记得在大学中那个时候刚开始学习java, 需要遇到多线程需要加锁的操作时,不管不顾全部都用synchronized,相对于当时的我们来说synchronized是这么的神奇而又强大,那个时候我们赋予它一个名字“同步”,也成为了我们解决多线程情况的百试不爽的良药。但是,随着我们学习的进行我们知道synchronized是一个重量级锁,相对于Lock,它会显得那么笨重,以至于我们认为它不是那么的高效而慢慢摒弃它。
但是,随着Javs SE 1.6对synchronized进行的各种优化后,synchronized并不会显得那么重了。下面跟随LZ一起来探索synchronized的实现机制、Java是如何对它进行了优化、锁优化机制、锁的存储结构和升级过程;

synchronized 作用

synchronized是java 中的一个关键字, synchronized可以保证方法或者代码块在运行时,同一时刻只有一个方法可以进入到临界区,同时它还可以保证共享变量的内存可见性。

Java中每一个对象都可以作为锁,这是synchronized实现同步的基础:

  1. 普通同步方法,锁是当前实例对象
  2. 静态同步方法,锁是当前类的class对象
  3. 同步方法块,锁是括号里面的对象

当一个线程访问同步代码块时,它首先是需要得到锁才能执行同步代码,当退出或者抛出异常时必须要释放锁,那么它是如何来实现这个机制的呢?我们先看一段简单的代码:

public class SynchronizedTest {public synchronized void test1(){}public void test2(){synchronized (this){}}
}

利用javap工具查看生成的class文件信息来分析Synchronize的实现

从上面可以看出,同步代码块是使用monitorenter和monitorexit指令实现的,同步方法(在这看不出来需要看JVM底层实现)依靠的是方法修饰符上的ACC_SYNCHRONIZED实现。
同步代码块:monitorenter指令插入到同步代码块的开始位置,monitorexit指令插入到同步代码块的结束位置,JVM需要保证每一个monitorenter都有一个monitorexit与之相对应。任何对象都有一个monitor与之相关联,当且一个monitor被持有之后,他将处于锁定状态。线程执行到monitorenter指令时,将会尝试获取对象所对应的monitor所有权,即尝试获取对象的锁;
同步方法:synchronized方法则会被翻译成普通的方法调用和返回指令如:return指令,在VM字节码层面并没有任何特别的指令来实现被synchronized修饰的方法,而是在Class文件的方法表中将该方法的access_flags字段中的synchronized标志位置1,表示该方法是同步方法并使用调用该方法的对象或该方法所属的Class在JVM的内部对象表示Klass做为锁对象。(摘自:http://www.cnblogs.com/javaminer/p/3889023.html)

Java对象头

synchronized用的锁是存在Java对象头里的,那么什么是Java对象头呢?Hotspot虚拟机的对象头主要包括两部分数据:Mark Word(标记字段)、Klass Pointer(类型指针)。其中Klass Point是是对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例,Mark Word用于存储对象自身的运行时数据,它是实现轻量级锁和偏向锁的关键,所以下面将重点阐述

Mark Word

Mark Word用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等等。Java对象头一般占有两个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit),但是如果对象是数组类型,则需要三个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。下图是Java对象头的存储结构(32位虚拟机):

对象头信息是与对象自身定义的数据无关的额外存储成本,但是考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存存储尽量多的数据,它会根据对象的状态复用自己的存储空间,也就是说,Mark Word会随着程序的运行发生变化,变化状态如下(32位虚拟机):

简单介绍了Java对象头,我们下面再看Monitor。

Monitor Record

Monitor Record是线程私有的数据结构,每一个线程都有一个可用monitor record列表,同时还有一个全局的可用列表。每一个被锁住的对象都会和一个monitor record关联(对象头的MarkWord中的LockWord指向monitor record的起始地址),同时monitor record中有一个Owner字段存放拥有该锁的线程的唯一标识,表示该锁被这个线程占用。如下图所示为Monitor Record的内部结构


