在HT for Web中2D和3D应用都支持树状结构数据的展示,展现效果各异,2D上的树状结构在展现层级关系明显,但是如果数据量大的话,看起来就没那么直观,找到指定的节点比较困难,而3D上的树状结构在展现上配合HT for Web的弹力布局组件会显得比较直观,一眼望去可以把整个树状结构数据看个大概,但是在弹力布局的作用下,其层次结构看得就不是那么清晰了。所以这时候结构清晰的3D树的需求就来了,那么这个3D树具体长成啥样呢,我们来一起目睹下~

要实现这样的效果,该从何下手呢?接下来我们就将这个问题拆解成若干个小问题来解决。

1. 创建一个树状结构

有了解过HT for Web的朋友,对树状结构数据的创建应该都不陌生,在这里我就不做深入的探讨了。树状结构数据的创建很简单,在这里为了让代码更简洁,我封装了三个方法来创建树状结构数据,具体代码如下:

/*** 创建连线* @param {ht.DataModel} dataModel - 数据容器* @param {ht.Node} source - 起点* @param {ht.Node} target - 终点*/
function createEdge(dataModel, source, target) {// 创建连线,链接父亲节点及孩子节点var edge = new ht.Edge();edge.setSource(source);edge.setTarget(target);dataModel.add(edge);
}/*** 创建节点对象* @param {ht.DataModel} dataModel - 数据容器* @param {ht.Node} [parent] - 父亲节点* @returns {ht.Node} 节点对象*/
function createNode(dataModel, parent) {var node = new ht.Node();if (parent) {// 设置父亲节点node.setParent(parent);createEdge(dataModel, parent, node);}// 添加到数据容器中dataModel.add(node);return node;
}/*** 创建结构树* @param {ht.DataModel} dataModel - 数据容器* @param {ht.Node} parent - 父亲节点* @param {Number} level - 深度* @param {Array} count - 每层节点个数* @param {function(ht.Node, Number, Number)} callback - 回调函数(节点对象,节点对应的层级,节点在层级中的编号)*/
function createTreeNodes(dataModel, parent, level, count, callback) {level--;var num = (typeof count === 'number' ? count : count[level]);while (num--) {var node = createNode(dataModel, parent);// 调用回调函数,用户可以在回调里面设置节点相关属性callback(node, level, num);if (level === 0) continue;// 递归调用创建孩子节点createTreeNodes(dataModel, node, level, count, callback);}
}

嘿嘿,代码写得可能有些复杂了,简单的做法就是嵌套几个for循环来创建树状结构数据,在这里我就不多说了,接下来我们来探究第二个问题。

2. 在2D拓扑下模拟3D树状结构每层的半径计算

在3D下的树状结构体最大的问题就在于,每个节点的层次及每层节点围绕其父亲节点的半径计算。现在树状结构数据已经有了,那么接下来就该开始计算半径了,我们从两层树状结构开始推算:

我现在先创建了两层的树状结构,所有的子节点是一字排开,并没有环绕其父亲节点,那么我们该如何去确定这些孩子节点的位置呢?

首先我们得知道,每个末端节点都有一圈属于自己的领域,不然节点与节点之间将会存在重叠的情况,所以在这里,我们假定末端节点的领域半径为25,那么两个相邻节点之间的最短距离将是两倍的节点领域半径,也就是50,而这些末端节点将均匀地围绕在其父亲节点四周,那么相邻两个节点的张角就可以确认出来,有了张角,有了两点间的距离,那么节点绕其父亲节点的最短半径也就能计算出来了,假设张角为a,两点间最小距离为b,那么最小半径r的计算公式为:

r = b / 2 / sin(a / 2);

那么接下来我么就来布局下这个树,代码是这样写的:

/*** 布局树* @param {ht.Node} root - 根节点* @param {Number} [minR] - 末端节点的最小半径*/
function layout(root, minR) {// 设置默认半径minR = (minR == null ? 25 : minR);// 获取到所有的孩子节点对象数组var children = root.getChildren().toArray();// 获取孩子节点个数var len = children.length;// 计算张角var degree = Math.PI * 2 / len;// 根据三角函数计算绕父亲节点的半径var sin = Math.sin(degree / 2),r = minR / sin;// 获取父亲节点的位置坐标var rootPosition = root.p();children.forEach(function(child, index) {// 根据三角函数计算每个节点相对于父亲节点的偏移量var s = Math.sin(degree * index),c = Math.cos(degree * index),x = s * r,y = c * r;// 设置孩子节点的位置坐标child.p(x + rootPosition.x, y + rootPosition.y);});
}

在代码中,你会发现我将末端半径默认设置为25了,如此,我们通过调用layout()方法就可以对结构树进行布局了,其布局效果如下:

从效果图可以看得出,末端节点的默认半径并不是很理想,布局出来的效果连线都快看不到了,因此我们可以增加末端节点的默认半径来解决布局太密的问题,如将默认半径设置成40的效果图如下:

现在两层的树状分布解决了,那么我们来看看三层的树状分布该如何处理。

将第二层和第三层看成一个整体,那么其实三层的树状结构跟两层是一样的,不同的是在处理第二层节点时,应该将其看做一个两层的树状结构来处理,那么像这种规律的处理用递归最好不过了,因此我们将代码稍微该着下,在看看效果如何:

不行,节点都重叠在一起了,看来简单的递归是不行的,那么具体的问题出在哪里呢?

