0.299,0.587,0.114,0;0.595716,-0.274453,-0.321263,0;0.211456,-0.522591,0.311135,0];
case 'ycbcr'% R'G'B' (range [0,1]) to ITU-R BRT.601 (CCIR 601) Y'CbCr% Wikipedia: http://en.wikipedia.org/wiki/YCbCr% Poynton, Equation 3, scaling of R'G'B to Y'PbPr conversionT = [65.481,128.553,24.966,16;-37.797,-74.203,112.0,128;112.0,-93.786,-18.214,128];
case 'jpegycbcr'% Wikipedia: http://en.wikipedia.org/wiki/YCbCrT = [0.299,0.587,0.114,0;-0.168736,-0.331264,0.5,0.5;0.5,-0.418688,-0.081312,0.5]*255;
case {'rgb','xyz','hsv','hsl','lab','luv','lch'}T = Space;
otherwiseerror(['Unknown color space, ''',Space,'''.']);
end
return;function Image = rgb(Image,SrcSpace)
% Convert to Rec. 709 R'G'B' from 'SrcSpace'
switch SrcSpace
case 'rgb'return;
case 'hsv'% Convert HSV to R'G'B'Image = huetorgb((1 - Image(:,:,2)).*Image(:,:,3),Image(:,:,3),Image(:,:,1));
case 'hsl'% Convert HSL to R'G'B'L = Image(:,:,3);Delta = Image(:,:,2).*min(L,1-L);Image = huetorgb(L-Delta,L+Delta,Image(:,:,1));
case {'xyz','lab','luv','lch'}% Convert to CIE XYZImage = xyz(Image,SrcSpace);% Convert XYZ to RGBT = [3.240479,-1.53715,-0.498535;-0.969256,1.875992,0.041556;0.055648,-0.204043,1.057311];R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3);  % RG = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3);  % GB = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3);  % B% Desaturate and rescale to constrain resulting RGB values to [0,1]   AddWhite = -min(min(min(R,G),B),0);Scale = max(max(max(R,G),B)+AddWhite,1);R = (R + AddWhite)./Scale;G = (G + AddWhite)./Scale;B = (B + AddWhite)./Scale;   % Apply gamma correction to convert RGB to Rec. 709 R'G'B'Image(:,:,1) = gammacorrection(R);  % R'Image(:,:,2) = gammacorrection(G);  % G'Image(:,:,3) = gammacorrection(B);  % B'
otherwise  % Conversion is through an affine transformT = gettransform(SrcSpace);temp = inv(T(:,1:3));T = [temp,-temp*T(:,4)];R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);AddWhite = -min(min(min(R,G),B),0);Scale = max(max(max(R,G),B)+AddWhite,1);R = (R + AddWhite)./Scale;G = (G + AddWhite)./Scale;B = (B + AddWhite)./Scale;Image(:,:,1) = R;Image(:,:,2) = G;Image(:,:,3) = B;
end% Clip to [0,1]
Image = min(max(Image,0),1);
return;function Image = xyz(Image,SrcSpace)
% Convert to CIE XYZ from 'SrcSpace'
WhitePoint = [0.950456,1,1.088754];  switch SrcSpace
case 'xyz'return;
case 'luv'% Convert CIE L*uv to XYZWhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));L = Image(:,:,1);Y = (L + 16)/116;Y = invf(Y)*WhitePoint(2);U = Image(:,:,2)./(13*L + 1e-6*(L==0)) + WhitePointU;V = Image(:,:,3)./(13*L + 1e-6*(L==0)) + WhitePointV;Image(:,:,1) = -(9*Y.*U)./((U-4).*V - U.*V);                  % XImage(:,:,2) = Y;                                             % YImage(:,:,3) = (9*Y - (15*V.*Y) - (V.*Image(:,:,1)))./(3*V);  % Z
case {'lab','lch'}Image = lab(Image,SrcSpace);% Convert CIE L*ab to XYZfY = (Image(:,:,1) + 16)/116;fX = fY + Image(:,:,2)/500;fZ = fY - Image(:,:,3)/200;Image(:,:,1) = WhitePoint(1)*invf(fX);  % XImage(:,:,2) = WhitePoint(2)*invf(fY);  % YImage(:,:,3) = WhitePoint(3)*invf(fZ);  % Z
otherwise   % Convert from some gamma-corrected space% Convert to Rec. 701 R'G'B'Image = rgb(Image,SrcSpace);% Undo gamma correctionR = invgammacorrection(Image(:,:,1));G = invgammacorrection(Image(:,:,2));B = invgammacorrection(Image(:,:,3));% Convert RGB to XYZT = inv([3.240479,-1.53715,-0.498535;-0.969256,1.875992,0.041556;0.055648,-0.204043,1.057311]);Image(:,:,1) = T(1)*R + T(4)*G + T(7)*B;  % X Image(:,:,2) = T(2)*R + T(5)*G + T(8)*B;  % YImage(:,:,3) = T(3)*R + T(6)*G + T(9)*B;  % Z
