【重点】HashMap源码深度解析

  • 摘要
  • 哈希表
    • 哈希冲突
  • HashMap 数据结构
      • 数据结构
    • HashMap实现原理
      • 构造方法
      • PUT实现
    • HashMap的数组长度一定是2的次幂
      • get原理
    • HashMap和HashTable 的异同?
  • 结语

  同学们,今天我们一起来深度解析HashMap的源码,相信很多同学在面试过程中都会被问到源码,要数哪个被问得最多?大多同学肯定会想到HashMap,通过本文的学习,你将能轻松掌握HashMap的源码知识。

摘要

  HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。相对于JDK1.7,JDK1.8对HashMap底层的实现进行了优化,例如由原来的数组+链表转变成了数组+链表+红黑树的数据结构,以及对扩容机制的的优化等。本文结合JDK1.7和JDK1.8的区别,深入探讨HashMap的源码实现等。

哈希表

在讨论哈希表之前我们先来了解一下其他的数据结构:

数组:采用一段连续的存储单元来存储数据对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)

线性链表::对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)

二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。

哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下(后面会探讨下哈希冲突的情况),仅需一次定位即可完成,时间复杂度为O(1)

我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的?
  我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组
比如我们要新增或查找某个元素,我们通过把当前元素的关键字通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。
  
这个函数可以简单描述为:存储位置 = f(关键字) ,这个函数f一般称为哈希函数,这个函数的设计好坏会直接影响到哈希表的优劣
举个例子,比如我们要在哈希表中执行插入操作:

查询的过程跟插入也是一样的,先通过hash计算出实际的存储位置,然后再从数组中跟据地址取出即可。

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap、Hashtable、LinkedHashMap和TreeMap,类继承关系如下图所示:

下面针对各个实现类的特点做一些说明:
(1) HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。

(2) Hashtable:Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

(3) LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

(4) TreeMap:TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

哈希冲突

在映射过程中,可能出现关键字不同,但得到的哈希地址相同的情况,这种现象叫做哈希冲突。我们需要尽量减少这种冲突,使得哈希地址尽量不一样,这样线性表才会更加散列,均匀。

如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?
也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。哈希函数的设计至关重要,好的哈希函数会尽可能地保证计算简单和散列地址分布均匀,但是我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址)、再散列函数法、链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。

HashMap 数据结构

数据结构

JDK1.7的HashMap 数据结构为 数组+链表,其中:链表的节点存储的是一个 Entry 对象,每个Entry 对象存储四个属性(hash,key,value,next),如下图所示:

总结:

整体是一个数组,数据的每个位置是一个链表
链表中的每个节点中的value就是我们存储的Object

HashMap实现原理

HashMap的主干是一个Entry数组,Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)

//HashMap的主干数组,可以看到就是一个Entry数组,初始值为空数组{},
//主干数组的长度一定是2的次幂。至于为什么这么做,后面会有详细分析。
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

Entry是HashMap中的一个静态内部类。代码如下

    static class Entry<K,V> implements Map.Entry<K,V> {final K key;V value;Entry<K,V> next;//存储指向下一个Entry的引用,单链表结构int hash;  //对key的hashcode值进行hash运算后得到的值,//存储在Entry,避免重复计算/*** Creates new entry.*/Entry(int h, K k, V v, Entry<K,V> n) {value = v;next = n;key = k;hash = h;}

所以,HashMap的总体结构如下所示:

由图可知,HashMap由数组+链表组成,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

其他几个重要字段:

/**实际存储的key-value键值对的个数*/
transient int size;/**阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,
threshold一般为 capacity*loadFactory。HashMap在进行扩容时需要参考threshold,后面会详细谈到*/
int threshold;/**负载因子,代表了table的填充度有多少,默认是0.75
加载因子存在的原因,还是因为减缓哈希冲突,如果初始桶为16,等到满16个元素才扩容,某些桶里可能就有不止一个元素了。
所以加载因子默认为0.75,也就是说大小为16的HashMap,到了第13个元素,就会扩容成32。
*/
final float loadFactor;/**HashMap被改变的次数,由于HashMap非线程安全,在对HashMap进行迭代时,
如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),
需要抛出异常ConcurrentModificationException*/
transient int modCount;