Owner:初始时为NULL表示当前没有任何线程拥有该monitor record,当线程成功拥有该锁后保存线程唯一标识,当锁被释放时又设置为NULL;
EntryQ:关联一个系统互斥锁(semaphore),阻塞所有试图锁住monitor record失败的线程。
RcThis:表示blocked或waiting在该monitor record上的所有线程的个数。
Nest:用来实现重入锁的计数。
HashCode:保存从对象头拷贝过来的HashCode值(可能还包含GC age)。
Candidate:用来避免不必要的阻塞或等待线程唤醒,因为每一次只有一个线程能够成功拥有锁,如果每次前一个释放锁的线程唤醒所有正在阻塞或等待的线程,会引起不必要的上下文切换(从阻塞到就绪然后因为竞争锁失败又被阻塞)从而导致性能严重下降。Candidate只有两种可能的值0表示没有需要唤醒的线程1表示要唤醒一个继任线程来竞争锁。
摘自:Java中synchronized的实现原理与应用)

锁优化

jdk1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。
锁主要存在四中状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。

自旋锁

线程的阻塞和唤醒需要CPU从用户态转为核心态,频繁的阻塞和唤醒对CPU来说是一件负担很重的工作,势必会给系统的并发性能带来很大的压力。同时我们发现在许多应用上面,对象锁的锁状态只会持续很短一段时间,为了这一段很短的时间频繁地阻塞和唤醒线程是非常不值得的。所以引入自旋锁。
何谓自旋锁?
所谓自旋锁,就是让该线程等待一段时间,不会被立即挂起,看持有锁的线程是否会很快释放锁。怎么等待呢?执行一段无意义的循环即可(自旋)。
自旋等待不能替代阻塞,先不说对处理器数量的要求(多核,貌似现在没有单核的处理器了),虽然它可以避免线程切换带来的开销,但是它占用了处理器的时间。如果持有锁的线程很快就释放了锁,那么自旋的效率就非常好,反之,自旋的线程就会白白消耗掉处理的资源,它不会做任何有意义的工作,典型的占着茅坑不拉屎,这样反而会带来性能上的浪费。所以说,自旋等待的时间(自旋的次数)必须要有一个限度,如果自旋超过了定义的时间仍然没有获取到锁,则应该被挂起。
自旋锁在JDK 1.4.2中引入,默认关闭,但是可以使用-XX:+UseSpinning开开启,在JDK1.6中默认开启。同时自旋的默认次数为10次,可以通过参数-XX:PreBlockSpin来调整;
如果通过参数-XX:preBlockSpin来调整自旋锁的自旋次数,会带来诸多不便。假如我将参数调整为10,但是系统很多线程都是等你刚刚退出的时候就释放了锁(假如你多自旋一两次就可以获取锁),你是不是很尴尬。于是JDK1.6引入自适应的自旋锁,让虚拟机会变得越来越聪明。

适应自旋锁

JDK 1.6引入了更加聪明的自旋锁,即自适应自旋锁。所谓自适应就意味着自旋的次数不再是固定的,它是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。它怎么做呢?线程如果自旋成功了,那么下次自旋的次数会更加多,因为虚拟机认为既然上次成功了,那么此次自旋也很有可能会再次成功,那么它就会允许自旋等待持续的次数更多。反之,如果对于某个锁,很少有自旋能够成功的,那么在以后要或者这个锁的时候自旋的次数会减少甚至省略掉自旋过程,以免浪费处理器资源。
有了自适应自旋锁,随着程序运行和性能监控信息的不断完善,虚拟机对程序锁的状况预测会越来越准确,虚拟机会变得越来越聪明。