end
return;function Image = hsv(Image,SrcSpace)
% Convert to HSV
Image = rgb(Image,SrcSpace);
V = max(Image,[],3);
S = (V - min(Image,[],3))./(V + (V == 0));
Image(:,:,1) = rgbtohue(Image);
Image(:,:,2) = S;
Image(:,:,3) = V;
return;function Image = hsl(Image,SrcSpace)
% Convert to HSL
switch SrcSpace
case 'hsv'% Convert HSV to HSL   MaxVal = Image(:,:,3);MinVal = (1 - Image(:,:,2)).*MaxVal;L = 0.5*(MaxVal + MinVal);temp = min(L,1-L);Image(:,:,2) = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));Image(:,:,3) = L;
otherwiseImage = rgb(Image,SrcSpace);  % Convert to Rec. 701 R'G'B'% Convert R'G'B' to HSLMinVal = min(Image,[],3);MaxVal = max(Image,[],3);L = 0.5*(MaxVal + MinVal);temp = min(L,1-L);S = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));Image(:,:,1) = rgbtohue(Image);Image(:,:,2) = S;Image(:,:,3) = L;
end
return;function Image = lab(Image,SrcSpace)
% Convert to CIE L*a*b* (CIELAB)
WhitePoint = [0.950456,1,1.088754];switch SrcSpace
case 'lab'return;
case 'lch'% Convert CIE L*CH to CIE L*abC = Image(:,:,2);Image(:,:,2) = cos(Image(:,:,3)*pi/180).*C;  % a*Image(:,:,3) = sin(Image(:,:,3)*pi/180).*C;  % b*
otherwiseImage = xyz(Image,SrcSpace);  % Convert to XYZ% Convert XYZ to CIE L*a*b*X = Image(:,:,1)/WhitePoint(1);Y = Image(:,:,2)/WhitePoint(2);Z = Image(:,:,3)/WhitePoint(3);fX = f(X);fY = f(Y);fZ = f(Z);Image(:,:,1) = 116*fY - 16;    % L*Image(:,:,2) = 500*(fX - fY);  % a*Image(:,:,3) = 200*(fY - fZ);  % b*
end
return;function Image = luv(Image,SrcSpace)
% Convert to CIE L*u*v* (CIELUV)
WhitePoint = [0.950456,1,1.088754];
WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));Image = xyz(Image,SrcSpace); % Convert to XYZ
U = (4*Image(:,:,1))./(Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3));
V = (9*Image(:,:,2))./(Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3));
Y = Image(:,:,2)/WhitePoint(2);
L = 116*f(Y) - 16;
Image(:,:,1) = L;                        % L*
Image(:,:,2) = 13*L.*(U - WhitePointU);  % u*
Image(:,:,3) = 13*L.*(V - WhitePointV);  % v*
return;  function Image = lch(Image,SrcSpace)
% Convert to CIE L*ch
Image = lab(Image,SrcSpace);  % Convert to CIE L*ab
H = atan2(Image(:,:,3),Image(:,:,2));
H = H*180/pi + 360*(H < 0);
Image(:,:,2) = sqrt(Image(:,:,2).^2 + Image(:,:,3).^2);  % C
Image(:,:,3) = H;                                        % H
return;function Image = huetorgb(m0,m2,H)
% Convert HSV or HSL hue to RGB
N = size(H);
H = min(max(H(:),0),360)/60;
m0 = m0(:);
m2 = m2(:);
F = H - round(H/2)*2;
M = [m0, m0 + (m2-m0).*abs(F), m2];
Num = length(m0);
j = [2 1 0;1 2 0;0 2 1;0 1 2;1 0 2;2 0 1;2 1 0]*Num;
k = floor(H) + 1;
Image = reshape([M(j(k,1)+(1:Num).'),M(j(k,2)+(1:Num).'),M(j(k,3)+(1:Num).')],[N,3]);
return;function H = rgbtohue(Image)
% Convert RGB to HSV or HSL hue
[M,i] = sort(Image,3);
i = i(:,:,3);
Delta = M(:,:,3) - M(:,:,1);
Delta = Delta + (Delta == 0);
R = Image(:,:,1);
G = Image(:,:,2);
B = Image(:,:,3);
H = zeros(size(R));
k = (i == 1);
H(k) = (G(k) - B(k))./Delta(k);
k = (i == 2);
H(k) = 2 + (B(k) - R(k))./Delta(k);
k = (i == 3);
H(k) = 4 + (R(k) - G(k))./Delta(k);
H = 60*H + 360*(H < 0);
H(Delta == 0) = nan;
return;function Rp = gammacorrection(R)
Rp = real(1.099*R.^0.45 - 0.099);
i = (R < 0.018);
Rp(i) = 4.5138*R(i);
return;function R = invgammacorrection(Rp)
R = real(((Rp + 0.099)/1.099).^(1/0.45));
i = (R < 0.018);
R(i) = Rp(i)/4.5138;
return;function fY = f(Y)
fY = real(Y.^(1/3));
i = (Y < 0.008856);
fY(i) = Y(i)*(841/108) + (4/29);
return;function Y = invf(fY)
Y = fY.^3;
i = (Y < 0.008856);
Y(i) = (fY(i) - 4/29)*(108/841);
return;