构造方法

HashMap有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值initialCapacity默认为16,loadFactory默认为0.75

static final int MAXIMUM_CAPACITY = 1073741824;//最大容量public HashMap(int initialCapacity, float loadFactor) {//此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " +loadFactor);this.loadFactor = loadFactor;threshold = initialCapacity;init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现}

我们可以看出,在常规构造器中,没有为数组table分配内存空间(有一个入参为指定Map的构造器例外),而是在执行put操作的时候才真正构建table数组;

OK,接下来我们来看看put操作的实现

PUT实现

public V put(K key, V value) {//如果table数组为空数组{},进行数组填充(为table分配实际内存空间),//入参为threshold,//此时threshold为initialCapacity 默认是1<<4(24=16)if (table == EMPTY_TABLE) {inflateTable(threshold);}//如果key为null,存储位置为table[0]或table[0]的冲突链上if (key == null)return putForNullKey(value);int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀int i = indexFor(hash, table.length);//获取在table中的实际位置for (Entry<K,V> e = table[i]; e != null; e = e.next) {//如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧valueObject k;if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {V oldValue = e.value;e.value = value;e.recordAccess(this);return oldValue;}}modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败addEntry(hash, key, value, i);//新增一个entryreturn null;}

inflateTable这个方法用于为主干数组table在内存中分配存储空间
通过roundUpToPowerOf2(toSize)可以确保capacity为大于或等于toSize的最接近toSize的二次幂,比如toSize=13,则capacity=16;tosize=16,capacity=16;to_size=17,capacity=32

private void inflateTable(int toSize) {int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂/**此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1 */threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);table = new Entry[capacity];initHashSeedAsNeeded(capacity);}

roundUpToPowerOf2方法中的这段处理使得数组长度一定为2的次幂,Integer.highestOneBit是用来获取最左边的bit(其他bit位为0)所代表的数值

 private static int roundUpToPowerOf2(int number) {// assert number >= 0 : "number must be non-negative";return number >= MAXIMUM_CAPACITY? MAXIMUM_CAPACITY: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;}

继续来看hash函数

/**这是一个神奇的函数,用了很多的异或,移位等运算
对key的hashcode进一步进行计算以及二进制位的调整等来保证最终获取的存储位置尽量分布均匀*/
final int hash(Object k) {int h = hashSeed;if (0 != h && k instanceof String) {return sun.misc.Hashing.stringHash32((String) k);}h ^= k.hashCode();h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);}

以上hash函数计算出的值,通过indexFor进一步处理来获取实际的存储位置

/*** 返回数组下标*/static int indexFor(int h, int length) {return h & (length-1);}

h&(length-1)保证获取的index一定在数组范围内,举个例子,默认容量16,length-1=15,h=18,转换成二进制计算为index=2
位运算对计算机来说,性能更高一些(HashMap中有大量位运算
所以最终存储位置的确定流程是这样的:


再来看看addEntry的实现:

void addEntry(int hash, K key, V value, int bucketIndex) {if ((size >= threshold) && (null != table[bucketIndex])) {resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容hash = (null != key) ? hash(key) : 0;bucketIndex = indexFor(hash, table.length);}createEntry(hash, key, value, bucketIndex);}

通过以上代码能够得知,当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作

HashMap的数组长度一定是2的次幂

我们来继续看上面提到的resize方法

void resize(int newCapacity) {Entry[] oldTable = table;int oldCapacity = oldTable.length;if (oldCapacity == MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return;}Entry[] newTable = new Entry[newCapacity];transfer(newTable, initHashSeedAsNeeded(newCapacity));table = newTable;threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);}

如果数组进行扩容,数组长度发生变化,而存储位置 index = h&(length-1),index也可能会发生变化,需要重新计算index,我们先来看看transfer这个方法

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;//for循环中的代码,逐个遍历链表,重新计算索引位置,将老数组数据复制到新数组中去(数组不存储实际数据,所以仅仅是拷贝引用而已)for (Entry<K,V> e : table) {while(null != e) {Entry<K,V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}int i = indexFor(e.hash, newCapacity);//将当前entry的next链指向新的索引位置,newTable[i]有可能为空,有可能也是个entry链,如果是entry链,直接在链表头部插入。e.next = newTable[i];newTable[i] = e;e = next;}}}

这个方法将老数组中的数据逐个链表地遍历,扔到新的扩容后的数组中,我们的数组索引位置的计算是通过 对key值的hashcode进行hash扰乱运算后,再通过和 length-1进行位运算得到最终数组索引位置。

