作者:VectorJin

juejin.cn/post/6844904041760161806

为了解决原子性的问题,Java加入了锁机制,同时保证了可见性和顺序性。JDK1.5的并发包中新增了Lock接口以及相关实现类来实现锁功能,比synchronized更加灵活,开发者可根据实际的场景选择相应的实现类。

本文注重讲解其不同衍生类的使用场景以及其内部AQS的原理。并发问题引入以及synchronized相关的知识请看上一篇文章一文看懂Java锁机制。

Lock特性

可重入

像synchronized和ReentrantLock都是可重入锁,可重入性表明了锁的分配机制是基于线程的分配,而不是基于方法调用的分配。

举个简单的例子,当一个线程已经获取到锁,当后续再获取同一个锁,直接获取成功。但获取锁和释放锁必须要成对出现。

可响应中断

当线程因为获取锁而进入阻塞状态,外部是可以中断该线程的,调用方通过捕获InterruptedException可以捕获中断

可设置超时时间

获取锁时,可以指定超时时间,可以通过返回值来判断是否成功获取锁

公平性

提供公平性锁和非公平锁(默认)两种选择。

  • 公平锁,线程将按照他们发出请求的顺序来获取锁,不允许插队;

  • 非公平锁,则允许插队:当一个线程发生获取锁的请求的时刻,如果这个锁是可用的,那这个线程将跳过所在队列里等待线程并获得锁。

考虑这么一种情况:A线程持有锁,B线程请求这个锁,因此B线程被挂起;A线程释放这个锁时,B线程将被唤醒,因此再次尝试获取锁;与此同时,C线程也请求获取这个锁,那么C线程很可能在B线程被完全唤醒之前获得、使用以及释放这个锁。

这是种双赢的局面,B获取锁的时刻(B被唤醒后才能获取锁)并没有推迟,C更早地获取了锁,并且吞吐量也获得了提高。在大多数情况下,非公平锁的性能要高于公平锁的性能。

另外,这个公平性是针对线程而言的,不能依赖此来实现业务上的公平性,应该由开发者自己控制,比如通过FIFO队列来保证公布。

读写锁

允许读锁和写锁分离,读锁与写锁互斥,但是多个读锁可以共存,适用于读频次远大于写频次的场景

丰富的API

提供了多个方法来获取锁相关的信息,可以帮助开发者监控和排查问题

  • isFair():判断锁是否是公平锁

  • isLocked():判断锁是否被任何线程获取了

  • isHeldByCurrentThread():判断锁是否被当前线程获取了

  • hasQueuedThreads():判断是否有线程在等待该锁

  • getHoldCount():查询当前线程占有lock锁的次数

  • getQueueLength():获取正在等待此锁的线程数

锁的使用

ReentrantLock

独占锁的实现,拥有上面列举的除读写锁之外的所有特性,使用比较简单

class X {// 创建独占锁实例private final ReentrantLock lock = new ReentrantLock();// ...public void m() {lock.lock();  // block until condition holdstry {// ... method body} finally {// 必须要释放锁,unlock与lock成对出现lock.unlock()}}}

ReentrantReadWriteLock

读写锁的实现,拥有上面列举的所有特性。并且写锁可降级为读锁,反之不行。

class CachedData {Object data;volatile boolean cacheValid;final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();void processCachedData() {rwl.readLock().lock();if (!cacheValid) {// Must release read lock before acquiring write lockrwl.readLock().unlock();rwl.writeLock().lock();try {// Recheck state because another thread might have// acquired write lock and changed state before we did.if (!cacheValid) {data = ...cacheValid = true;}// Downgrade by acquiring read lock before releasing write lockrwl.readLock().lock();} finally {rwl.writeLock().unlock(); // Unlock write, still hold read}}try {use(data);} finally {rwl.readLock().unlock();}}}

StampedLock

StampedLock也是一种读写锁,提供两种读模式:乐观读和悲观读。乐观读允许读的过程中也可以获取写锁后写入!这样一来,我们读的数据就可能不一致,所以,需要一点额外的代码来判断读的过程中是否有写入。

