ADSP重点习题

  • 第二章
    • 例题2.1.5
    • 习题2.12
    • 习题2.13
  • 第三章
    • 习题3.2
    • 习题3.7
      • 尤利-沃克方程:
      • PACS(部分自相关序列的计算)
    • 习题3.11
    • 习题3.21
      • 低阶极点模型(低阶AP模型)
      • 低阶零点模型(低阶MA模型)
    • 习题3.23
      • 极点-零点模型

第二章

例题2.1.5

Consider the following harmonic process
x ( n ) = c o s ( 0.1 π n + φ 1 ) + 2 s i n ( 1.5 n + φ 2 ) . x(n)=cos(0.1\pi n+ \varphi_{1})+2sin(1.5n+\varphi_{2})\,. x(n)=cos(0.1πn+φ1​)+2sin(1.5n+φ2​).
where φ 1 \varphi_{1} φ1​ and φ 2 \varphi_{2} φ2​ are IID random variables uniformly distributed in the interval [ 0 , 2 π ] [0,2\pi] [0,2π]. The first component of x ( n ) x(n) x(n) is periodic with ω 1 = 0.1 π \omega_1=0.1\pi ω1​=0.1π and period equal to 20 while the second component is almost periodic with ω 1 = 0.1 π = 1.5 \omega_1=0.1\pi=1.5 ω1​=0.1π=1.5. Thus sequence x ( n ) x(n) x(n) is almost periodic.
The mean of x ( n ) x(n) x(n) is
μ x ( n ) = E { x ( n ) } = E { c o s ( 0.1 π n + φ 1 ) + 2 s i n ( 1.5 n + φ 2 ) } = 0 \mu_x(n)=E\{ x(n)\} \\ = E\{cos(0.1\pi n+ \varphi_{1})+2sin(1.5n+\varphi_{2})\} \\ = 0 μx​(n)=E{x(n)}=E{cos(0.1πn+φ1​)+2sin(1.5n+φ2​)}=0
and the autocorrelation sequence(using mutual independence between φ 1 \varphi_{1} φ1​ and φ 2 \varphi_{2} φ2​) is:
r x ( n 1 , n 2 ) = E { x ( n 1 ) x ∗ ( n 2 ) } = E { c o s ( 0.1 π n 1 + φ 1 ) c o s ( 0.1 π n 2 + φ 1 ) } + E { 2 s i n ( 1.5 n 1 + φ 2 ) 2 c o s ( 1.5 n 2 + φ 2 ) } = 1 2 c o s [ 0.1 π ( n 1 − n 2 ) ] + 2 c o s [ 1.5 ( n 1 − n 2 ) ] r_{x}(n_{1},n_{2})=E\{ x(n_{1})x^{*}(n_{2})\} \\ =E\{cos(0.1\pi n_{1}+\varphi_{1})cos(0.1\pi n_{2}+\varphi_{1})\} \\ +E\{2sin(1.5n_{1}+\varphi_{2})2cos(1.5n_{2}+\varphi_{2})\} \\ =\frac{1}{2}cos[0.1\pi (n_{1}-n_{2})] + 2cos[1.5(n_{1}-n_{2})] rx​(n1​,n2​)=E{x(n1​)x∗(n2​)}=E{cos(0.1πn1​+φ1​)cos(0.1πn2​+φ1​)}+E{2sin(1.5n1​+φ2​)2cos(1.5n2​+φ2​)}=21​cos[0.1π(n1​−n2​)]+2cos[1.5(n1​−n2​)]
or
r x ( l ) = 1 2 c o s 0.1 π l + 2 c o s 1.5 l r_{x}(l)=\frac{1}{2}cos0.1\pi l + 2cos1.5l rx​(l)=21​cos0.1πl+2cos1.5l
The power spectrum R x ( e j w ) R_{x}(e^{jw}) Rx​(ejw) is given by:
R x ( e j w ) = 2 π δ ( ω + 1.5 ) + π 2 δ ( ω + 0.1 π ) + 2 π δ ( ω − 1.5 ) + π 2 δ ( ω − 0.1 π ) R_{x}(e^{jw})=2\pi \delta(\omega+1.5)+\frac{\pi}{2}\delta(\omega+0.1 \pi) \\+2\pi \delta(\omega-1.5)+\frac{\pi}{2}\delta(\omega-0.1 \pi) Rx​(ejw)=2πδ(ω+1.5)+2π​δ(ω+0.1π)+2πδ(ω−1.5)+2π​δ(ω−0.1π)
补充:
积化和差,和差化积公式:

习题2.12

A causal LTI system which is described by the difference equation
y ( n ) = 1 2 y ( n − 1 ) + x ( n ) + 1 3 x ( n − 1 ) y(n)=\frac{1}{2}y(n-1)+x(n)+\frac{1}{3}x(n-1) y(n)=21​y(n−1)+x(n)+31​x(n−1)
is driven by a zero-mean WSS process with autocorrelation r x ( l ) = 0. 5 ∣ l ∣ r_{x}(l)=0.5^{|l|} rx​(l)=0.5∣l∣.
(a)Determine the PSD and the autocorrelation of the output sequence y ( n ) y(n) y(n).
易得: H ( z ) = 1 + 1 3 z − 1 1 − 1 2 z − 1 , ∣ z ∣ < 1 2 R x ( z ) = 3 4 5 4 − 1 2 ( z + z − 1 ) , 1 2 < ∣ z ∣ < 2 H(z)=\frac{1+\frac{1}{3}z^{-1}}{1-\frac{1}{2}z^{-1}}, |z|<\frac{1}{2} \\ R_{x}(z)=\frac{\frac{3}{4}}{\frac{5}{4}-\frac{1}{2}(z+z^{-1})}, \frac{1}{2}<|z|<2 H(z)=1−21​z−11+31​z−1​,∣z∣<21​Rx​(z)=45​−21​(z+z−1)43​​,21​<∣z∣<2

(b)Determine the cross-correlation r x y ( l ) r_{xy}(l) rxy​(l) and cross-PSD R x y ( e j w ) R_{xy}(e^{jw}) Rxy​(ejw) between the input and output signals.

知识点:
R x y ( z ) = H ∗ ( 1 z ∗ ) R x ( z ) R y x ( z ) = H ( z ) R x ( z ) R y ( z ) = H ( z ) H ∗ ( 1 z ∗ ) R x ( z ) R_{xy}(z)=H^{*}(\frac{1}{z^{*}})R_{x}(z) \\ R_{yx}(z)=H(z)R_{x}(z) \\ R_{y}(z)=H(z)H^{*}(\frac{1}{z^{*}})R_{x}(z) Rxy​(z)=H∗(z∗1​)Rx​(z)Ryx​(z)=H(z)Rx​(z)Ry​(z)=H(z)H∗(z∗1​)Rx​(z)

习题2.13

A WSS process with PSD R x ( e j w ) = 1 / ( 1.64 + 1.6 c o s w ) R_{x}(e^{jw})=1/(1.64+1.6cosw) Rx​(ejw)=1/(1.64+1.6cosw) is applied to a causal system described by the following difference equation
y ( n ) = 0.6 y ( n − 1 ) + x ( n ) + 1.25 x ( n − 1 ) y(n)=0.6y(n-1)+x(n)+1.25x(n-1) y(n)=0.6y(n−1)+x(n)+1.25x(n−1)
Compute (a)the PSD of the output and (b)the cross-PSD R x y ( e j w ) R_{xy}(e^{jw}) Rxy​(ejw) between input and output.

涉及知识点同上题

第三章

习题3.2

Consider a zero-mean random sequence x ( n ) x(n) x(n) with PSD
R x ( e j w ) = 5 + 3 c o s w 17 + 8 c o s w R_{x}(e^{jw})=\frac{5+3cosw}{17+8cosw} Rx​(ejw)=17+8cosw5+3cosw​
(a)Determine the innovations representation of the process x ( n ) x(n) x(n)

(b)Find the autocorrelation sequence r x ( l ) r_{x}(l) rx​(l).