HashMap的数组长度一定保持2的次幂,比如16的二进制表示为 10000,那么length-1就是15,二进制为01111,同理扩容后的数组长度为32,二进制表示为100000,length-1为31,二进制表示为011111。从下图可以我们也能看到这样会保证低位全为1,而扩容后只有一位差异,也就是多出了最左位的1,这样在通过 h&(length-1)的时候,只要h对应的最左边的那一个差异位为0,就能保证得到的新的数组索引和老数组索引一致(大大减少了之前已经散列良好的老数组的数据位置重新调换),个人理解。

还有,数组长度保持2的次幂,length-1的低位都为1,会使得获得的数组索引index更加均匀

我们看到,上面的&运算,高位是不会对结果产生影响的(hash函数采用各种位运算可能也是为了使得低位更加散列),我们只关注低位bit,如果低位全部为1,那么对于h低位部分来说,任何一位的变化都会对结果产生影响,也就是说,要得到index=21这个存储位置,h的低位只有这一种组合。这也是数组长度设计为必须为2的次幂的原因。

如果不是2的次幂,也就是低位不是全为1此时,要使得index=21,h的低位部分不再具有唯一性了,哈希冲突的几率会变的更大,同时,index对应的这个bit位无论如何不会等于1了,而对应的那些数组位置也就被白白浪费了。

get原理

 public V get(Object key) {//如果key为null,则直接去table[0]处去检索即可。if (key == null)return getForNullKey();Entry<K,V> entry = getEntry(key);return null == entry ? null : entry.getValue();}

get方法通过key值返回对应value,如果key为null,直接去table[0]处检索。我们再看一下getEntry这个方法

final Entry<K,V> getEntry(Object key) {if (size == 0) {return null;}//通过key的hashcode值计算hash值int hash = (key == null) ? 0 : hash(key);//indexFor (hash&length-1) 获取最终数组索引,然后遍历链表,通过equals方法比对找出对应记录for (Entry<K,V> e = table[indexFor(hash, table.length)];e != null;e = e.next) {Object k;if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))return e;}return null;}

可以看出,get方法的实现相对简单,key(hashcode)–>hash–>indexFor–>最终索引位置,找到对应位置table[i],再查看是否有链表,遍历链表,通过key的equals方法比对查找对应的记录。要注意的是,有人觉得上面在定位到数组位置之后然后遍历链表的时候,e.hash == hash这个判断没必要,仅通过equals判断就可以。其实不然,试想一下,如果传入的key对象重写了equals方法却没有重写hashCode,而恰巧此对象定位到这个数组位置,如果仅仅用equals判断可能是相等的,但其hashCode和当前对象不一致,这种情况,根据Object的hashCode的约定,不能返回当前对象,而应该返回null,后面的例子会做出进一步解释。

HashMap和HashTable 的异同?

二者的存储结构和解决冲突的方法都是相同的。

  • HashTable在不指定容量的情况下的默认容量为11,而HashMap为16,Hashtable不要求底层数组的容量一定要为2的整数次幂,而HashMap则要求一定为2的整数次幂。
  • HashTable 中 key和 value都不允许为 null,而HashMap中key和value都允许为 null(key只能有一个为null,而value则可以有多个为 null)。但是如果在 Hashtable中有类似 put( null, null)的操作,编译同样可以通过,因为 key和 value都是Object类型,但运行时会抛出 NullPointerException异常。
  • Hashtable扩容时,将容量变为原来的2倍+1,而HashMap扩容时,将容量变为原来的2倍。

结语

  以上就是卡卡今日分享的HashMap源码详解思路的主要内容,如果有写错的地方,希望同学们踊跃在评论区指出来,欢迎大家一起分享学习。

HashMap源码深度解析【重点】相关推荐

  1. 万字长文|Hashtable源码深度解析以及与HashMap的区别

    基于JDK1.8对Java中的Hashtable集合的源码进行了深度解析,包括各种方法.扩容机制.哈希算法.遍历方法等方法的底层实现,最后给出了Hashtable和HashMap的详细对比以及使用建议 ...

  2. Spring源码深度解析(郝佳)-Spring 常用注解使用及源码解析

      我们在看Spring Boot源码时,经常会看到一些配置类中使用了注解,本身配置类的逻辑就比较复杂了,再加上一些注解在里面,让我们阅读源码更加难解释了,因此,这篇博客主要对配置类上的一些注解的使用 ...

