正交补集

接续博客:计算矩阵的秩、行空间、列空间、零空间、左零空间

因为高维空间本人无法进行可视化,这里仅用上述博客中提到的低维度空间的例子来可视化

A = [ 2 − 1 − 3 − 4 2 6 ] A T = [ 2 − 4 − 1 2 − 3 6 ] A=\begin{bmatrix}2 & -1 & -3\\ -4 & 2 & 6\end{bmatrix}\quad A^T=\begin{bmatrix}2 & -4\\ -1 & 2\\ -3 & 6 \end{bmatrix} A=[2−4​−12​−36​]AT=⎣⎡​2−1−3​−426​⎦⎤​

零空间(Nullspace)正交于 行空间(Row space)

零空间是行空间的正交补集、行空间是零空间的正交补集
C ( A T ) = ( N ( A ) ) ⊥ N ( A ) = ( C ( A T ) ) ⊥ C(A^T)=(N(A))^{\perp}\\ N(A)=(C(A^T))^{\perp} C(AT)=(N(A))⊥N(A)=(C(AT))⊥


左零空间(Left Nullspace)正交于 列空间(Column space)

左零空间是列空间的正交补集、列空间是左零空间的正交补集

C ( A ) = ( N ( A T ) ) ⊥ N ( A T ) = ( C ( A ) ) ⊥ C(A)=(N(A^T))^{\perp}\\ N(A^T)=(C(A))^{\perp} C(A)=(N(AT))⊥N(AT)=(C(A))⊥


笔记来源:Orthogonal Complements
V s o m e s u b s p a c e o f R n V ⊥ i s o r t h o g o n a l c o m p l e m e n t o f V V ⊥ = { x ⃗ ∈ R n ∣ x ⃗ ⋅ v ⃗ = 0 f o r e v e r y v ⃗ ∈ V } V\quad some\ subspace\ of\ \mathbb{R}^n\\ V^{\perp}\quad is\ orthogonal\ complement\ of\ V\\ V^{\perp}=\{\vec{x}\in \mathbb{R}^n | \vec{x}\cdot \vec{v}=0\ for\ every\ \vec{v}\in V\} Vsome subspace of RnV⊥is orthogonal complement of VV⊥={x ∈Rn∣x ⋅v =0 for every v ∈V}
a ⃗ , b ⃗ ∈ V ⊥ a ⃗ + b ⃗ ∈ V ⊥ c a ⃗ ∈ V ⊥ \vec{a},\vec{b}\in V^{\perp}\\ \vec{a}+\vec{b}\in V^{\perp}\\ c\vec{a}\in V^{\perp} a ,b ∈V⊥a +b ∈V⊥ca ∈V⊥

a ⃗ ⋅ v ⃗ = 0 f o r a n y v ⃗ ∈ V , a ⃗ ∈ V ⊥ b ⃗ ⋅ v ⃗ = 0 f o r a n y v ⃗ ∈ V , b ⃗ ∈ V ⊥ ( a ⃗ + b ⃗ ) ⋅ v ⃗ = a ⃗ ⋅ v ⃗ + b ⃗ ⋅ v ⃗ = 0 + 0 = 0 c a ⃗ ⋅ v ⃗ = c ( a ⃗ ⋅ v ⃗ ) = c ⋅ 0 = 0 \vec{a}\cdot \vec{v}=0\quad for\ any\ \vec{v}\in V,\vec{a}\in V^{\perp}\\ \vec{b}\cdot \vec{v}=0\quad for\ any\ \vec{v}\in V,\vec{b}\in V^{\perp}\\ (\vec{a}+\vec{b})\cdot \vec{v}=\vec{a}\cdot \vec{v}+\vec{b}\cdot \vec{v}=0+0=0\\ c\vec{a}\cdot \vec{v}=c(\vec{a}\cdot \vec{v})=c\cdot 0=0 a ⋅v =0for any v ∈V,a ∈V⊥b ⋅v =0for any v ∈V,b ∈V⊥(a +b )⋅v =a ⋅v +b ⋅v =0+0=0ca ⋅v =c(a ⋅v )=c⋅0=0

N ( A ) i s o r t h o g o n a l c o m p l e m e n t o f C ( A T ) N ( A ) = ( C ( A T ) ) ⊥ N(A)\ is\ orthogonal\ complement\ of\ C(A^T)\\ N(A)=(C(A^T))^{\perp} N(A) is orthogonal complement of C(AT)N(A)=(C(AT))⊥

