librosa是一个非常强大的python语音信号处理的第三方库,

先总结一下本文中常用的专业名词:sr:采样率、hop_length:帧移、overlapping:连续帧之间的重叠部分、n_fft:窗口大小、spectrum:频谱、spectrogram:频谱图或叫做语谱图、amplitude:振幅、mono:单声道、stereo:立体声

1.读取音频

librosa.load(path, sr=22050, mono=True, offset=0.0, duration=None)

读取音频文件。默认采样率是22050,如果要保留音频的原始采样率,使用sr = None。

参数:

  • path :音频文件的路径。
  • sr :采样率,如果为“None”使用音频自身的采样率
  • mono :bool,是否将信号转换为单声道
  • offset :float,在此时间之后开始阅读(以秒为单位)
    duration:float,仅加载这么多的音频(以秒为单位)

返回:

  • y :音频时间序列
  • sr :音频的采样率

2.重采样

librosa.resample(y, orig_sr, target_sr, fix=True, scale=False)

重新采样从orig_sr到target_sr的时间序列

参数:

  • y :音频时间序列。可以是单声道或立体声。
  • orig_sr :y的原始采样率
  • target_sr :目标采样率
  • fix:bool,调整重采样信号的长度,使其大小恰好为
  • scale:bool,缩放重新采样的信号,以使y和y_hat具有大约相等的总能量。

返回:

  • y_hat :重采样之后的音频数组

3.读取时长

librosa.get_duration(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, center=True, filename=None)

计算时间序列的的持续时间(以秒为单位)

参数:

  • y :音频时间序列
  • sr :y的音频采样率
  • S :STFT矩阵或任何STFT衍生的矩阵(例如,色谱图或梅尔频谱图)。根据频谱图输入计算的持续时间仅在达到帧分辨率之前才是准确的。如果需要高精度,则最好直接使用音频时间序列。
  • n_fft :S的 FFT窗口大小
  • hop_length :S列之间的音频样本数
  • center :布尔值
    • 如果为True,则S [:, t]的中心为y [t * hop_length]
    • 如果为False,则S [:, t]从y[t * hop_length]开始
  • filename :如果提供,则所有其他参数都将被忽略,并且持续时间是直接从音频文件中计算得出的。

返回:

  • d :持续时间(以秒为单位)

4.读取采样率

librosa.get_samplerate(path)

参数:

  • path :音频文件的路径

返回:音频文件的采样率

5.写音频

librosa.output.write_wav(path, y, sr, norm=False)

将时间序列输出为.wav文件

参数:

  • path:保存输出wav文件的路径
  • y :音频时间序列。
  • sr :y的采样率
  • norm:bool,是否启用幅度归一化。将数据缩放到[-1,+1]范围。

6.过零率

计算音频时间序列的过零率。

librosa.feature.zero_crossing_rate(y, frame_length = 2048, hop_length = 512, center = True) 

参数:

  • y :音频时间序列
  • frame_length :帧长
  • hop_length :帧移
  • center:bool,如果为True,则通过填充y的边缘来使帧居中。

返回:

  • zcr:zcr[0,i]是第i帧中的过零率
y, sr = librosa.load(librosa.util.example_audio_file())
print(librosa.feature.zero_crossing_rate(y))
# array([[ 0.134,  0.139, ...,  0.387,  0.322]])

7.波形图

librosa.display.waveplot(y, sr=22050, x_axis='time', offset=0.0, ax=None)

绘制波形的幅度包络线

参数:

  • y :音频时间序列
  • sr :y的采样率
  • x_axis :str {'time','off','none'}或None,如果为“时间”,则在x轴上给定时间刻度线。
  • offset:水平偏移(以秒为单位)开始波形图

8.短时傅里叶变换

librosa.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect')

短时傅立叶变换(STFT),返回一个复数矩阵使得D(f,t)

  • 复数的实部:np.abs(D(f,t))频率的振幅
  • 复数的虚部:np.angle(D(f,t))频率的相位

参数:

  • y:音频时间序列
  • n_fft:FFT窗口大小,n_fft=hop_length+overlapping
  • hop_length:帧移,如果未指定,则默认win_length / 4。
  • win_length:每一帧音频都由window()加窗。窗长win_length,然后用零填充以匹配N_FFT。默认win_length=n_fft。
  • window:字符串,元组,数字,函数 shape =(n_fft, )
    • 窗口(字符串,元组或数字);
    • 窗函数,例如scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则填充信号y,以使帧 D [:, t]以y [t * hop_length]为中心。
    • 如果为False,则D [:, t]从y [t * hop_length]开始
  • dtype:D的复数值类型。默认值为64-bit complex复数
  • pad_mode:如果center = True,则在信号的边缘使用填充模式。默认情况下,STFT使用reflection padding。

返回:

  • STFT矩阵,shape =(1+nfft/2,t)

9. 短时傅里叶逆变换

librosa.istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, length=None)

短时傅立叶逆变换(ISTFT),将复数值D(f,t)频谱矩阵转换为时间序列y,窗函数、帧移等参数应与stft相同

参数:

  • stft_matrix :经过STFT之后的矩阵
  • hop_length :帧移,默认为winlength/4
  • win_length :窗长,默认为n_fft
  • window:字符串,元组,数字,函数或shape = (n_fft, )
    • 窗口(字符串,元组或数字)
    • 窗函数,例如scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则假定D具有居中的帧
    • 如果False,则假定D具有左对齐的帧
  • length:如果提供,则输出y为零填充或剪裁为精确长度音频

返回:

  • y :时域信号

10. 幅度转dB

librosa.amplitude_to_db(S, ref=1.0)

将幅度频谱转换为dB标度频谱。也就是对S取对数。与这个函数相反的是librosa.db_to_amplitude(S)

参数:

  • S :输入幅度
  • ref :参考值,振幅abs(S)相对于ref进行缩放, 

返回:

  • dB为单位的S

11. 功率转dB

librosa.core.power_to_db(S, ref=1.0)

将功率谱(幅度平方)转换为分贝(dB)单位,与这个函数相反的是librosa.db_to_power(S)

参数:

  • S:输入功率
  • ref :参考值,振幅abs(S)相对于ref进行缩放,

返回:

  • dB为单位的S

12. 频谱图

librosa.display.specshow(data,  x_axis=None, y_axis=None, sr=22050, hop_length=512)

参数:

  • data:要显示的矩阵
  • sr :采样率
  • hop_length :帧移
  • x_axis 、y_axis :x和y轴的范围
  • 频率类型
    • 'linear','fft','hz':频率范围由FFT窗口和采样率确定
    • 'log':频谱以对数刻度显示
    • 'mel':频率由mel标度决定
  • 时间类型
    • time:标记以毫秒,秒,分钟或小时显示。值以秒为单位绘制。
    • s:标记显示为秒。
    • ms:标记以毫秒为单位显示。
  • 所有频率类型均以Hz为单位绘制

13. Mel滤波器组

librosa.filters.mel(sr, n_fft, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1)

创建一个滤波器组矩阵以将FFT合并成Mel频率

参数:

  • sr :输入信号的采样率
  • n_fft :FFT组件数
  • n_mels :产生的梅尔带数
  • fmin :最低频率(Hz)
  • fmax:最高频率(以Hz为单位)。如果为None,则使用fmax = sr / 2.0
  • norm:{None,1,np.inf} [标量]
    • 如果为1,则将三角mel权重除以mel带的宽度(区域归一化)。否则,保留所有三角形的峰值为1.0

返回:

  • Mel变换矩阵

14. 计算Mel scaled 频谱

librosa.feature.melspectrogram(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann',
center=True, pad_mode='reflect', power=2.0)