乐观锁的意思就是乐观地估计读的过程中大概率不会有写入,因此被称为乐观锁。反过来,悲观锁则是读的过程中拒绝有写入,也就是写入必须等待。显然乐观锁的并发效率更高,但一旦有小概率的写入导致读取的数据不一致,需要能检测出来,再读一遍就行。

public class Point {private final StampedLock stampedLock = new StampedLock();private double x;private double y;public void move(double deltaX, double deltaY) {long stamp = stampedLock.writeLock(); // 获取写锁try {x += deltaX;y += deltaY;} finally {stampedLock.unlockWrite(stamp); // 释放写锁}}public double distanceFromOrigin() {long stamp = stampedLock.tryOptimisticRead(); // 获得一个乐观读锁// 注意下面两行代码不是原子操作// 假设x,y = (100,200)double currentX = x;// 此处已读取到x=100,但x,y可能被写线程修改为(300,400)double currentY = y;// 此处已读取到y,如果没有写入,读取是正确的(100,200)// 如果有写入,读取是错误的(100,400)if (!stampedLock.validate(stamp)) { // 检查乐观读锁后是否有其他写锁发生stamp = stampedLock.readLock(); // 获取一个悲观读锁try {currentX = x;currentY = y;} finally {stampedLock.unlockRead(stamp); // 释放悲观读锁}}return Math.sqrt(currentX * currentX + currentY * currentY);}
}

Condition

Condition成为条件队列或条件变量,为一个线程挂起执行(等待)提供了一种方法,直到另一线程通知某些状态条件现在可能为真为止。由于对该共享状态信息的访问发生在不同的线程中,因此必须由互斥锁对其其进行保护。

await方法:必须在获取锁之后的调用,表示释放当前锁,阻塞当前线程;等待其他线程调用锁的signal或signalAll方法,线程唤醒重新获取锁。

Lock配合Condition,可以实现synchronized 与 对象(wait,notify)同样的效果,来进行线程间基于共享变量的通信。但优势在于同一个锁可以由多个条件队列,当某个条件满足时,只需要唤醒对应的条件队列即可,避免无效的竞争。

// 此类实现类似阻塞队列(ArrayBlockingQueue)
class BoundedBuffer {final Lock lock = new ReentrantLock();final Condition notFull  = lock.newCondition(); final Condition notEmpty = lock.newCondition(); final Object[] items = new Object[100];int putptr, takeptr, count;public void put(Object x) throws InterruptedException {lock.lock();try {while (count == items.length)notFull.await();items[putptr] = x;if (++putptr == items.length) putptr = 0;++count;notEmpty.signal();} finally {lock.unlock();}}public Object take() throws InterruptedException {lock.lock();try {while (count == 0)notEmpty.await();Object x = items[takeptr];if (++takeptr == items.length) takeptr = 0;--count;notFull.signal();return x;} finally {lock.unlock();}}
}

BlockingQueue

BlockingQueue阻塞队列实际上是一个生产者/消费者模型,当队列长度大于指定的最大值,生产线程就会被阻塞;反之当队列元素为空时,消费线程就会被阻塞;同时当消费成功时,就会唤醒阻塞的生产者线程;生产成功就会唤醒消费者线程;

内部使用就是ReentrantLock + Condition来实现的,可以参照上面的示例。

CountDownLatch

称之为倒计时器锁,初始化指定数值,调用countDown可以对数值减一,当数值减为0时,就会唤醒所有因为调用await方法而阻塞的线程。

可以达到一组线程等待另外一组线程都完成任务的效果。

class Driver { // ...void main() throws InterruptedException {CountDownLatch startSignal = new CountDownLatch(1);CountDownLatch doneSignal = new CountDownLatch(N);for (int i = 0; i < N; ++i) // create and start threadsnew Thread(new Worker(startSignal, doneSignal)).start();doSomethingElse();            // don't let run yetstartSignal.countDown();      // let all threads proceeddoSomethingElse();doneSignal.await();           // wait for all to finish}
}class Worker implements Runnable {private final CountDownLatch startSignal;private final CountDownLatch doneSignal;Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {this.startSignal = startSignal;this.doneSignal = doneSignal;}public void run() {try {startSignal.await();doWork();doneSignal.countDown();} catch (InterruptedException ex) {} // return;}void doWork() { ... }
}

CyclicBarrier

称之为同步屏障,它使得一组线程互相等待,直到到达某个公共屏障点。

初始化指定数值,调用await方法会使得线程阻塞,直到指定数量的线程都调用await方法时,所有被阻塞的线程会被唤醒,继续执行。

与CountDownLatch的区别是,CountDownLatch是一组线程等待另外一组线程,而CyclicBarrier是一组线程之间相互等待。

Semaphore

称之为信号量,与互斥锁ReentrantLock用法类似,区别就是Semaphore共享的资源是多个,允许多个线程同时竞争成功。

AQS原理

AQS 是 AbstractQueuedSynchronizer的缩写,中文 抽象队列同步器,是构建各类锁和同步器的基础实现。内部维护了共享变量state (int类型) 和 双向队列 (包含头指针和尾指针)