知识点:
R x ( z ) = σ w 2 H ( z ) H ∗ ( 1 z ∗ ) R_{x}(z)=\sigma_{w} ^{2}H(z)H^{*}(\frac{1}{z^{*}}) Rx​(z)=σw2​H(z)H∗(z∗1​)

习题3.7

Use the Yule-Walker equations to determine the autocorrelation and partial autocorrelation coefficients of the following AR models,assuming that w ( n ) w(n) w(n)~ W N ( 0 , 1 ) WN(0,1) WN(0,1).
(a) x ( n ) = 0.5 x ( n − 1 ) + w ( n ) x(n)=0.5x(n-1)+w(n) x(n)=0.5x(n−1)+w(n)

(b) x ( n ) = 1.5 x ( n − 1 ) − 0.6 x ( n − 2 ) + w ( n ) x(n)=1.5x(n-1)-0.6x(n-2)+w(n) x(n)=1.5x(n−1)−0.6x(n−2)+w(n)


知识点:

尤利-沃克方程:

对于全极点模型,由(4.2.15)和(4.2.16):
∑ k = 0 P a k r h ( l − k ) = d 0 h ∗ ( − l ) , − ∞ < l < ∞ ∑ k = 0 P a k r h ( l − k ) = 0 , l > 0 \sum_{k=0}^{P}a_{k}r_{h}(l-k)=d_{0}h^{*}(-l),-\infty<l<\infty \\ \sum_{k=0}^{P}a_{k}r_{h}(l-k)=0,l>0 k=0∑P​ak​rh​(l−k)=d0​h∗(−l),−∞<l<∞k=0∑P​ak​rh​(l−k)=0,l>0
写成矩阵形式,即尤利-沃克(Yule-Walker)方程:
[ r h ( 0 ) r h ( 1 ) ⋯ r h ( P ) r h ∗ ( 1 ) r h ( 0 ) ⋯ r h ( P − 1 ) ⋮ ⋮ ⋱ ⋮ r h ∗ ( P ) r h ∗ ( P − 1 ) ⋯ r h ( 0 ) ] [ 1 a 1 ⋮ a p ] = [ ∣ d 0 ∣ 2 0 ⋮ 0 ] \left[\begin{matrix} r_{h}(0) & r_{h}(1) & \cdots & r_{h}(P) \\ r^{*}_{h}(1) & r_{h}(0) & \cdots & r_{h}(P-1) \\ \vdots & \vdots & \ddots & \vdots \\ r_{h} ^{*}(P) & r_{h}^{*}(P-1) & \cdots & r_{h}(0) \end{matrix}\right] \left[ \begin{matrix} 1 \\ a_{1} \\ \vdots \\ a_{p} \end{matrix}\right]=\left[\begin{matrix}|d_0|^2 \\ 0 \\ \vdots \\ 0\end{matrix}\right] ⎣⎢⎢⎢⎡​rh​(0)rh∗​(1)⋮rh∗​(P)​rh​(1)rh​(0)⋮rh∗​(P−1)​⋯⋯⋱⋯​rh​(P)rh​(P−1)⋮rh​(0)​⎦⎥⎥⎥⎤​⎣⎢⎢⎢⎡​1a1​⋮ap​​⎦⎥⎥⎥⎤​=⎣⎢⎢⎢⎡​∣d0​∣20⋮0​⎦⎥⎥⎥⎤​
即为:
R h a = − r h \mathbf{R_{h}a}=-\mathbf{r_{h}} Rh​a=−rh​
同时,我们也可以根据输出过程 x ( n ) x(n) x(n)的自相关表示模型参数:
R x a = − r x \mathbf{R_{x}a}=-\mathbf{r_{x}} Rx​a=−rx​
其中 r x = σ w 2 r h \mathbf{r_{x}}=\sigma_{w}^2 \mathbf{r_{h}} rx​=σw2​rh​,因为 r x ( l ) = σ w 2 r h ( l ) r_{x}(l)=\sigma_{w}^2r_{h}(l) rx​(l)=σw2​rh​(l)