锁消除

为了保证数据的完整性,我们在进行操作时需要对这部分操作进行同步控制,但是在有些情况下,JVM检测到不可能存在共享数据竞争,这是JVM会对这些同步锁进行锁消除。锁消除的依据是逃逸分析的数据支持。
如果不存在竞争,为什么还需要加锁呢?所以锁消除可以节省毫无意义的请求锁的时间。变量是否逃逸,对于虚拟机来说需要使用数据流分析来确定,但是对于我们程序员来说这还不清楚么?我们会在明明知道不存在数据竞争的代码块前加上同步吗?但是有时候程序并不是我们所想的那样?我们虽然没有显示使用锁,但是我们在使用一些JDK的内置API时,如StringBuffer、Vector、HashTable等,这个时候会存在隐形的加锁操作。比如StringBuffer的append()方法,Vector的add()方法:

 public void vectorTest(){Vector<String> vector = new Vector<String>();for(int i = 0 ; i < 10 ; i++){vector.add(i + "");}System.out.println(vector);}

锁粗化
我们知道在使用同步锁的时候,需要让同步块的作用范围尽可能小—仅在共享数据的实际作用域中才进行同步,这样做的目的是为了使需要同步的操作数量尽可能缩小,如果存在锁竞争,那么等待锁的线程也能尽快拿到锁。
在大多数的情况下,上述观点是正确的,LZ也一直坚持着这个观点。但是如果一系列的连续加锁解锁操作,可能会导致不必要的性能损耗,所以引入锁粗话的概念。
锁粗话概念比较好理解,就是将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。如上面实例:vector每次add的时候都需要加锁操作,JVM检测到对同一个对象(vector)连续加锁、解锁操作,会合并一个更大范围的加锁、解锁操作,即加锁解锁操作会移到for循环之外。

偏向锁

引入背景:大多数情况下锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁,减少不必要的CAS操作。

加锁:当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要花费CAS操作来加锁和解锁,而只需简单的测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁,如果测试成功,表示线程已经获得了锁,如果测试失败,则需要再测试下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁),如果没有设置,则使用CAS竞争锁,如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程(此时会引发竞争,偏向锁会升级为轻量级锁)。

膨胀过程:当前线程执行CAS获取偏向锁失败(这一步是偏向锁的关键),表示在该锁对象上存在竞争并且这个时候另外一个线程获得偏向锁所有权。当到达全局安全点(safepoint)时获得偏向锁的线程被挂起,并从偏向锁所有者的私有Monitor Record列表中获取一个空闲的记录,并将Object设置LightWeight Lock状态并且Mark Word中的LockRecord指向刚才持有偏向锁线程的Monitor record,最后被阻塞在安全点的线程被释放,进入到轻量级锁的执行路径中,同时被撤销偏向锁的线程继续往下执行同步代码。

描述一下上述图片

获取锁

  1. 检测Mark Word是否为可偏向状态,即是否为偏向锁1,锁标识位为01;
  2. 若为可偏向状态,则测试线程ID是否为当前线程ID,如果是,则执行步骤(5),否则执行步骤(3);
  3. 如果线程ID不为当前线程ID,则通过CAS操作竞争锁,竞争成功,则将Mark Word的线程ID替换为当前线程ID,否则执行线程(4);
  4. 通过CAS竞争锁失败,证明当前存在多线程竞争情况,当到达全局安全点,获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码块;
  5. 执行同步代码块

释放锁
偏向锁的释放采用了一种只有竞争才会释放锁的机制,线程是不会主动去释放偏向锁,需要等待其他线程来竞争。偏向锁的撤销需要等待全局安全点(这个时间点是上没有正在执行的代码)。其步骤如下:

  1. 暂停拥有偏向锁的线程,判断锁对象石是否还处于被锁定状态;
  2. 撤销偏向锁,恢复到无锁状态(01)或者轻量级锁的状态;

轻量级锁

引入背景:这种锁实现的背后基于这样一种假设,即在真实的情况下我们程序中的大部分同步代码一般都处于无锁竞争状态(即单线程执行环境),在无锁竞争的情况下完全可以避免调用操作系统层面的重量级互斥锁,取而代之的是在monitorenter和monitorexit中只需要依靠一条CAS原子指令就可以完成锁的获取及释放。当存在锁竞争的情况下,执行CAS指令失败的线程将调用操作系统互斥锁进入到阻塞状态,当锁被释放的时候被唤醒