runDemo.m

% RUNDEMO Illustrates the use of BFILTER2 and CARTOON.
%    This demo shows typical usage for the bilateral
%    filter implemented by BFILTER2. The application
%    of bilateral filtering to image abstraction is
%    demonstrated by the CARTOON function.
%
% Douglas R. Lanman, Brown University, September 2006.
% dlanman@brown.edu, http://mesh.brown.edu/dlanman% Load test images.
% Note: Must be double precision in the interval [0,1].
img1 = double(imread('einstein.jpg'))/255;
img2 = double(imread('mandrill.jpg'))/255;
img3 = double(imread('academy.jpg'))/255;% Introduce AWGN into test images.
% Note: This will show the benefit of bilateral filtering.
img1 = img1+0.03*randn(size(img1));
img2 = img2+0.03*randn(size(img2));
img1(img1<0) = 0; img1(img1>1) = 1;
img2(img2<0) = 0; img2(img2>1) = 1;% Set bilateral filter parameters.
w     = 5;       % bilateral filter half-width
sigma = [3 0.1]; % bilateral filter standard deviations% Apply bilateral filter to each image.
bflt_img1 = bfilter2(img1,w,sigma);
bflt_img2 = bfilter2(img2,w,sigma);% Display grayscale input image and filtered output.
figure(1); clf;
set(gcf,'Name','Grayscale Bilateral Filtering Results');
subplot(1,2,1); imagesc(img1);
axis image; colormap gray;
title('Input Image');
subplot(1,2,2); imagesc(bflt_img1);
axis image; colormap gray;
title('Result of Bilateral Filtering');% Display color input image and filtered output.
figure(2); clf;
set(gcf,'Name','Color Bilateral Filtering Results');
subplot(1,2,1); imagesc(img2);
axis image; colormap gray;
title('Input Image');
subplot(1,2,2); imagesc(bflt_img2);
axis image; title('Result of Bilateral Filtering');
drawnow;% Apply bilateral filter for a "cartoon" effect.
cartoon_img3 = cartoon(img3);% Display color input image and abstracted output.
figure(3); clf;
set(gcf,'Name','Image Abstraction Input');
imagesc(img3); axis image;
title('Input Image');
figure(4); clf;
set(gcf,'Name','Result of Image Abstraction');
imagesc(cartoon_img3); axis image;
title('Abstracted Image');

实例三:图像的模糊增强

   实例图片:
   matlab源码:mhzq01.m
%
% 图像的模糊增强
%
% 准备工作
%
x=imread('lena.bmp');
[M,N]=size(x);
x1=double(x);
%
% 基本参数
%
Fd=0.8;
FD=-1*Fd;
% Fe=128;
Fe=128;
Xmax=255;
%
% 模糊特征平面
%
for i=1:Mfor j=1:NP(i,j)=(1+(Xmax-x1(i,j))/Fe)^FD;end
end
%
% 模糊增强
%
times=1;
for k=1:timesfor i=1:Mfor j=1:Nif P(i,j) <= 0.5000P1(i,j)=2*P(i,j)^2;elseP1(i,j)=1-2*(1-P(i,j))^2;endendendP=P1;
end
%
% 反模糊化
%
for i=1:Mfor j=1:NI(i,j)=Xmax-Fe*((1/P(i,j))^(1/Fd)-1);end
end
X=uint8(I);
figure,imshow(x);
figure,imshow(X);

冈萨雷斯数字图像处理——彩色图像增强3实例相关推荐

  1. 冈萨雷斯 数字图像处理各章内容总结总览

    为了体验,还如果原文还在的话,还是看原文比较好 教材:RafaelC.Gonzalez, RichardE.Woods, StevenL.Eddins,等. 数字图像处理[M]. 电子工业出版社, 2 ...