仔细分析了下,发现父亲节点的领域半径是由其孩子节点的领域半径决定的,因此在布局时需要知道自身节点的领域半径,而且节点的位置取决于父亲节点的领域半径及位置信息,这样一来就无法边计算半径边布局节点位置了。

那么现在只能将半径的计算和布局分开来,做两步操作了,我们先来分析下节点半径的计算:

首先需要明确最关键的条件,父亲节点的半径取决于其孩子节点的半径,这个条件告诉我们,只能从下往上计算节点半径,因此我们设计的递归函数必须是先递归后计算,废话不多说,我们来看下具体的代码实现:

/*** 就按节点领域半径* @param {ht.Node} root - 根节点对象* @param {Number} minR - 最小半径*/
function countRadius(root, minR) {minR = (minR == null ? 25 : minR);// 若果是末端节点,则设置其半径为最小半径if (!root.hasChildren()) {root.a('radius', minR);return;}// 遍历孩子节点递归计算半径var children = root.getChildren();children.each(function(child) {countRadius(child, minR);});var child0 = root.getChildAt(0);// 获取孩子节点半径var radius = child0.a('radius');// 计算子节点的1/2张角var degree = Math.PI / children.size();// 计算父亲节点的半径var pRadius = radius / Math.sin(degree);// 设置父亲节点的半径及其孩子节点的布局张角root.a('radius', pRadius);root.a('degree', degree * 2);
}

OK,半径的计算解决了,那么接下来就该解决布局问题了,布局树状结构数据需要明确:孩子节点的坐标位置取决于其父亲节点的坐标位置,因此布局的递归方式和计算半径的递归方式不同,我们需要先布局父亲节点再递归布局孩子节点,具体看看代码吧:

/*** 布局树* @param {ht.Node} root - 根节点*/
function layout(root) {// 获取到所有的孩子节点对象数组var children = root.getChildren().toArray();// 获取孩子节点个数var len = children.length;// 计算张角var degree = root.a('degree');// 根据三角函数计算绕父亲节点的半径var r = root.a('radius');// 获取父亲节点的位置坐标var rootPosition = root.p();children.forEach(function(child, index) {// 根据三角函数计算每个节点相对于父亲节点的偏移量var s = Math.sin(degree * index),c = Math.cos(degree * index),x = s * r,y = c * r;// 设置孩子节点的位置坐标child.p(x + rootPosition.x, y + rootPosition.y);// 递归调用布局孩子节点layout(child);});
}

代码写完了,接下来就是见证奇迹的时刻了,我们来看看效果图吧:

不对呀,代码应该是没问题的呀,为什么显示出来的效果还是会重叠呢?不过仔细观察我们可以发现相比上个版本的布局会好很多,至少这次只是末端节点重叠了,那么问题出在哪里呢?

不知道大家有没有发现,排除节点自身的大小,倒数第二层节点与节点之间的领域是相切的,那么也就是说节点的半径不仅和其孩子节点的半径有关,还与其孙子节点的半径有关,那我们把计算节点半径的方法改造下,将孙子节点的半径也考虑进去再看看效果如何,改造后的代码如下:

/*** 就按节点领域半径* @param {ht.Node} root - 根节点对象* @param {Number} minR - 最小半径*/
function countRadius(root, minR) {……var child0 = root.getChildAt(0);// 获取孩子节点半径var radius = child0.a('radius');var child00 = child0.getChildAt(0);// 半径加上孙子节点半径,避免节点重叠if (child00) radius += child00.a('radius');……
}

下面就来看看效果吧~

哈哈,看来我们分析对了,果然就不再重叠了,那我们来看看再多一层节点会是怎么样的壮观场景呢?