加锁
(1)当对象处于无锁状态时(RecordWord值为HashCode,状态位为001),线程首先从自己的可用moniter record列表中取得一个空闲的moniter record,初始Nest和Owner值分别被预先设置为1和该线程自己的标识,一旦monitor record准备好然后我们通过CAS原子指令安装该monitor record的起始地址到对象头的LockWord字段,如果存在其他线程竞争锁的情况而调用CAS失败,则只需要简单的回到monitorenter重新开始获取锁的过程即可。

(2)对象已经被膨胀同时Owner中保存的线程标识为获取锁的线程自己,这就是重入(reentrant)锁的情况,只需要简单的将Nest加1即可。不需要任何原子操作,效率非常高。

(3)对象已膨胀但Owner的值为NULL,当一个锁上存在阻塞或等待的线程同时锁的前一个拥有者刚释放锁时会出现这种状态,此时多个线程通过CAS原子指令在多线程竞争状态下试图将Owner设置为自己的标识来获得锁,竞争失败的线程在则会进入到第四种情况(4)的执行路径。

(4)对象处于膨胀状态同时Owner不为NULL(被锁住),在调用操作系统的重量级的互斥锁之前先自旋一定的次数,当达到一定的次数时如果仍然没有成功获得锁,则开始准备进入阻塞状态,首先将rfThis的值原子性的加1,由于在加1的过程中可能会被其他线程破坏Object和monitor record之间的关联,所以在原子性加1后需要再进行一次比较以确保LockWord的值没有被改变,当发现被改变后则要重新monitorenter过程。同时再一次观察Owner是否为NULL,如果是则调用CAS参与竞争锁,锁竞争失败则进入到阻塞状态。


描述下上述流程
获取锁

  1. 判断当前对象是否处于无锁状态(hashcode、0、01),若是,则JVM首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方把这份拷贝加了一个Displaced前缀,即Displaced Mark Word);否则执行步骤(3);
  2. JVM利用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指正,如果成功表示竞争到锁,则将锁标志位变成00(表示此对象处于轻量级锁状态),执行同步操作;如果失败则执行步骤(3);
  3. 判断当前对象的Mark Word是否指向当前线程的栈帧,如果是则表示当前线程已经持有当前对象的锁,则直接执行同步代码块;否则只能说明该锁对象已经被其他线程抢占了,这时轻量级锁需要膨胀为重量级锁,锁标志位变成10,后面等待的线程将会进入阻塞状态;

释放锁
轻量级锁的释放也是通过CAS操作来进行的,主要步骤如下:

  1. 取出在获取轻量级锁保存在Displaced Mark Word中的数据;
  2. 用CAS操作将取出的数据替换当前对象的Mark Word中,如果成功,则说明释放锁成功,否则执行(3);
  3. 如果CAS操作替换失败,说明有其他线程尝试获取该锁,则需要在释放锁的同时需要唤醒被挂起的线程。

重量级锁

重量级锁通过对象内部的监视器(monitor)实现,其中monitor的本质是依赖于底层操作系统的Mutex Lock实现,操作系统实现线程之间的切换需要从用户态到内核态的切换,切换成本非常高。

比较

synchronized在JDK6做了哪些优化相关推荐

  1. php7做了哪些优化,PHP语言学习之PHP7做了哪些优化

    本文主要向大家介绍了PHP语言学习之PHP7做了哪些优化,通过具体的内容向大家展示,希望对大家学习php语言有所帮助. 一  zval使用栈内存 在Zend引擎和扩展中,经常要创建一个PHP的变量,底 ...

  2. [ECMAScript] es6对函数做了哪些优化?

    [ECMAScript] es6对函数做了哪些优化? 1.函数参数可以设置默认值 function getUserCompanyName(name='defaultUser',company='def ...

  3. 做前端性能优化,还不知道什么是Preload、Prefetch、Preconnect、Prerendering,你就out了?