PACS(部分自相关序列的计算)

[ 1 ρ ( 1 ) ⋯ ρ ( m − 1 ) ρ ∗ ( 1 ) 1 ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ ρ ∗ ( m − 1 ) ⋯ ρ ∗ ( 1 ) 1 ] [ a 1 ( m ) a 2 ( m ) ⋮ a m ( m ) ] = [ ρ ∗ ( 1 ) ρ ∗ ( 2 ) ⋮ ρ ∗ ( m ) ] \left[\begin{matrix} 1 & \rho(1) & \cdots & \rho(m-1) \\ \rho^{*}(1) & 1 & \cdots &\vdots \\ \vdots & \vdots & \ddots & \vdots \\ \rho ^{*}(m-1) & \cdots & \rho^{*}(1) & 1 \end{matrix}\right] \left[ \begin{matrix} a^{(m)}_1 \\ a^{(m)}_{2} \\ \vdots \\ a^{(m)}_{m} \end{matrix}\right]=\left[\begin{matrix}\rho^{*}(1) \\ \rho^{*}(2) \\ \vdots \\ \rho^{*}(m) \end{matrix}\right] ⎣⎢⎢⎢⎢⎡​1ρ∗(1)⋮ρ∗(m−1)​ρ(1)1⋮⋯​⋯⋯⋱ρ∗(1)​ρ(m−1)⋮⋮1​⎦⎥⎥⎥⎥⎤​⎣⎢⎢⎢⎢⎡​a1(m)​a2(m)​⋮am(m)​​⎦⎥⎥⎥⎥⎤​=⎣⎢⎢⎢⎡​ρ∗(1)ρ∗(2)⋮ρ∗(m)​⎦⎥⎥⎥⎤​,对于 m > P , a m ( m ) = 0 m>P,a^{(m)}_{m}=0 m>P,am(m)​=0,我们可以使用序列 a m ( m ) , m = 1 , 2 , ⋯ a^{(m)}_{m},m=1,2,\cdots am(m)​,m=1,2,⋯这一被称为部分自相关的序列去确定全极点模型的阶。 ρ ( l ) \rho(l) ρ(l)为归一化的自相关序列, ρ ( l ) = r ( l ) r ( 0 ) \rho(l)=\frac{r(l)}{r(0)} ρ(l)=r(0)r(l)​

习题3.11

Consider the following AR(2) models:(i) x ( n ) = 0.6 x ( n − 1 ) + 0.3 x ( n − 2 ) + w ( n ) x(n)=0.6x(n-1)+0.3x(n-2)+w(n) x(n)=0.6x(n−1)+0.3x(n−2)+w(n) and (ii) x ( n ) = 0.8 x ( n − 1 ) − 0.5 x ( n − 2 ) + w ( n ) x(n)=0.8x(n-1)-0.5x(n-2)+w(n) x(n)=0.8x(n−1)−0.5x(n−2)+w(n),where w ( n ) w(n) w(n)~ W G N ( 0 , 1 ) WGN(0,1) WGN(0,1).
(a)Find the general expression for the normalized autocorrelation sequence ρ ( l ) \rho(l) ρ(l), and determine σ x 2 \sigma_{x}^2 σx2​.


(b)Plot ρ ( l ) 0 15 {\rho(l)}^{15}_{0} ρ(l)015​ and check if the models exhibit pseudoperiodic behavior.

