android handler2–消息队列源码解析

1、Looper

对于Looper主要是prepare()和loop()两个方法。
首先看prepare()方法

public static final void prepare() {if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}sThreadLocal.set(new Looper(true));
}

ThreadLocal是一个ThreadLocal对象,可以在一个线程中存储变量。可以看到,在第5行,将一个Looper的实例放入了ThreadLocal,并且2-4行判断了sThreadLocal是否为null,否则抛出异常。这也就说明了Looper.prepare()方法不能被调用两次,同时也保证了一个线程中只有一个Looper实例~相信有些哥们一定遇到这个错误。
下面看Looper的构造方法:

private Looper(boolean quitAllowed) {mQueue = new MessageQueue(quitAllowed);mRun = true;mThread = Thread.currentThread();
}

在构造方法中,创建了一个MessageQueue(消息队列)。
然后我们看loop()方法:

public static void loop() {final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}final MessageQueue queue = me.mQueue;// Make sure the identity of this thread is that of the local process,// and keep track of what that identity token actually is.Binder.clearCallingIdentity();final long ident = Binder.clearCallingIdentity();for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;}// This must be in a local variable, in case a UI event sets the loggerPrinter logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}msg.target.dispatchMessage(msg);if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}// Make sure that during the course of dispatching the// identity of the thread wasn't corrupted.final long newIdent = Binder.clearCallingIdentity();if (ident != newIdent) {Log.wtf(TAG, "Thread identity changed from 0x"+ Long.toHexString(ident) + " to 0x"+ Long.toHexString(newIdent) + " while dispatching to "+ msg.target.getClass().getName() + " "+ msg.callback + " what=" + msg.what);}msg.recycle();}
}

第2行:
public static Looper myLooper() {
return sThreadLocal.get();
}
方法直接返回了sThreadLocal存储的Looper实例,如果me为null则抛出异常,也就是说looper方法必须在prepare方法之后运行。
第6行:拿到该looper实例中的mQueue(消息队列)
13到45行:就进入了我们所说的无限循环。
14行:取出一条消息,如果没有消息则阻塞。
27行:使用调用 msg.target.dispatchMessage(msg);把消息交给msg的target的dispatchMessage方法去处理。Msg的target是什么呢?其实就是handler对象,下面会进行分析。
44行:释放消息占据的资源。

Looper主要作用:
1、 与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue。
2、 loop()方法,不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage去处理。
好了,我们的异步消息处理线程已经有了消息队列(MessageQueue),也有了在无限循环体中取出消息的哥们,现在缺的就是发送消息的对象了,于是乎:Handler登场了。

2、Handler

使用Handler之前,我们都是初始化一个实例,比如用于更新UI线程,我们会在声明的时候直接初始化,或者在onCreate中初始化Handler实例。所以我们首先看Handler的构造方法,看其如何与MessageQueue联系上的,它在子线程中发送的消息(一般发送消息都在非UI线程)怎么发送到MessageQueue中的。

public Handler() {this(null, false);
}
public Handler(Callback callback, boolean async) {if (FIND_POTENTIAL_LEAKS) {final Class<? extends Handler> klass = getClass();if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&(klass.getModifiers() & Modifier.STATIC) == 0) {Log.w(TAG, "The following Handler class should be static or leaks might occur: " +klass.getCanonicalName());}}mLooper = Looper.myLooper();if (mLooper == null) {throw new RuntimeException("Can't create handler inside thread that has not called Looper.prepare()");}mQueue = mLooper.mQueue;mCallback = callback;mAsynchronous = async;}

14行:通过Looper.myLooper()获取了当前线程保存的Looper实例,然后在19行又获取了这个Looper实例中保存的MessageQueue(消息队列),这样就保证了handler的实例与我们Looper实例中MessageQueue关联上了。
然后看我们最常用的sendMessage方法

   public final boolean sendMessage(Message msg){return sendMessageDelayed(msg, 0);}
   public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {Message msg = Message.obtain();msg.what = what;return sendMessageDelayed(msg, delayMillis);}
 public final boolean sendMessageDelayed(Message msg, long delayMillis){if (delayMillis < 0) {delayMillis = 0;}return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);}
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {MessageQueue queue = mQueue;if (queue == null) {RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");Log.w("Looper", e.getMessage(), e);return false;}return enqueueMessage(queue, msg, uptimeMillis);}

辗转反则最后调用了sendMessageAtTime,在此方法内部有直接获取MessageQueue然后调用了enqueueMessage方法,我们再来看看此方法:

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {msg.target = this;if (mAsynchronous) {msg.setAsynchronous(true);}return queue.enqueueMessage(msg, uptimeMillis);}

enqueueMessage中首先为meg.target赋值为this,【如果大家还记得Looper的loop方法会取出每个msg然后交给msg,target.dispatchMessage(msg)去处理消息】,也就是把当前的handler作为msg的target属性。最终会调用queue的enqueueMessage的方法,也就是说handler发出的消息,最终会保存到消息队列中去。

现在已经很清楚了Looper会调用prepare()和loop()方法,在当前执行的线程中保存一个Looper实例,这个实例会保存一个MessageQueue对象,然后当前线程进入一个无限循环中去,不断从MessageQueue中读取Handler发来的消息。然后再回调创建这个消息的handler中的dispathMessage方法,下面我们赶快去看一看这个方法:

public void dispatchMessage(Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}

可以看到,第10行,调用了handleMessage方法,下面我们去看这个方法:

  /*** Subclasses must implement this to receive messages.*/public void handleMessage(Message msg) {}

可以看到这是一个空方法,为什么呢,因为消息的最终回调是由我们控制的,我们在创建handler的时候都是复写handleMessage方法,然后根据msg.what进行消息处理。
例如:

private Handler mHandler = new Handler(){public void handleMessage(android.os.Message msg){switch (msg.what){case value:break;default:break;}};};

到此,这个流程已经解释完毕,让我们首先总结一下
1、首先Looper.prepare()在本线程中保存一个Looper实例,然后该实例中保存一个MessageQueue对象;因为Looper.prepare()在一个线程中只能调用一次,所以MessageQueue在一个线程中只会存在一个。

2、Looper.loop()会让当前线程进入一个无限循环,不端从MessageQueue的实例中读取消息,然后回调msg.target.dispatchMessage(msg)方法。

3、Handler的构造方法,会首先得到当前线程中保存的Looper实例,进而与Looper实例中的MessageQueue想关联。

4、Handler的sendMessage方法,会给msg的target赋值为handler自身,然后加入MessageQueue中。

5、在构造Handler实例时,我们会重写handleMessage方法,也就是msg.target.dispatchMessage(msg)最终调用的方法。

好了,总结完成,大家可能还会问,那么在Activity中,我们并没有显示的调用Looper.prepare()和Looper.loop()方法,为啥Handler可以成功创建呢,这是因为在Activity的启动代码中,已经在当前UI线程调用了Looper.prepare()和Looper.loop()方法。

3、Handler post

今天有人问我,你说Handler的post方法创建的线程和UI线程有什么关系?
其实这个问题也是出现这篇博客的原因之一;这里需要说明,有时候为了方便,我们会直接写如下代码:

mHandler.post(new Runnable(){@Overridepublic void run(){Log.e("TAG", Thread.currentThread().getName());mTxt.setText("yoxi");}});

然后run方法中可以写更新UI的代码,其实这个Runnable并没有创建什么线程,而是发送了一条消息,下面看源码:

 public final boolean post(Runnable r){return  sendMessageDelayed(getPostMessage(r), 0);}
  private static Message getPostMessage(Runnable r) {Message m = Message.obtain();m.callback = r;return m;}

可以看到,在getPostMessage中,得到了一个Message对象,然后将我们创建的Runable对象作为callback属性,赋值给了此message.注:产生一个Message对象,可以new ,也可以使用Message.obtain()方法;两者都可以,但是更建议使用obtain方法,因为Message内部维护了一个Message池用于Message的复用,避免使用new 重新分配内存。

 public final boolean sendMessageDelayed(Message msg, long delayMillis){if (delayMillis < 0) {delayMillis = 0;}return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);}
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {MessageQueue queue = mQueue;if (queue == null) {RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");Log.w("Looper", e.getMessage(), e);return false;}return enqueueMessage(queue, msg, uptimeMillis);}

最终和handler.sendMessage一样,调用了sendMessageAtTime,然后调用了enqueueMessage方法,给msg.target赋值为handler,最终加入MessagQueue.可以看到,这里msg的callback和target都有值,那么会执行哪个呢?其实上面已经贴过代码,就是dispatchMessage方法:

 public void dispatchMessage(Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}

4、后话

其实Handler不仅可以更新UI,你完全可以在一个子线程中去创建一个Handler,然后使用这个handler实例在任何其他线程中发送消息,最终处理消息的代码都会在你创建Handler实例的线程中运行。

new Thread(){private Handler handler;public void run(){Looper.prepare();handler = new Handler(){public void handleMessage(android.os.Message msg){Log.e("TAG",Thread.currentThread().getName());};};Looper.loop();

Android不仅给我们提供了异步消息处理机制让我们更好的完成UI的更新,其实也为我们提供了异步消息处理机制代码的参考,不仅能够知道原理,最好还可以将此设计用到其他的非Android项目中去。

转载地址
https://blog.csdn.net/lmj623565791/article/details/38377229

android handler2--消息队列源码解析相关推荐

  1. Android Handler消息机制源码解析

    好记性不如烂笔头,今天来分析一下Handler的源码实现 Handler机制是Android系统的基础,是多线程之间切换的基础.下面我们分析一下Handler的源码实现. Handler消息机制有4个 ...