如果提供了频谱图输入S,则通过mel_f.dot(S)将其直接映射到mel_f上。

如果提供了时间序列输入y,sr,则首先计算其幅值频谱S,然后通过mel_f.dot(S ** power)将其映射到mel scale上 。默认情况下,power= 2在功率谱上运行。

参数

  • **y **:音频时间序列
  • **sr **:采样率
  • **S **:频谱
  • **n_fft **:FFT窗口的长度
  • **hop_length **:帧移
  • **win_length **:窗口的长度为win_length,默认win_length = n_fft
  • **window **:字符串,元组,数字,函数或shape =(n_fft, )
    • 窗口规范(字符串,元组或数字);看到scipy.signal.get_window
    • 窗口函数,例如 scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则填充信号y,以使帧 t以y [t * hop_length]为中心。
    • 如果为False,则帧t从y [t * hop_length]开始
  • power:幅度谱的指数。例如1代表能量,2代表功率,等等
  • n_mels:滤波器组的个数 1288
  • fmax:最高频率

返回

  • Mel频谱shape=(n_mels, t)

15. 提取Log-Mel Spectrogram 特征

Log-Mel Spectrogram特征是目前在语音识别和环境声音识别中很常用的一个特征,由于CNN在处理图像上展现了强大的能力,使得音频信号的频谱图特征的使用愈加广泛,甚至比MFCC使用的更多。在librosa中,Log-Mel Spectrogram特征的提取只需几行代码:

import librosay, sr = librosa.load(librosa.util.example_audio_file(), sr=16000)
# 提取 mel spectrogram feature
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
logmelspec = librosa.amplitude_to_db(melspec)        # 转换到对数刻度print(logmelspec.shape)        # (128, 65)

16. 提取MFCC系数

MFCC特征是一种在自动语音识别和说话人识别中广泛使用的特征。关于MFCC特征的详细信息,有兴趣的可以参考博客http:// blog.csdn.net/zzc15806/article/details/79246716。在librosa中,提取MFCC特征只需要一个函数:

librosa.feature.mfcc(y=None, sr=22050, S=None, n_mfcc=20, dct_type=2, norm='ortho', **kwargs)

参数:

  • y:音频数据
  • sr:采样率
  • S:np.ndarray,对数功能梅尔谱图
  • n_mfcc:int>0,要返回的MFCC数量
  • dct_type:None, or {1, 2, 3} 离散余弦变换(DCT)类型。默认情况下,使用DCT类型2。
  • norm: None or ‘ortho’ 规范。如果dct_type为2或3,则设置norm =’ortho’使用正交DCT基础。 标准化不支持dct_type = 1。

返回:

  • M: MFCC序列

参考博客:

https://www.jianshu.com/p/8d6ffe6e10b9

深度学习(PyTorch)——librosa库的使用相关推荐

  1. torch的拼接函数_从零开始深度学习Pytorch笔记(13)—— torch.optim

    前文传送门: 从零开始深度学习Pytorch笔记(1)--安装Pytorch 从零开始深度学习Pytorch笔记(2)--张量的创建(上) 从零开始深度学习Pytorch笔记(3)--张量的创建(下) ...

  2. 【 线性模型 Linear-Model 数学原理分析以及源码实现 深度学习 Pytorch笔记 B站刘二大人(1/10)】

    线性模型 Linear-Model 数学原理分析以及源码实现 深度学习 Pytorch笔记 B站刘二大人(1/10) 数学原理分析 线性模型是我们在初级数学问题中所遇到的最普遍也是最多的一类问题 在线 ...

  3. 【多输入模型 Multiple-Dimension 数学原理分析以及源码详解 深度学习 Pytorch笔记 B站刘二大人 (6/10)】

    多输入模型 Multiple-Dimension 数学原理分析以及源码源码详解 深度学习 Pytorch笔记 B站刘二大人(6/10) 数学推导 在之前实现的模型普遍都是单输入单输出模型,显然,在现实 ...