From these plots, x ( n ) = 0.6 x ( n − 1 ) + 0.3 x ( n − 2 ) + w ( n ) x(n) = 0.6x(n − 1) + 0.3x(n − 2) + w(n) x(n)=0.6x(n−1)+0.3x(n−2)+w(n) does not show any pseudo-periodic behavior, while x ( n ) = 0.8 x ( n − 1 ) − 0.5 x ( n − 2 ) + w ( n ) x(n) = 0.8x(n − 1) − 0.5x(n − 2) + w(n) x(n)=0.8x(n−1)−0.5x(n−2)+w(n) does show pseudo-periodic behavior.
( c)Justify your answer in part(b) by ploting the PSD of the two models.
Clearly, the first model has no fundamental frequency.While the second system does indeed have a large no zero frequency component.
知识点:
二阶模型确定好 r ( 0 ) , r ( 1 ) r(0),r(1) r(0),r(1)的值和 r ( l ) r(l) r(l)与 r ( l − 1 ) , r ( l − 2 ) r(l-1),r(l-2) r(l−1),r(l−2)的关系式之后,就可以画出整个 r ( l ) , ρ ( l ) r(l),\rho(l) r(l),ρ(l)曲线。

习题3.21

Consider the MA(2) model x ( n ) = w ( n ) − 0.1 w ( n − 1 ) + 0.2 w ( n − 2 ) x(n)=w(n)-0.1w(n-1)+0.2w(n-2) x(n)=w(n)−0.1w(n−1)+0.2w(n−2).
(a) Is the process x ( n ) x(n) x(n) stationary,why?
The process x ( n ) x(n) x(n) is a linear combination of a stationary process w ( n ) w(n) w(n), therefore x ( n ) x(n) x(n) is stationary.
(b) Is the model minimum-phase,why?

( c) Determine the autocorrelation and the partial autocorrelation of the process.



知识点:

低阶极点模型(低阶AP模型)

一阶全极点模型:AP(1)
一个AP(1)模型有传递函数如下:
H ( z ) = d 0 1 + a z − 1 H(z)=\frac{d_0}{1+az^{-1}} H(z)=1+az−1d0​​,如果 − 1 < a < 1 -1<a<1 −1<a<1,则 H ( z ) H(z) H(z)是最小相位的。PACS长度为一: a 1 = − r ( 1 ) r ( 0 ) = − ρ ( 1 ) a_1=-\frac{r(1)}{r(0)}=-\rho(1) a1​=−r(0)r(1)​=−ρ(1)
滤波器冲激响应: h ( n ) = d 0 ( − a ) n u ( n ) h(n)=d_0(-a)^nu(n) h(n)=d0​(−a)nu(n)
自相关序列: r ( l ) = r ( 0 ) ( − a ) ∣ l ∣ , r ( 0 ) = d 0 2 1 − a 2 r(l)=r(0)(-a)^{|l|},r(0)=\frac{d^2_0}{1-a^2} r(l)=r(0)(−a)∣l∣,r(0)=1−a2d02​​
自相关z变换: R ( z ) = d 0 2 ( 1 + a z − 1 ) ( 1 + a z ) R(z)=\frac{d^2_0}{(1+az^{-1})(1+az)} R(z)=(1+az−1)(1+az)d02​​
频谱: R ( e j w ) = d 0 2 1 + 2 a c o s w + a 2 R(e^{jw})=\frac{d^2_0}{1+2acosw+a^2} R(ejw)=1+2acosw+a2d02​​
二阶全极点模型:AP(2)
AP(2)模型系统函数:
H ( z ) = d 0 1 + a 1 z − 1 + a 2 z − 2 = d 0 ( 1 − p 1 z − 1 ) ( 1 − p 2 z − 1 ) H(z)=\frac{d_0}{1+a_1z^{-1}+a_2z^{-2}}=\frac{d_0}{(1-p_1z^{-1})(1-p_2z^{-1})} H(z)=1+a1​z−1+a2​z−2d0​​=(1−p1​z−1)(1−p2​z−1)d0​​
其中: a 1 = − ( p 1 + p 2 ) , a 2 = p 1 p 2 a_1=-(p_1+p_2),a_2=p_1p_2 a1​=−(p1​+p2​),a2​=p1​p2​
最小相位条件:
− 1 < a 2 < 1 a 2 − a 1 > − 1 a 2 + a 1 > − 1 -1<a_2<1 \\ a_2-a_1>-1 \\ a_2+a_1>-1 −1<a2​<1a2​−a1​>−1a2​+a1​>−1