  2. 跟我学RocketMQ之批量消息发送源码解析

    上篇文章 跟我学RocketMQ之消息发送源码解析 中,我们已经对普通消息的发送流程进行了详细的解释,但是由于篇幅问题没有展开讲解批量消息的发送.本文中,我们就一起来集中分析一下批量消息的发送是怎样的 ...

  3. Android Hawk数据库的源码解析,Github开源项目,基于SharedPreferences的的存储框架

    今天看了朋友一个项目用到了Hawk,然后写了这边文章 一.了解一下概念 Android Hawk数据库github开源项目 Hawk是一个非常便捷的数据库.操作数据库只需一行代码,能存任何数据类型. ...

  4. android网络框架retrofit源码解析二

    注:源码解析文章参考了该博客:http://www.2cto.com/kf/201405/305248.html 前一篇文章讲解了retrofit的annotation,既然定义了,那么就应该有解析的 ...

  5. Android手游 “2048” 源码解析

    转载请写明出处:http://blog.csdn.net/big_heart_c 下面所解析的源码是来自极客学院"Android 2048 "中的源码,读者可以从 https:// ...

  6. 【Android 异步操作】Handler 机制 ( Android 提供的 Handler 源码解析 | Handler 构造与消息分发 | MessageQueue 消息队列相关方法 )

    文章目录 一.Handler 构造函数 二.Handler 消息分发 三.MessageQueue 消息队列相关函数 一.Handler 构造函数 一般使用 Handler 时 , 调用 Handle ...

  7. Android之EventBus框架源码解析下(源码解析)

    转载请标明出处:[顾林海的博客] 个人开发的微信小程序,目前功能是书籍推荐,后续会完善一些新功能,希望大家多多支持! 前言 EventBus是典型的发布订阅模式,多个订阅者可以订阅某个事件,发布者通过 ...

  8. Android 常用开源框架源码解析 系列 (四)Glide

    一.定义  Glide 一个被google所推荐的图片加载库,作者是bumptech.对Android SDk 最低要求是 API 10  与之功能类似的是Square公司的picasso  二.基本 ...

  9. Android存储之SharedPreferences源码解析

    个人博客:haichenyi.com.感谢关注 1. 目录 1–目录 2–简介 3–getSharedPreferences会不会阻塞线程,为什么? 4–get操作,为什么有时候会卡顿? 5–comm ...

最新文章

  1. mfc 消息消息队列概念_必看入门秘籍——解密原理:消息中间件之RabbitMQ
  2. APPCAN学习笔记004---AppCan与Hybrid,appcan概述
  3. 被遗忘的 10 个Linux命令,很实用!
  4. 第二单元作业——电梯模拟总结
  5. 前端实现炫酷动效_20个网页动效设计的炫酷神器
  6. java重要基础知识点_java基础知识点整理
  7. 7-100 倒数第N个字符串 (15 分)
  8. 我的docker随笔21:web 服务器部署
  9. HtmlUnit初探
  10. 缺少训练样本怎么做实体识别?小样本下的NER解决方法汇总
  11. android 使用ios字体大小,ios和android上的字体大小不同
  12. An 8-year-old English girl who called out a major retailer as
  13. HTML之设置背景、边框、边距和补白
  14. 什么是token,如何使用token
  15. 红杉官网已删长文:伴随SBF一路走来的救世主情结(上)
  16. 如何卸载手机系统应用
  17. 计算机绘图软件origin,计算机绘图软件origin.pdf
  18. layui富文本编辑器layedit增加上传视频与音频功能
  19. java 判断一个数是奇数还是偶数
  20. 广州铁路警方2019年春运安保工作全面部署启动

热门文章

  1. 四个角不是直角的四边形_三个角为直角的四边形一定是矩形吗?
  2. c语言学习进阶-C语言程序出错处理
  3. [独家放送]Unity2019更新规划速览,将有官方的可视化编程!
  4. OpenShift 4 之Istio-Tutorial (8) 在服务之间配置Mutual TLS双向传输安全
  5. 软件架构师的12项修炼--软技能篇
  6. python 文件和目录基本操作_Python常用的文件及文件路径、目录操作方法汇总介绍...
  7. 电脑ping服务器显示传输失败,Win10系统ping时出现传输失败常见故障解决办法
  8. go语言与php优势,go语言有什么优点?
  9. 音乐编辑 java_求助 关于java编辑音乐
  10. linux mysql 5.7密码忘记_Mysql5.7.14 linux版密码忘记的找回方法