    做前端性能优化,还不知道什么是Preload.Prefetch.Preconnect? 今天,我们将探讨当前的资源提示和指令,这是提高网站或 Web 应用程序性能的另一种好方法.您可能听说过Prelo ...

  4. 玉米社:单页网站怎么做seo?优化思路?

    单页网站怎么做seo?优化思路? seo是一个持续优化探索的过程,一些seo大咖会尝试各种优化方法,其中就包括单页优化.下面,介绍一些单页网站怎么做seo?优化思路?供大家学习参考. 1.没有多个页面 ...

  5. 今日头条启动很快,你觉得可能是做了哪些优化?

    原文作者:蓝师傅_Android 原文地址:https://www.jianshu.com/p/d0fe74f4e9c4 相关阅读:深圳一普通中学老师工资单曝光,秒杀程序员,网友:敢问是哪个学校毕业的 ...

  6. 做过SEO优化的网站与普通站的区别在哪里

    一个网站有没有进行过搜索引擎优化,打开网站一看便知.例如,通过看网站首页.网站的导航.图片的alt标签描写等内容,可以发现两者之间的区别.与没有进行优化的普通网站相比,做过SEO优化的网站的优越性主要 ...

  7. 2023年如何做谷歌SEO优化?谷歌优化排名怎么做?

    今年来是外贸企业爆发的一年,很多老板都盯上了谷歌的自然流量价值. 现在做谷歌排名的人太多了,竞争很大,可见结果是不会陪你演戏的,最终排名还是没做上去的占大多数. 回归正题,2023年如何做谷歌SEO优 ...

  8. 怎么判断英文网站是否做过谷歌优化?

    1.title.keyword.Description是否做过处理.我们都知道标题是最容易被搜索引擎抓取的,如果我们将标题设置为我们要优化的主关键词,在整个优化过程中会起到直观重要的作用.没有做过优化 ...

  9. 02- HashMap 底层实现原理是什么?JDK 8 做了哪些优化?

    在 JDK 1.7 中 HashMap 是以数组加链表的形式组成的,JDK 1.8 之后新增了红黑树的组成结构,当链表大于 8 并且容量大于 64 时,链表结构会转换成红黑树结构,它的组成结构如下图: ...

最新文章

  1. ashx+jQuery,一个轻量级的asp.net ajax解决方案
  2. vim graphics
  3. 环信集成 2---基于环信Demo3.0,实现单聊功能
  4. PAT_B_1027_Java(20分)
  5. SpringBoot的配置文件加载顺序和使用方式
  6. Linux 实现网页劫持,Linux下实现劫持系统调用的总结(上)--代码及实现
  7. 【Cinemachine智能相机教程】VirtualCamera(四):Noise属性
  8. linux系统中agent服务器,Zabbix添加对Linux服务器的监控(Zabbix-Agent)
  9. 在Google App Engine中使用hash和marshal持久化模块,快速判断数据库条目是否已经存在...
  10. linux下用到的软件
  11. 【图像加密】基于matlab DNA混沌系统图像加密【含Matlab源码 1190期】
  12. linux下的软件管理
  13. 【托马斯微积分】(12版)阅读笔记1:函数
  14. layui之 实现图片放大
  15. hdu5294Tricks Device【最短路+网络流】
  16. PTA7-4 考试周
  17. 村上春树(作品)年谱
  18. 洛谷 P1888 三角函数 C语言
  19. 机器学习入门之流浪地球
  20. 网站漏洞检测之Discuz论坛 3.4版本

热门文章

  1. 人工神经网络中的多模态神经元
  2. OCaml for windows安装
  3. 外资巨头大举攻城 中国ERP市场危机四伏
  4. 电阻选型,这几个参数你必须要知道
  5. 基于SSM试用品网站《试客网》商城项目
  6. Vue · Table:手写横向竖向滚动表格,分页、条数设置
  7. 怎样固定Excel表头
  8. 深度强化学习算法调参
  9. 萌新学习的第一天-浅谈梳理自己对硬件局面的看法
  10. <Android开发> Android vold - 第一篇 vold前言简介