参考列表:

[1]深入理解图注意力机制
[2]DGL官方学习教程一 ——基础操作&消息传递
[3]Cora数据集介绍+python读取

一、DGL实现GAT分类机器学习论文

程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3])

1. 程序

Ubuntu:18.04
cuda:11.1
cudnn:8.0.4.30
pytorch:1.7.0
networkx:2.5

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as npclass GATLayer(nn.Module):def __init__(self, g, in_dim, out_dim):super(GATLayer, self).__init__()self.g = gself.fc = nn.Linear(in_dim, out_dim, bias=False)self.attn_fc = nn.Linear(2 * out_dim, 1, bias=False)def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}def message_func(self, edges):return {'z' : edges.src['z'], 'e' : edges.data['e']}def reduce_func(self, nodes):alpha = F.softmax(nodes.mailbox['e'], dim=1)h = torch.sum(alpha * nodes.mailbox['z'], dim=1)return {'h' : h}def forward(self, h):z = self.fc(h) # eq. 1self.g.ndata['z'] = z self.g.apply_edges(self.edge_attention) # eq. 2self.g.update_all(self.message_func, self.reduce_func) # eq. 3 and 4return self.g.ndata.pop('h')class MultiHeadGATLayer(nn.Module):def __init__(self, g, in_dim, out_dim, num_heads, merge='cat'):super(MultiHeadGATLayer, self).__init__()self.heads = nn.ModuleList()for i in range(num_heads):self.heads.append(GATLayer(g, in_dim, out_dim))self.merge = mergedef forward(self, h):head_outs = [attn_head(h) for attn_head in self.heads]if self.merge == 'cat':return torch.cat(head_outs, dim=1)else:return torch.mean(torch.stack(head_outs))class GAT(nn.Module):def __init__(self, g, in_dim, hidden_dim, out_dim, num_heads):super(GAT, self).__init__()self.layer1 = MultiHeadGATLayer(g, in_dim, hidden_dim, num_heads)self.layer2 = MultiHeadGATLayer(g, hidden_dim * num_heads, out_dim, 1)def forward(self, h):h = self.layer1(h)h = F.elu(h)h = self.layer2(h)return hfrom dgl import DGLGraph
from dgl.data import citation_graph as citegrhdef load_core_data():data = citegrh.load_cora()features = torch.FloatTensor(data.features)labels = torch.LongTensor(data.labels)mask = torch.ByteTensor(data.train_mask)g = DGLGraph(data.graph)return g, features, labels, maskimport time
import numpy as np
g, features, labels, mask = load_core_data()net = GAT(g, in_dim = features.size()[1], hidden_dim=8, out_dim=7, num_heads=8)optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
dur = []
for epoch in range(300):if epoch >= 3:t0 = time.time()logits = net(features)logp = F.log_softmax(logits, 1)loss = F.nll_loss(logp[mask], labels[mask])optimizer.zero_grad()loss.backward()optimizer.step()if epoch >= 3:dur.append(time.time() - t0)print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f}".format(epoch, loss.item(), np.mean(dur)))

2.笔记

2.1 初始化一个graph的两种方式

对于如下图数据结构:
0->1
1->2
3->1

多称之为小括号方式

import networkx as nx
import matplotlib.pyplot as plt
import dgl
import torch
%matplotlib inline
g = dgl.graph((torch.tensor([0, 1, 3]), torch.tensor([1, 2, 1]))) # 小括号
nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]])  #使用nx绘制,设置节点大小及灰度值
plt.show()


或中括号方式:

import networkx as nx
import matplotlib.pyplot as plt
import dgl
import torch
%matplotlib inline
g = dgl.graph([torch.tensor([0, 1]), torch.tensor([1, 2]), torch.tensor([3, 1])]) # 中括号
nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]])  #使用nx绘制,设置节点大小及灰度值
plt.show()


note: 同一个graph,每次打印出来的各节点的位置是随机的。

2.2 DGL的update_all函数实际工作过程

利用如下例程说明:

import networkx as nx
import matplotlib.pyplot as plt
import torch
import dglN = 100  # number of nodes
DAMP = 0.85  # damping factor阻尼因子
K = 10  # number of iterations
g = nx.nx.erdos_renyi_graph(N, 0.1) #图随机生成器,生成nx图
g = dgl.DGLGraph(g)                 #转换成DGL图
g.ndata['pv'] = torch.ones(N) / N  #初始化PageRank值
g.ndata['deg'] = g.in_degrees(g.nodes()).float()  #初始化节点特征
print(g.ndata['deg'])
#定义message函数,它将每个节点的PageRank值除以其out-degree,并将结果作为消息传递给它的邻居:
def pagerank_message_func(edges):return {'pv' : edges.src['pv'] / edges.src['deg']}
#定义reduce函数,它从mailbox中删除并聚合message,并计算其新的PageRank值:
def pagerank_reduce_func(nodes):print("-batch size--pv size-------------")print(nodes.batch_size(), nodes.mailbox['pv'].size())msgs = torch.sum(nodes.mailbox['pv'], dim=1)pv = (1 - DAMP) / N + DAMP * msgsreturn {'pv' : pv}
g.update_all(pagerank_message_func, pagerank_reduce_func)

打印g.ndata[‘deg’]信息(也即每个节点的入度信息)如下:

tensor([ 9., 7., 17., 10., 12., 13., 13., 9., 5., 14., 7., 12., 15., 6.,
15., 7., 13., 7., 11., 9., 9., 15., 9., 12., 10., 8., 10., 9.,
15., 7., 8., 10., 10., 8., 11., 13., 6., 10., 10., 11., 5., 13.,
6., 12., 12., 8., 6., 11., 9., 10., 12., 8., 11., 5., 7., 12.,
4., 7., 8., 13., 11., 14., 9., 10., 12., 10., 10., 9., 10., 13.,
7., 15., 15., 10., 6., 11., 4., 6., 5., 10., 9., 11., 19., 9.,
12., 13., 15., 12., 12., 11., 10., 8., 11., 9., 7., 7., 11., 3.,
10., 5.])

pagerank_reduce_func函数内的打印信息如下:

-batch size–pv size-------------
1 torch.Size([1, 3])
-batch size–pv size-------------
2 torch.Size([2, 4])
-batch size–pv size-------------
5 torch.Size([5, 5])
-batch size–pv size-------------
6 torch.Size([6, 6])
-batch size–pv size-------------
10 torch.Size([10, 7])
-batch size–pv size-------------
7 torch.Size([7, 8])
-batch size–pv size-------------
12 torch.Size([12, 9])
-batch size–pv size-------------
16 torch.Size([16, 10])
-batch size–pv size-------------
11 torch.Size([11, 11])
-batch size–pv size-------------
11 torch.Size([11, 12])
-batch size–pv size-------------
8 torch.Size([8, 13])
-batch size–pv size-------------
2 torch.Size([2, 14])
-batch size–pv size-------------
7 torch.Size([7, 15])
-batch size–pv size-------------
1 torch.Size([1, 17])
-batch size–pv size-------------
1 torch.Size([1, 19])

入度为3的节点只有一个,入度为4的节点有两个,入度为5的节点五个,…

对比图的入度信息与pagerank_reduce_func函数内的打印信息,我们发现:入度为3的节点只有一个,入度为4的节点有两个,入度为5的节点五个,…因此,得出:
1)函数update_all并不是将所有节点一起更新;
2)函数update_all将具有同等个数目标节点的节点放在一起更新,形成一个batch,这也是为什么reduce_func(nodes)中的入参中的入参type为dgl.udf.NodeBatch的原因。reduce_func(nodes)中的入参nodes的不同行代表与不同节点相关的数据。

图神经网络框架DGL实现Graph Attention Network (GAT)笔记相关推荐

  1. 【ICLR 2018图神经网络论文解读】Graph Attention Networks (GAT) 图注意力模型

    论文题目:Graph Attention Networks 论文地址:https://arxiv.org/pdf/1710.10903.pdf 论文代码:https://github.com/Peta ...

  2. 图神经网络综述 Survey on Graph Neural Network

    图神经网络综述 Survey on Graph Neural Network 摘要:近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受到人们的关注.图神经网络的出现使其在上述任务中取得了重 ...