[ ⋯ r 1 ⃗ T ⋯ ⋯ r 2 ⃗ T ⋯ ⋮ ⋯ r m ⃗ T ⋯ ] m × n ⋅ x ⃗ = [ 0 0 ⋮ 0 ] \begin{bmatrix} \cdots\quad\vec{r_1}^T\quad\cdots\\ \cdots\quad\vec{r_2}^T\quad\cdots\\ \vdots\\ \cdots\quad\vec{r_m}^T\quad\cdots\\ \end{bmatrix}_{m×n}\cdot \vec{x}= \begin{bmatrix} 0\\ 0\\ \vdots\\ 0 \end{bmatrix} ⎣⎢⎢⎢⎡​⋯r1​ ​T⋯⋯r2​ ​T⋯⋮⋯rm​ ​T⋯​⎦⎥⎥⎥⎤​m×n​⋅x =⎣⎢⎢⎢⎡​00⋮0​⎦⎥⎥⎥⎤​

r 1 ⃗ T ⋅ x ⃗ = 0 r 2 ⃗ T ⋅ x ⃗ = 0 ⋮ r m ⃗ T ⋅ x ⃗ = 0 \vec{r_1}^T\cdot\vec{x}=0\\ \vec{r_2}^T\cdot\vec{x}=0\\ \vdots\\ \vec{r_m}^T\cdot\vec{x}=0\\ r1​ ​T⋅x =0r2​ ​T⋅x =0⋮rm​ ​T⋅x =0

N ( A ) = { x ⃗ ∈ R n ∣ A x ⃗ = 0 } w ⃗ ∈ C ( A T ) v ⃗ ∈ N ( A ) w ⃗ 是 行 空 间 内 某 个 向 量 , 它 是 由 行 空 间 的 基 向 量 线 性 组 合 而 成 v ⃗ 是 零 空 间 内 某 个 向 量 w ⃗ = c 1 r 1 ⃗ + c 2 r 2 ⃗ + ⋯ + c m r m ⃗ v ⃗ ⋅ w ⃗ = c 1 ( r 1 ⃗ ⋅ v ⃗ ) + c 2 ( r 2 ⃗ ⋅ v ⃗ ) + ⋯ + c m ( r m ⃗ ⋅ v ⃗ ) = c 1 ⋅ 0 + c 2 ⋅ 0 + ⋯ + c m ⋅ 0 = 0 E v e r y m e m b e r o f n u l l s p a c e o f A i s o r t h o g o n a l t o e v e r y m e m b e r o f t h e r o w s p a c e o f A N(A)=\{\vec{x}\in \mathbb{R}^n | A\vec{x}=0\}\\ \vec{w}\in C(A^T)\\ \vec{v}\in N(A)\\ ~\\ \vec{w}是行空间内某个向量,它是由行空间的基向量线性组合而成\\ \vec{v}是零空间内某个向量 \\ \vec{w}=c_1\vec{r_1}+c_2\vec{r_2}+\cdots+c_m\vec{r_m}\\ ~\\ \vec{v}\cdot\vec{w}=c_1(\vec{r_1}\cdot\vec{v})+c_2(\vec{r_2}\cdot\vec{v})+\cdots+c_m(\vec{r_m}\cdot\vec{v})=c_1\cdot0+c_2\cdot0+\cdots+c_m\cdot0=0\\ ~\\ Every\ member\ of\ nullspace\ of\ A\ is\ orthogonal\ to\ every\ member\ of\ the\ row\ space\ of\ A N(A)={x ∈Rn∣Ax =0}w ∈C(AT)v ∈N(A) w 是行空间内某个向量,它是由行空间的基向量线性组合而成v 是零空间内某个向量w =c1​r1​ ​+c2​r2​ ​+⋯+cm​rm​ ​ v ⋅w =c1​(r1​ ​⋅v )+c2​(r2​ ​⋅v )+⋯+cm​(rm​ ​⋅v )=c1​⋅0+c2​⋅0+⋯+cm​⋅0=0 Every member of nullspace of A is orthogonal to every member of the row space of A


w ⃗ ∈ C ( A T ) u ⃗ ∈ ( C ( A T ) ) ⊥ u ⃗ ⋅ w ⃗ = 0 u ⃗ ⋅ w ⃗ = u ⃗ ⋅ r 1 ⃗ + u ⃗ ⋅ r 2 ⃗ + ⋯ + u ⃗ ⋅ r m ⃗ = 0 A u ⃗ = 0 由 于 u ⃗ ⋅ w ⃗ = 0 , v ⃗ ⋅ w ⃗ = 0 , u ⃗ ∈ ( C ( A T ) ) ⊥ , v ⃗ ∈ N ( A ) 所 以 u ⃗ 、 v ⃗ 在 同 一 子 空 间 内 , 故 u ⃗ ∈ N ( A ) ( C ( A T ) ) ⊥ ⊆ N ( A ) N ( A ) = ( C ( A T ) ) ⊥ \vec{w}\in C(A^T)\\ \vec{u}\in (C(A^T))^{\perp}\\ ~\\ \vec{u}\cdot \vec{w}=0\\ \vec{u}\cdot \vec{w}=\vec{u}\cdot\vec{r_1}+\vec{u}\cdot\vec{r_2}+\cdots+\vec{u}\cdot\vec{r_m}=0\\ A\vec{u}=0\\ ~\\ 由于 \vec{u}\cdot \vec{w}=0,\vec{v}\cdot\vec{w}=0,\vec{u}\in (C(A^T))^{\perp},\vec{v}\in N(A)\\ 所以\vec{u}、\vec{v}在同一子空间内,故 \vec{u}\in N(A)\\ (C(A^T))^{\perp}\subseteq N(A)\\ N(A)=(C(A^T))^{\perp} w ∈C(AT)u ∈(C(AT))⊥ u ⋅w =0u ⋅w =u ⋅r1​ ​+u ⋅r2​ ​+⋯+u ⋅rm​ ​=0Au =0 由于u ⋅w =0,v ⋅w =0,u ∈(C(AT))⊥,v ∈N(A)所以u 、v 在同一子空间内,故u ∈N(A)(C(AT))⊥⊆N(A)N(A)=(C(AT))⊥