低阶零点模型(低阶MA模型)

一阶全零点模型:AZ(1)
H ( z ) = G ( 1 + d 1 z − 1 ) H(z)=G(1+d_1z^{-1}) H(z)=G(1+d1​z−1) d 1 d_1 d1​取任何值,模型稳定,当 − 1 < d 1 < 1 -1<d_1<1 −1<d1​<1时相位最小。
R h ( z ) = H ( z ) H ( z − 1 ) = G 2 [ d 1 z + ( 1 + d 1 2 ) + d 1 z − 1 ] R_h(z)=H(z)H(z^{-1})=G^2[d_1z+(1+d_1^2)+d_1z^{-1}] Rh​(z)=H(z)H(z−1)=G2[d1​z+(1+d12​)+d1​z−1]
自相关函数为上式的z反变换,有 r h ( 0 ) = G 2 ( 1 + d 1 2 ) , r h ( 1 ) = r h ( − 1 ) = G 2 d 1 r_h(0)=G^2(1+d_1^2),r_h(1)=r_h(-1)=G^2d_1 rh​(0)=G2(1+d12​),rh​(1)=rh​(−1)=G2d1​,其他情况时r_h(l)=0。归一化自相关函数:
ρ ( l ) = { 1 l = 0 d 1 1 + d 1 2 l = ± 1 0 ∣ l ∣ ≥ 2 \rho(l)=\left\{ \begin{array}{lr} 1 & l=0 \\ \frac{d_1}{1+d_1^2} & l=\pm1\\ 0 & |l|\ge2 \end{array} \right. ρ(l)=⎩⎨⎧​11+d12​d1​​0​l=0l=±1∣l∣≥2​
二阶全零点模型:AZ(2)
系统函数为: H ( z ) = G ( 1 + d 1 z − 1 + d 2 z − 2 ) H(z)=G(1+d_1z^{-1}+d_2z^{-2}) H(z)=G(1+d1​z−1+d2​z−2)
对于 d 1 , d 2 d_1,d_2 d1​,d2​所有值,系统稳定,如果满足:
− 1 < d 2 < 1 d 2 − d 1 > − 1 d 2 + d 1 > − 1 -1<d_2<1 \\ d_2-d_1>-1 \\ d_2+d_1>-1 −1<d2​<1d2​−d1​>−1d2​+d1​>−1
则系统为最小相位系统。归一化自相关函数:
ρ ( l ) = { 1 l = 0 d 1 ( 1 + d 2 ) 1 + d 1 2 + d 2 2 l = ± 1 d 2 1 + d 1 2 + d 2 2 l = ± 2 0 ∣ l ∣ ≥ 2 \rho(l)=\left\{ \begin{array}{lr} 1 & l=0 \\ \frac{d_1(1+d_2)}{1+d_1^2+d_2^2} & l=\pm1\\ \frac{d_2}{1+d_1^2+d_2^2} & l=\pm2 \\ 0 & |l|\ge2 \end{array} \right. ρ(l)=⎩⎪⎪⎪⎨⎪⎪⎪⎧​11+d12​+d22​d1​(1+d2​)​1+d12​+d22​d2​​0​l=0l=±1l=±2∣l∣≥2​
频谱: R h ( e j w ) = G 2 [ ( 1 + d 1 2 + d 2 2 ) + 2 d 1 ( 1 + d 2 ) c o s w + 2 d 2 c o s 2 w ] R_h(e^{jw})=G^2[(1+d_1^2+d_2^2)+2d_1(1+d_2)cosw+2d_2cos2w] Rh​(ejw)=G2[(1+d12​+d22​)+2d1​(1+d2​)cosw+2d2​cos2w]