哦,NO!这不是我想看到的效果,又重叠了,好讨厌。

不要着急,我们再来仔细分析分析下,在前面,我们提到过一个名词——领域半径,什么是领域半径呢?很简单,就是可以容纳下自身及其所有孩子节点的最小半径,那么问题就来了,末端节点的领域半径为我们指定的最小半径,那么倒数第二层的领域半径是多少呢?并不是我们前面计算出来的半径,而应该加上末端节点自身的领域半径,因为它们之间存在着包含关系,子节点的领域必须包含于其父亲节点的领域中,那我们在看看上图,是不是感觉末端节点的领域被侵占了。那么我们前面计算出来的半径代表着什么呢?前面计算出来的半径其实代表着孩子节点的布局半径,在布局的时候是通过该半径来布局的。

OK,那我们来总结下,节点的领域半径是其下每层节点的布局半径之和,而布局半径需要根据其孩子节点个数及其领域半径共同决定。

好了,我们现在知道问题的所在了,那么我们的代码该如何去实现呢?接着往下看:

/*** 就按节点领域半径及布局半径* @param {ht.Node} root - 根节点对象* @param {Number} minR - 最小半径*/
function countRadius(root, minR) {minR = (minR == null ? 25 : minR);// 若果是末端节点,则设置其布局半径及领域半径为最小半径if (!root.hasChildren()) {root.a('radius', minR);root.a('totalRadius', minR);return;}// 遍历孩子节点递归计算半径var children = root.getChildren();children.each(function(child) {countRadius(child, minR);});var child0 = root.getChildAt(0);// 获取孩子节点半径var radius = child0.a('radius'),totalRadius = child0.a('totalRadius');// 计算子节点的1/2张角var degree = Math.PI / children.size();// 计算父亲节点的布局半径var pRadius = totalRadius / Math.sin(degree);// 缓存父亲节点的布局半径root.a('radius', pRadius);// 缓存父亲节点的领域半径root.a('totalRadius', pRadius + totalRadius);// 缓存其孩子节点的布局张角root.a('degree', degree * 2);
}

在代码中我们将节点的领域半径缓存起来,从下往上一层一层地叠加上去。接下来我们一起验证其正确性:

搞定,就是这样子了,2D拓扑上面的布局搞定了,那么接下来该出动3D拓扑啦~

3. 加入z轴坐标,呈现3D下的树状结构

3D拓扑上面布局无非就是多加了一个坐标系,而且这个坐标系只是控制节点的高度而已,并不会影响到节点之间的重叠,所以接下来我们来改造下我们的程序,让其能够在3D上正常布局。

也不需要太大的改造,我们只需要修改下布局器并且将2D拓扑组件改成3D拓扑组件就可以了。

/*** 布局树* @param {ht.Node} root - 根节点*/
function layout(root) {// 获取到所有的孩子节点对象数组var children = root.getChildren().toArray();// 获取孩子节点个数var len = children.length;// 计算张角var degree = root.a('degree');// 根据三角函数计算绕父亲节点的半径var r = root.a('radius');// 获取父亲节点的位置坐标var rootPosition = root.p3();children.forEach(function(child, index) {// 根据三角函数计算每个节点相对于父亲节点的偏移量var s = Math.sin(degree * index),c = Math.cos(degree * index),x = s * r,z = c * r;// 设置孩子节点的位置坐标child.p3(x + rootPosition[0], rootPosition[1] - 100, z + rootPosition[2]);// 递归调用布局孩子节点layout(child);});
}

上面是改造成3D布局后的布局器代码,你会发现和2D的布局器代码就差一个坐标系的的计算,其他的都一样,看下在3D上布局的效果:

恩,有模有样的了,在文章的开头,我们可以看到每一层的节点都有不同的颜色及大小,这些都是比较简单,在这里我就不做深入的讲解,具体的代码实现如下:

var level = 4,size = (level + 1) * 20;var root = createNode(dataModel);
root.setName('root');
root.p(100, 100);root.s('shape3d', 'sphere');
root.s('shape3d.color', randomColor());
root.s3(size, size, size);var colors = {},sizes = {};
createTreeNodes(dataModel, root, level - 1, 5, function(data, level, num) {if (!colors[level]) {colors[level] = randomColor();sizes[level] = (level + 1) * 20;}size = sizes[level];data.setName('item-' + level + '-' + num);// 设置节点形状为球形data.s('shape3d', 'sphere');data.s('shape3d.color', colors[level]);data.s3(size, size, size);
});

在这里引入了一个随机生成颜色值的方法,对每一层随机生成一种颜色,并将节点的形状改成了球形,让页面看起来美观些(其实很丑)。

提个外话,节点上可以贴上图片,还可以设置文字的朝向,可以根据用户的视角动态调整位置,等等一系列的拓展,这些大家都可以去尝试,相信都可以做出一个很漂亮的3D树出来。

到此,整个Demo的制作就结束了,今天的篇幅有些长,感谢大家的耐心阅读,在设计上或则是表达上有什么建议或意见欢迎大家提出,点击这里可以访问HT for Web官网上的手册。

基于HT for Web的3D树的实现相关推荐

  1. 基于HT for Web的3D拓扑树的实现

    在HT for Web中2D和3D应用都支持树状结构数据的展示,展现效果各异,2D上的树状结构在展现层级关系明显,但是如果数据量大的话,看起来就没那么直观,找到指定的节点比较困难,而3D上的树状结构在 ...