假 设 A = B T N ( B T ) = ( C ( B T ) T ) ⊥ N ( B T ) = C ( B ) ⊥ 换 个 字 母 N ( A T ) = C ( A ) ⊥ 假设A=B^T\\ N(B^T)=(C(B^T)^T)^{\perp}\\ N(B^T)=C(B)^{\perp}\\ 换个字母\\ N(A^T)=C(A)^{\perp} 假设A=BTN(BT)=(C(BT)T)⊥N(BT)=C(B)⊥换个字母N(AT)=C(A)⊥

正交补集(Orthogonal Complements)相关推荐

  1. 【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)

    原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-4-1转载请标明出处 Abstract: 本篇介绍正交性,向量正交,矩阵正交,子空间 ...

  2. 线性代数学习笔记5-1:正交的向量/空间、正交补(行空间和零空间正交)

    向量的正交 向量x\boldsymbol xx和向量y\boldsymbol yy正交的定义: 就是说它们的点积 / 内积为零:x⋅y=0\boldsymbol x\cdot\boldsymbol y ...

  3. 正交试验设计例题及答案_正交表测试用例设计方法的特点是什么?

    用最少的实验覆盖最多的操作,测试用例设计很少,效率高,但是很复杂: 对于基本的验证功能,以及二次集成引起的缺陷,一般都能找出来:但是更深的缺陷,更复杂的缺陷,还是无能为力的: 具体的环境下,正交表一般 ...

  4. 正交设计 python算法_人人都可以掌握的正交试验设计测试用例方法

    ## 介绍 - TamanduaOATs 是测者开发并开源的生成正交计算的pyd(python库)程序(放到python下的dlls目录下) - 项目地址:https://github.com/cri ...

  5. 正交矩阵 Orthogonal Matrix

    文章目录 正交矩阵 Orthogonal Matrix 正交 标准正交 正交矩阵 正交矩阵的行(row) 正交矩阵 Orthogonal Matrix 正交 在线性代数中正交(orthogonal)这 ...

  6. 黑盒测试方法四(正交实验法)

    正交实验法 正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具 ...

  7. 软件测试中用正交实验法设计测试用例

    软件测试中用正交实验法设计测试用例 正交实验法的由来 一.正交表的由来 拉丁方名称的由来 古希腊是一个多民族的国家,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表. 数学家 ...

  8. 测试用例的设计方法——正交排列

    因果法设计用例太多怎么办? 正交法的目的就是为了减少测试用例数目,用尽量少的用例覆盖输入的两两组合 正交试验设计(Orthogonal experimentaldesign)是==研究多因素多水平的一 ...

  9. 正交的概念以及正交实验

    1.正交的来历 "正交性"是从几何中借来的术语.如果两条直线相交成直角,他们就是正交的.用向量术语来说,这两条直线互不依赖.沿着某一条直线移动,该直线投影到另一条直线上的位置不变. ...

最新文章

  1. Exchange工具11—性能监视器
  2. Facebook高管解读财报 加大对视频业务的投资
  3. Linux sem_init函数用法
  4. 【原】.Net创建Excel文件(插入数据、修改格式、生成图表)的方法
  5. 第十章数据库恢复技术
  6. elasticsearch java api查询
  7. 原子操作、互斥锁、读写锁
  8. mktime()的格式
  9. C语言n番战--数组(三)
  10. VS2015如何添加头文件
  11. B.DongDong认亲戚
  12. 微信小程序码接口返回的二进制内容处理返回给前端展示
  13. Fail2ban 防爆力破解
  14. 九个小妙方缩小毛孔立竿见影! - 生活至上,美容至尚!
  15. dellr420部署os_Dell R420 RAID建立以及系统安装
  16. 红楼梦人物分析系统c语言,红楼梦人物分析.doc
  17. 自动驾驶定位技术之争:融合定位才是出路
  18. 深度优先与广度优先的区别!
  19. Docker(一):什么是Docker?
  20. _putw、putc、puts和putchar应用差别

热门文章

  1. webadb通过usb调试功能操作手机
  2. PAT-A 2022.3.5题目(仅含1,3题AC代码)
  3. 动态卷积 Dynamic convolution
  4. 电脑编程自学(零基础自学编程怎么入门)
  5. 软件公司良好制度积累
  6. $ npm 不是内部命令
  7. fseek()函数 和 ftell()函数
  8. 黄芪丹参饮,老程序员可试试
  9. 魔方 NewLife.Cube
  10. 2021微信小程序最新迷你首页样式布局