  3. 开源图神经网络框架DGL升级:GCMC训练时间从1天缩到1小时,RGCN实现速度提升291倍...

    乾明 编辑整理  量子位 报道 | 公众号 QbitAI 又一个AI框架迎来升级. 这次,是纽约大学.亚马逊联手推出图神经网络框架DGL. 不仅全面上线了对异构图的支持,复现并开源了相关异构图神经网络 ...

  4. 图注意力网络(Graph Attention Network, GAT) 模型解读与代码实现(tensorflow2.0)

    前面的文章,我们讲解了图神经网络三剑客GCN.GraphSAGE.GAT中的两个: 图卷积神经网络(GCN)理解与tensorflow2.0代码实现 GraphSAGE 模型解读与tensorflow ...

  5. Graph Attention Network (GAT) 图注意力模型

    文章目录 1. GAT基本原理 1.1 计算注意力系数(attention coefficient) 1.2 特征加权求和(aggregate) 1.3 multi-head attention 2. ...

  6. Graph Attention Network (GAT) 的Tensorflow版代码解析

    文章目录 代码结构 参数设置 数据加载 特征预处理 模型定义 GAT核心定义:layers.py gat.py base_gattn.py 关于GAT的基本原理解析可查看另一篇博客: Graph At ...

  7. 异构图注意力网络(Heterogeneous Graph Attention Network)

    Heterogeneous Graph Attention Network 这篇论文将会发表在WWW 2019会议上. ABSTRACT GNN在深度学习领域表现出了强大的性能.但是,在包含不同节点和 ...

  8. 亚马逊+纽约大学开源图神经网络框架DGL:新手友好,与主流框架无缝衔接

    量子位 授权转载 | 公众号 QbitAI 最近,纽约大学.纽约大学上海分校.AWS上海研究院以及AWS MXNet Science Team共同开源了一个面向图神经网络及图机器学习的全新框架,命名为 ...

  9. 图神经网络框架DGL教程-第4章:图数据处理管道

    更多图神经网络和深度学习内容请关注: 第4章:图数据处理管道 DGL在 dgl.data 里实现了很多常用的图数据集.它们遵循了由 dgl.data.DGLDataset 类定义的标准的数据处理管道. ...

最新文章

  1. 由一行文本输入框引发的思考
  2. golang操作mysql用例
  3. 多线程和MsgWaitForMultipleObjects
  4. ASP.NET的软件开发规范_转载
  5. 正则表达式应用:实现一个简单的计算器
  6. OpenStack Weekly Rank 2015.08.24
  7. java response.write_@ResponseBody与response.getWriter .write()区别
  8. 清华大学全面审查文科博士论文!
  9. cad怎么向下位移_CAD制图初学入门教程:阵列功能的使用技巧
  10. 信息学奥赛一本通(1082:求小数的某一位)
  11. php安装sg11扩展,Centos下安装SG11加密扩展插件
  12. html 前端传入后台为object_浅谈Object.defineProperty()
  13. ubuntu-12.04.5-desktop-amd64.iso:ubuntu-12.04.5-desktop-amd64:安装Oracle11gR2
  14. 软工文档-操作手册和用户手册的区别
  15. word整个表格首行缩进_WORD取消表格首行缩进
  16. java 实现搜索附近人功能
  17. 对于现在毕业之后,大部分找不到合适的工作,转行到软件开发(大部分是JAVA)的人来说,分享下自己的经验
  18. 倒计时(小时:分钟:秒钟)【JS原生代码】
  19. R语言和医学统计学(7):多元线性回归
  20. dockers安装redis

热门文章

  1. 最适合初学者编写的完整指纹锁代码
  2. tty线路规程(discipline)设置
  3. 如何使用pycharm连接Databricks
  4. C++ 传参时传内置类型时用传值(pass by value)方式效率较高
  5. 头条:每6个中国人就有1个中招的!
  6. 初学RUST-让程序跑起来
  7. python二级第四套答案
  8. 计算机无法共享的原因,不能共享的原因
  9. cmake基础教程(11)add_subdirectory如何添加非子目录的CMakeLists.txt
  10. 云服务器上搭建个人云笔记——leanote