并发问题解决

原子性

Unsafe.compareAndSwapXXX 实现CAS更改 state 和 队列指针 内部依赖CPU提供的原子指令

可见性与有序性

volatile 修饰 state 与 队列指针 (prev/next/head/tail)

线程阻塞与唤醒

Unsafe.park Unsafe.parkNanos Unsafe.unpark

Unsafe类是在sun.misc包下,不属于Java标准。提供了内存管理、对象实例化、数组操作、CAS操作、线程挂起与恢复等功能,Unsafe类提升了Java运行效率,增强了Java语言底层的操作能力。很多Java的基础类库,包括一些被广泛使用的高性能开发库都是基于Unsafe类开发的,比如Netty、Cassandra、Hadoop、Kafka等

AQS内部有两种模式:独占模式和共享模式

AQS 的设计是基于模板方法的,使用者需要继承 AQS 并重写指定的方法。不同的自定义同步器争用共享资源的方式不同,比如可重入、公平性等都是子类来实现。

自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),由AQS内部处理。

独占模式

  • 只有一个线程都能够获取到锁

  • 锁释放后需要唤醒后继节点

AQS提供的独占模式相关的方法

// 获取独占锁(线程阻塞直至获取成功)
public final void acquire(int)
// 获取独占锁,可被中断
public final void acquireInterruptibly(int)
// 获取独占锁,可被中断 和 指定超时时间
public final boolean tryAcquireNanos(int, long)
// 释放独占锁(释放锁后,将等待队列中第一个等待节点唤醒 )
public final boolean release(int)

AQS子类需要实现的独占模式相关的方法

// 尝试获取独占锁
protected boolean tryAcquire(int)
// 尝试释放独占锁
protected boolean tryRelease(int)

获取独占锁的流程

  • 调用子类tryAcquire尝试获取锁,获取成功,直接返回

  • 通过自旋CAS将当前线程封装成节点加入队列末尾

  • 循环等待或尝试tryAcquire获取锁

    • 判断前置节点如果为head,则尝试获取锁

    • 根据队列中节点状态,决定是否需要阻塞当前线程

    • tryAcquire获取锁成功后,将当前节点设置为head 并 返回

  • 如果当前线程中断或超时,则执行cancelAcquire

    • 将当前节点状态置为CANCELED,并从队列删除

    • 如果前置节点为Head,则将后置节点唤醒

释放独占锁的流程

共享模式

  • 多个线程都能够获取到锁

  • 锁释放后需要唤醒后继节点

  • 锁获取后如果还有资源需要唤醒后继共享节点

AQS提供的共享模式相关的方法

// 获取共享锁(线程阻塞直至获取成功)
public final void acquireShared(int)
// 获取共享锁,可被中断
public final acquireSharedInterruptibly(int)
// 获取共享锁,可被中断 和 指定超时时间
public final tryAcquireSharedNanos(int, long)
// 获取共享锁
public final boolean releaseShared(int)

AQS子类需要实现的共享模式相关的方法

// 尝试获取共享锁
protected int tryAcquireShared(int)
// 尝试释放共享锁
protected boolean tryReleaseShared(int)

获取共享锁的流程

1.调用子类tryAcquireShared尝试获取锁,获取成功,直接返回

2.通过自旋CAS将当前线程封装成节点加入队列末尾

3.循环等待或尝试tryAcquireShared获取锁

  • 判断前置节点如果为head,则尝试获取锁

  • 根据队列中节点状态,决定是否需要阻塞当前线程

  • tryAcquireShared获取锁成功后,将当前节点设置为head

    • 如果资源有剩余或者原先的head节点状态为SIGNAL/PROPAGATE,则调用doReleaseShared

    • 如果当前head节点状态为SIGNAL,唤醒后继节点

    • 如果当前head节点状态为ZERO,将head节点状态置为PROPAGATE

  • 如果当前线程中断或超时,则执行cancelAcquire

    • 将当前节点状态置为CANCELED,并从队列删除

    • 如果前置节点为Head,则将后置节点唤醒

释放共享锁的流程

等待队列中节点的状态变化

ReentrantLock示例

tryAcquire逻辑

tryRelease逻辑

推荐好文

>>【练手项目】基于SpringBoot的ERP系统,自带进销存+财务+生产功能>>分享一套基于SpringBoot和Vue的企业级中后台开源项目,代码很规范!
>>能挣钱的,开源 SpringBoot 商城系统,功能超全,超漂亮!

一文看懂JUC之AQS机制相关推荐

  1. 一文搞懂 Python 的 import 机制

    一.前言 希望能够让读者一文搞懂 Python 的 import 机制 1.什么是 import 机制? 通常来讲,在一段 Python 代码中去执行引用另一个模块中的代码,就需要使用 Python ...