  4. 深度学习 — — PyTorch入门(二)

    在深度学习--PyTorch入门(一)中我们介绍了构建网络模型和加载数据的内容,本篇将继续介绍如何完成对模型的训练. 训练:更新网络权重 构建网络结构和加载完数据集之后,便可以开始进行网络权重的训练. ...

  5. pytorch 训练过程acc_深度学习Pytorch实现分类模型

    今天将介绍深度学习中的分类模型,以下主要介绍Softmax的基本概念.神经网络模型.交叉熵损失函数.准确率以及Pytorch实现图像分类.01Softmax基本概念 在分类问题中,通常标签都为类别,可 ...

  6. CUDA和cuDNN到底是啥关系?(cuDNN是基于CUDA的深度学习GPU加速库)

    1.什么是CUDA CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA是一种由NVIDIA推出的通用并行计算架构,该架构 ...

  7. 动手学深度学习Pytorch Task01

    深度学习目前以及未来都有良好的发展前景.正值疫情期间,报名参加了动手学深度学习pytorch版的公开课,希望在以后的学习生活中能够灵活运用学到的这些知识. 第一次课主要包含三个部分:线性回归.soft ...

  8. 伯禹公益AI《动手学深度学习PyTorch版》Task 07 学习笔记

    伯禹公益AI<动手学深度学习PyTorch版>Task 07 学习笔记 Task 07:优化算法进阶:word2vec:词嵌入进阶 微信昵称:WarmIce 优化算法进阶 emmmm,讲实 ...

  9. 伯禹公益AI《动手学深度学习PyTorch版》Task 03 学习笔记

    伯禹公益AI<动手学深度学习PyTorch版>Task 03 学习笔记 Task 03:过拟合.欠拟合及其解决方案:梯度消失.梯度爆炸:循环神经网络进阶 微信昵称:WarmIce 过拟合. ...

  10. 深度学习常用python库学习笔记

    深度学习常用python库学习笔记 常用的4个库 一.Numpy库 1.数组的创建 (1)np.array() (2)np.zeros() (3)np.ones() (4)np.empty() (5) ...

最新文章

  1. 科研经验3:公众号建立实验室共享知识体系和宣传窗口
  2. 2011年 软件所信息安全国家重点实验室复试回忆
  3. Glide源码(基于4.8版本)解析
  4. 在滴滴和头条干了 2 年后端开发,太真实…
  5. 第四篇: python函数续
  6. 肺癌图片识别的相关信息
  7. 关于tcp网络通讯的几个场景的小测试
  8. C#LeetCode刷题-堆
  9. matlab改变矩阵的元素,Matlab中元素不变情况下改变矩阵形态——reshape()
  10. 武汉区块链软件技术公司区块链将如何应用于会员生态系统?
  11. Jmockit单元测试MockUp调用原始方法
  12. SI 9000 阻抗计算笔记
  13. 契约测试工具的思考(一)
  14. 英语语法篇 - 非谓语动词
  15. eclipse 64位 免安装_超详细:64位Linux下安装PS模拟器ePSxe
  16. SharpDevelop的安装与配置
  17. selinux造成虚拟目录文件无法访问
  18. day03 文件操作 函数 参数 返回值 作用域和名称空间 global和nonlocal
  19. 经济学模型2-生产可能性边界
  20. 苹果向在巴西被盗的iPhone客户支付赔偿金

热门文章

  1. 直接插入排序 希尔排序 冒泡排序 快速排序 直接选择排序 堆排序 归并排序 基数排序的算法分析和具体实现 ...
  2. [NOIP] [最短路] NOIP2012Junior 文化之旅 (culture)
  3. RK3588 AP6398RS3之WIFI调试(一)
  4. javascript时间日期操作
  5. Android BootLoader及两种刷机模式fastboot和recovery
  6. 医学图像分割之TransUNet
  7. EC600N(二)--核心板初次点亮
  8. 微信小程序--轮播图
  9. (四)进程的生命周期——起源
  10. 四旋翼飞行器室内编队飞行项目整理