  3. 《Spring源码深度解析 郝佳 第2版》ApplicationContext

    往期博客: <Spring源码深度解析 郝佳 第2版>容器的基本实现与XML文件的加载 <Spring源码深度解析 郝佳 第2版>XML标签的解析 <Spring源码深度 ...

  4. Spring源码深度解析(郝佳)-学习-源码解析-创建AOP静态代理实现(八)

    继上一篇博客,我们继续来分析下面示例的 Spring 静态代理源码实现. 静态 AOP使用示例 加载时织入(Load -Time WEaving,LTW) 指的是在虚拟机载入字节码时动态织入 Aspe ...

  5. 《Spring源码深度解析 郝佳 第2版》事务

    往期博客 <Spring源码深度解析 郝佳 第2版>容器的基本实现与XML文件的加载 <Spring源码深度解析 郝佳 第2版>XML标签的解析 <Spring源码深度解 ...

  6. 《Spring源码深度解析 郝佳 第2版》XML标签的解析

    目录 往期博客<Spring源码深度解析 郝佳 第2版>容器的基本实现与XML文件的加载 分析了xml文件的加载,接下来就是标签的解析,入口函数有两个 默认标签的解析 自定义标签的解析 一 ...

  7. Spring源码深度解析(郝佳)-学习-源码解析-Spring整合MyBatis

    了解了MyBatis的单独使用过程之后,我们再来看看它也Spring整合的使用方式,比对之前的示例来找出Spring究竟为我们做了什么操作,哪些操作简化了程序开发. 准备spring71.xml &l ...

  8. Spring源码深度解析(郝佳)-学习-源码解析-基于注解注入(二)

    在Spring源码深度解析(郝佳)-学习-源码解析-基于注解bean解析(一)博客中,己经对有注解的类进行了解析,得到了BeanDefinition,但是我们看到属性并没有封装到BeanDefinit ...

  9. dubbo源码深度解析_Spring源码深度解析:手把手教你搭建Spring开发环境

    Spring环境搭建流程,如果是第一次接触spring源码的环境搭建,确实还是比较麻烦的. 作者使用的编译器为目前流行的lntelliJ IDEA,版本为2018旗舰版.Eclipse用户还需要自己揣 ...

最新文章

  1. 结构成员访问的三种方法
  2. JAVA如何检测GC日志
  3. vi/vim的选中/复制/粘贴命令
  4. Redis学习笔记~Redis在windows环境下的安装
  5. Hadoop2.2.0+hive使用LZO压缩那些事
  6. 国内比较好用的5款测试管理工具
  7. IPFS下载安装和配置
  8. JS动画 | 用TweenMax实现收集水滴效果
  9. 三位bcd加法计数器_两个8位BCD编号的加法| 8085微处理器
  10. flash 4K扇区写入函数
  11. 12、设计模式-结构型模式-外观模式
  12. 22. Yii 组件属性
  13. Atitit api标准化法 it法学之 目录 1. 永远的痛点:接口与协议的标准化 1 2. 标准化优点 1 3. 标准化组织 2 3.1. 应当处理标准化委员会 2 3.2. 标准化提案与表决
  14. Java实现下载url视频资源
  15. XML解析——Java中XML的四种解析方式
  16. mysql MVCC产生幻读原因及解决方式
  17. 手机连接charles问题
  18. 课后练习--制作美联英语在线VIP页面——学伴
  19. 微信APP支付之IJpay的使用
  20. GC导致线上CPU超100%

热门文章

  1. 课设毕设神器,8个经典抢答器优选电路设计方案合辑
  2. Matlab从入门到精通(三)
  3. 专访著名3D动画设计师DAVID LIU
  4. HDU 4857 逃生 拓扑排序好题 第一次做CLJ出的题
  5. ps怎么去掉框框不伤字体_如何取消Photoshop输入字体带有锯齿
  6. 出版了!智能物流系统构成与技术实践!立库、AGV、装卸、拣选、分拣、WMS……...
  7. 荣耀手机计算机设置功能,荣耀路由器用手机怎么设置?
  8. 2022年度手机行业排行榜(年度手机行业分析)
  9. hdu 5265 pog loves szh II
  10. 企业邮箱如何购买?企业邮箱费用哪家更划算?