  2. angular 字符串转换成数字_一文看懂Python列表、元组和字符串操作

    好文推荐,转自CSDN,原作星辰StarDust,感觉写的比自己清晰-大江狗荐语. 序列 序列是具有索引和切片能力的集合. 列表.元组和字符串具有通过索引访问某个具体的值,或通过切片返回一段切片的能力 ...

  3. 一文看懂深度学习——人工智能系列学习笔记

    深度学习有很好的表现,引领了第三次人工智能的浪潮.目前大部分表现优异的应用都用到了深度学习,大红大紫的 AlphaGo 就使用到了深度学习. 本文将详细的给大家介绍深度学习的基本概念.优缺点和主流的几 ...

  4. 无处 不在的无线智能——6g 的关键驱动与研究挑战_一文看懂什么是 6G

    原标题:一文看懂什么是 6G 2020年行将结束,随着5G网络的建设推进,以及3GPP R16版本的冻结,越来越多的人将关注焦点转移到6G身上. 7月14日,韩国三星电子发布了白皮书<下一代超连 ...

  5. 一文看懂智慧城市,解码25万亿大市场的机遇与格局

    一文看懂智慧城市,解码25万亿大市场的机遇与格局 原创京东科技2020-09-16 20:13:55 撰文 / Jarvis 编辑 / 郭佳 今年初,随着国家发展改革委员会首度圈定"新基建& ...

  6. 干货|一文看懂什么是“非标资产”

    干货|一文看懂什么是"非标资产" 2017-05-19 18:56 监管/信托/资管 本文作者:中诚信托 一.非标资产的界定和范围 非标资产全称为非标准债权资产,是相对于标准化金融 ...

  7. 一文看懂开源许可证丨开源知识科普

    一文看懂开源许可证丨开源知识科普 1. 一文看懂开源许可证丨开源知识科普 1.1. 什么是开源许可证? ("Open Source License") 1.2. 常见开源许可证 1 ...

  8. 一文看懂“业务定制智能客服”的产品设计_团员分享_@苍狼剑歌

    前言:本文作者是"AI产品经理大本营"团员@苍狼剑歌,现任某一线大厂AI产品经理.另外,文末还有2个"hanniman读者专属福利",1)优惠券 for 三节课 ...

  9. 一文看懂25个神经网络模型

    引言 在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易.光是知道各式各样的神经网络模型缩写(如:DCIGN.BiLSTM.DCGAN--还有 ...

最新文章

  1. matlab连续卷积动画实现(gui编程)
  2. DDIA笔记—第六章 数据分区
  3. android 批量查找view,Android Recyclerview实现多选,单选,全选,反选,批量删除的功能
  4. 【招聘内推】百度地图招聘推荐推送算法工程师
  5. halcon学习笔记——(6)单摄像机标定
  6. LLVM与Clang的概述及关系
  7. Ubuntu硬盘的分区、格式化、挂载
  8. 前端实现搜索联想时防抖功能:
  9. golang快速入门[3]-go语言helloworld
  10. 天下3 最多的服务器,《天下3》服务器合并规则
  11. 更改jenkins插件地址为国内源地址
  12. iOS tableview的第二页数据刷新特定某个cell数据的解决办法
  13. Android studio最新版2021安装教程超详细。
  14. 使用稿定设计如何给制作好的视频加音乐?
  15. 无线测量APP开发总结
  16. 华为eNSP模拟器操作技巧之关闭信息提示
  17. 头条 上传图片大小_如何解决小说封面上传失败(不符合网站标准、缺少信息)的问题?...
  18. 清华大学海洋大数据分析管理平台解读
  19. 计算理论导引第三版答案
  20. 比尔盖茨、扎克伯格,造就最牛辍学生的哈佛究竟牛在哪里?

热门文章

  1. 心痛!你的快递可能已经被烧毁,13吨快递“无一生还”
  2. 10月15日发布!谷歌Pixel 4系列或将全系支持5G
  3. 苹果或将推中国特色版iPhone 削掉了Face ID改用屏幕指纹
  4. 许家印大笔押注新能源:恒大集团1200亿沈阳投资建厂造车
  5. 智能门锁半夜离奇开门吓坏用户 官方回应:只是一场误解
  6. dva.js 知识导图
  7. ubuntu 安装redis两种方式 教程
  8. Spring容器创建流程(7)事件派发机制
  9. dataframe修改数据_利用Python进行数据分析(语法篇)
  10. 三菱四节传送带控制梯形图_【毕业设计】三菱plc(论文)基于PLC的传送带的控制系统设计毕业设计...