  2. 基于HT for Web 3D呈现Box2DJS物理引擎

    为什么80%的码农都做不了架构师?>>>    上篇我们基于HT for Web呈现了A* Search Algorithm的3D寻路效果,这篇我们将采用HT for Web 3D来 ...

  3. html5游戏开发box2djs,基于HT for Web 3D呈现Box2DJS物理引擎

    上篇我们基于HT for Web呈现了A* Search Algorithm的3D寻路效果,这篇我们将采用HT for Web 3D来呈现Box2DJS物理引擎的碰撞效果,同上篇其实Box2DJS只是 ...

  4. 基于HT for Web 快速搭建3D机房设备面板

    以真实设备为模型,搭建出设备面板,并实时获取设备运行参数,显示在设备面板上,这相比于纯数值的设备监控系统显得更加生动直观.今天我们就在HT for Web的3D技术上完成设备面板的搭建. 我们今天模拟 ...

  5. HT for Web中3D流动效果的实现与应用

    流动效果在3D领域有着广泛的应用场景,如上图中医学领域可通过3D的流动直观的观察人体血液的流动,燃气领域可用于监控管道内流动的液体或气体的流向.流速和温度等指标. 如今企业数据中心机房普遍面临着设备散 ...

  6. HT for Web的HTML5树组件延迟加载技术实现

    HT for Web的HTML5树组件有延迟加载的功能,这个功能对于那些需要从服务器读取具有层级依赖关系数据时非常有用,需要获取数据的时候再向服务器发起请求,这样可减轻服务器压力,同时也减少了浏览器的 ...

  7. 基于HT for Web的Web SCADA工控移动应用

    在电力.油田燃气.供水管网等工业自动化领域Web SCADA的概念已经提出了多年,早先年的Web SCADA前端技术大部分还是基于Flex.Silverlight甚至Applet这样的重客户端方案,在 ...

  8. 用HT for Web实现3D列车行进动画

    HT for Web有一套强大的基于WebGL技术的图形引擎,可以用js代码实现3D图像的建模和动画.现在用HT for Web来实现一个3D列车行进的动画来带大家了解一下如何使用这套框架. < ...

  9. 基于HT For Web 打造可视化海绵城市,搏动“城市之肾“!

    根据国务院75号文件的要求,全国2020年要实现年径流控制率20%的目标.2030年要实现年径流控制率达到80%.为了整治城市内涝问题,促进城市与自然的和谐发展,近些年来海绵城市建设变得如火如荼. 什 ...

  10. HT for Web 3D游戏设计设计--汉诺塔(Towers of Hanoi)

    在这里我们将构造一个基于HT for Web的HTML5+JavaScript来实现汉诺塔游戏. 汉诺塔的游戏规则及递归算法分析请参考http://en.wikipedia.org/wiki/Towe ...

最新文章

  1. Junit运行在Spring环境下
  2. unix环境高级编程-线程(2)
  3. pyspark minHash LSH 查找相似度
  4. nginx优化-nginx事件处理模型优化use epoll;
  5. 年审是当月还是当天_车检是按月份还是日期 审车日期以什么为准
  6. [数据结构-严蔚敏版]P64循环队列-队列的顺序存储结构
  7. jBPM和Drools工作台中的用户和组管理
  8. i18n php_PHP国际化多语言的实现(非I18N)
  9. Java基础 —— JVM内存模型与垃圾回收
  10. html提交按钮tab设置,html – 提交按钮没有集中,即使tabindex被正确设置
  11. Java中常量定义在interface和class的区别(转)
  12. Give root password for maintenance(or type control -D to continue)
  13. 计算机408重点知识及其他(面试)
  14. 外包被辞,太心酸了!
  15. 20170605——login页面(代码知识点分析)
  16. IDEA使用教程(一) 基础配置
  17. 实践使用bfile 数据类型
  18. java opts 在哪设置_JAVA_OPTS设置
  19. Win7 Wifi和安卓端连接
  20. Bot 崛起:你的企业需要考虑这11个重要问题

热门文章

  1. C#中唯一的三元运算符
  2. 小白自定义bat文件一键启动电脑应用
  3. PHP 保留 n 位小数
  4. 西方新冠疫苗有效率的数据
  5. 有人培训设计模式,吾表示难以理解,因为根本没用
  6. maven打包,java内存竟然要设置16G(-Xmx16384m)
  7. 编码基本功:关于构建(build)号,不懂不要装
  8. ERROR: cuda requested, but not all dependencies are satisfied: ffnvcodec
  9. LINUX编译ARM64/AARCH64版本的jogamp(gluegen/jogl)注意事项
  10. LINUX编译Android doubango