  2. 冈萨雷斯--数字图像处理(MATLAB版)----书籍相关网站

    www.prenhall.com/gonzalezwoodseddins 这个网站与Gonzales and Wood 所著的<数字图像处理>一书的网站集成在一起: www.prenhal ...

  3. 冈萨雷斯数字图像处理(本科教学版)第三章课本习题全解matlab

    第三章频率域滤波 !!!首先本章需要定义的所有库函数代码如下 : 一 .库函数 !!!每个代码前面有相应的题目标号注释 !!可以分题目定义也全部可以一起定义,建议本章库函数及题目代码全部放到一个文件夹 ...

  4. 冈萨雷斯数字图像处理 - 感知要素

    数字图像处理两个主要应用领域 1.改善信息以便人们解释 2.处理以便机器自动理解 一幅图像可以定义为一个二位函数f(x,y),x和y为坐标,幅值f成为灰度 低级处理:输入输出都是图像为特征,如降噪,对 ...

  5. 数字图像处理:附录-程序实例、参考文献、标准图片集合

    程序实例 声明:本资源仅供清华大学计算机系学生学习数字图象处理课程使用,未经允许不得用于其它目的.这里的程序都是清华大学计算机系人机交互与媒体实验室的教师与学生编制的,仅供参考,问题难免. 1.    ...

  6. 数字图像处理 彩色图象处理

    第十八章 彩色图象处理 目录 1.    引言 2.    彩色空间 3.    不同彩色空间之间的转换 4.    彩色图象的分割 作业 1.  引言 彩色图象是多光谱图象的一种特殊情况,对应于人类 ...

  7. 数字图像处理--3.图像增强

    一.图像增强的点运算 图像增强:采用一系列技术,改善图像的视觉效果,或者将图像转换成一种更适合于人或者机器进行分析和处理的形式. 图像增强方法:1.空间域增强:直接对图像各像素进行处理:2.对图像进行 ...

  8. 数字图像处理之图像增强

    1.图像增强基本概念 图像 增强是通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息.图象增强按增强处理所在空间不同分为空域增强方法和频域增强方法. 空域增强 : 直接在图像所 ...

  9. 冈萨雷斯数字图像处理第三章灰度变换与空间滤波算法 c++

    3.2一些基本的灰度变换函数 具体有 1.图像反转函数 2.对数变换函数 3.幂次(伽马)变换函数 4.分段线性变换函数(对比拉伸.灰度切割.位图切割) 3.2.1图像反转函数 1.数学原理 灰度级范 ...

最新文章

  1. 智能合约开发环境搭建及Hello World合约
  2. nagios学习手札
  3. 10. Leetcode 209. 长度最小的子数组 (数组-同向双指针-滑动窗口)
  4. 困扰我多年的Java泛型〈? extends T 〉和 〈? super T 〉,终于搞清楚了!
  5. ubuntu 配置ftp server(zz)
  6. oracle dw报告,讲解Oracle数据库的全文索引设置步骤
  7. golang 筆記:make 與 new 的差別
  8. python如何保存数组_如何在Python中保存2D数组(列表)?
  9. 数据库学习笔记6-隔离级别 Serializable
  10. 用于物联网数据收集和传输的边缘网络密钥
  11. FTP 文件上传跟下载
  12. OCR识别身份证及营业执照图片(Java版)
  13. 网页自动关机代码HTML,自动定时关机命令
  14. HTML注册登录页面模板JS
  15. python分号报错_go、java已经python中分号的使用
  16. 德勤加拿大:在Flow链上创建NFT所消耗的能量比人们搜索或发布一个帖子还少
  17. Java静态绑定与动态绑定
  18. 【Beta】Scrum Meeting 4
  19. 传输层协议------TCP协议
  20. mybatis中resultMap和resultType区别,三分钟读懂

热门文章

  1. 放弃51单片机直接学32是因为51难找工作?
  2. 【微信小程序】实现新闻列表(文字垂直居上、垂直居下)
  3. 推荐几个学术工具软件给大家
  4. 杰奇linux伪静态,杰奇cms教程,lnmp环境下伪静态配置
  5. TL431的基本特性以及振荡电路
  6. 带负荷测试要求二次最小电流_带负荷测向量简单分析方法
  7. 如何移除 “顺网云盘”
  8. python笑傲江湖统计字数_python编程题----字符串的处理(统计)
  9. Time Gen使用-------------绘制时序电路波形
  10. Java支持的国家和语言