习题3.23

Determine the coefficients of a PZ(2,1) model with autocorrelation values r h ( 0 ) = 19 , r h ( 1 ) = 9 , r h ( 2 ) = − 5 , r h ( 3 ) = − 7 r_h(0)=19,r_h(1)=9,r_h(2)=-5,r_h(3)=-7 rh​(0)=19,rh​(1)=9,rh​(2)=−5,rh​(3)=−7
易得:
[ 9 19 − 5 9 ] [ a 1 a 2 ] = [ 5 7 ] \left[\begin{matrix} 9 & 19 \\ -5 & 9 \\ \end{matrix}\right] \left[\begin{matrix} a_1 \\ a_2 \end{matrix}\right]=\left[\begin{matrix}5 \\ 7\end{matrix}\right] [9−5​199​][a1​a2​​]=[57​]
所以, a 1 = − 1 / 2 , a 2 = 1 / 2 a_1=-1/2,a_2=1/2 a1​=−1/2,a2​=1/2。由
r a ( l ) = ∑ k = 0 P − ∣ l ∣ a k a k + ∣ l ∣ ∗ , − P ≤ l ≤ P r_a(l)=\sum^{P-|l|}_{k=0}a_ka^{*}_{k+|l|},-P\le l \le P ra​(l)=k=0∑P−∣l∣​ak​ak+∣l∣∗​,−P≤l≤P得: r a ( 0 ) = 3 / 2 , r a ( ± 1 ) = − 3 / 4 , r a ( ± 2 ) = 1 / 2 r_a(0)=3/2,r_a(\pm1)=-3/4,r_a(\pm2)=1/2 ra​(0)=3/2,ra​(±1)=−3/4,ra​(±2)=1/2由:
r d ( l ) = ∑ k = − P P r a ( k ) r h ( l − k ) r_d(l)=\sum_{k=-P}^{P}r_a(k)r_h(l-k) rd​(l)=k=−P∑P​ra​(k)rh​(l−k)得: R d ( z ) = 4 z + 10 + 4 z − 1 = 4 ( 1 + 1 2 z − 1 ) ( z + 2 ) R_d(z)=4z+10+4z^{-1}=4(1+\frac{1}{2z^{-1}})(z+2) Rd​(z)=4z+10+4z−1=4(1+2z−11​)(z+2)取其因果部分得到 D ( z ) D(z) D(z),即 D ( z ) = 2 [ 1 + 1 / ( 2 z − 1 ) ] D(z)=2[1+1/(2z^{-1})] D(z)=2[1+1/(2z−1)]和 d 1 = 1 / 2 d_1=1/2 d1​=1/2。
知识点:

极点-零点模型

x ( n ) = − ∑ k = 1 P a k x ( n − k ) + ∑ k = 0 Q d k w ( n − k ) x(n)=-\sum^{P}_{k=1}a_kx(n-k)+\sum^{Q}_{k=0}d_kw(n-k) x(n)=−k=1∑P​ak​x(n−k)+k=0∑Q​dk​w(n−k)
其冲激响应可以写成递归形式:
h ( n ) = − ∑ k = 1 P a k h ( n − k ) + d n , n ≥ 0 h(n)=-\sum_{k=1}^{P}a_kh(n-k)+d_n,n\ge 0 h(n)=−k=1∑P​ak​h(n−k)+dn​,n≥0
其中, d n = 0 , n > Q d_n=0,n>Q dn​=0,n>Q
自相关:
H ( Z ) H(Z) H(Z)的复谱:
R h ( z ) = H ( z ) H ( 1 z ∗ ) = D ( z ) D ( 1 / z ∗ ) A ( z ) A ( 1 / z ∗ ) = R d ( z ) R a ( z ) R_h(z)=H(z)H(\frac{1}{z^{*}})=\frac{D(z)D(1/z^{*})}{A(z)A(1/z^{*})}=\frac{R_d(z)}{R_a(z)} Rh​(z)=H(z)H(z∗1​)=A(z)A(1/z∗)D(z)D(1/z∗)​=Ra​(z)Rd​(z)​
对于自相关序列 r h ( l ) r_h(l) rh​(l),有:
∑ k = 0 P a k r h ( l − k ) = 0 , l > Q \sum_{k=0}^{P}a_kr_h(l-k)=0,l>Q k=0∑P​ak​rh​(l−k)=0,l>Q,写成矩阵形式为:
[ r h ( Q ) r h ( Q + 1 ) ⋯ r h ( Q + P − 1 ) r h ∗ ( Q − 1 ) r h ( Q ) ⋯ r h ( Q + P − 2 ) ⋮ ⋮ ⋱ ⋮ r h ∗ ( Q − P + 1 ) r h ∗ ( Q − P + 2 ) ⋯ r h ( Q ) ] [ a 1 a 2 ⋮ a p ] = [ ∣ r h ( Q − 1 ) r h ( Q − 2 ) ⋮ r h ( Q − P ) ] \left[\begin{matrix} r_{h}(Q) & r_{h}(Q+1) & \cdots & r_{h}(Q+P-1) \\ r^{*}_{h}(Q-1) & r_{h}(Q) & \cdots & r_{h}(Q+P-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{h} ^{*}(Q-P+1) & r_{h}^{*}(Q-P+2) & \cdots & r_{h}(Q) \end{matrix}\right] \left[ \begin{matrix} a_{1} \\ a_{2} \\ \vdots \\ a_{p} \end{matrix}\right]=\left[\begin{matrix}|r_h(Q-1) \\ r_h(Q-2) \\ \vdots \\ r_h(Q-P)\end{matrix}\right] ⎣⎢⎢⎢⎡​rh​(Q)rh∗​(Q−1)⋮rh∗​(Q−P+1)​rh​(Q+1)rh​(Q)⋮rh∗​(Q−P+2)​⋯⋯⋱⋯​rh​(Q+P−1)rh​(Q+P−2)⋮rh​(Q)​⎦⎥⎥⎥⎤​⎣⎢⎢⎢⎡​a1​a2​⋮ap​​⎦⎥⎥⎥⎤​=⎣⎢⎢⎢⎡​∣rh​(Q−1)rh​(Q−2)⋮rh​(Q−P)​⎦⎥⎥⎥⎤​
同时有:
r a ( l ) = ∑ k = 0 P − ∣ l ∣ a k a k + ∣ l ∣ ∗ , − P ≤ l ≤ P r_a(l)=\sum^{P-|l|}_{k=0}a_ka^{*}_{k+|l|},-P\le l \le P ra​(l)=k=0∑P−∣l∣​ak​ak+∣l∣∗​,−P≤l≤P因为 R d ( z ) = R a ( z ) R h ( z ) R_d(z)=R_a(z)R_h(z) Rd​(z)=Ra​(z)Rh​(z),所以有:
r d ( l ) = ∑ k = − P P r a ( k ) r h ( l − k ) r_d(l)=\sum_{k=-P}^{P}r_a(k)r_h(l-k) rd​(l)=k=−P∑P​ra​(k)rh​(l−k)

ADSP重点习题第二章-第三章(原版书第四章)相关推荐

  1. 2020年余丙森概率统计强化笔记-第三章 二维随机变量及其分布- 第四章 数字特征

    写在前面:余丙森老师的风格,笔者个人还是比较欣赏的,跟下来,是有收获的. 文章目录 第三章 二维随机变量及其分布 第四章 数字特征 第三章 二维随机变量及其分布 第四章 数字特征

  2. 西瓜书第四章阅读笔记

    西瓜书第四章阅读笔记 1.基本概念 1.1 基本算法 1.2 信息熵 1.3 信息增益 2.ID3决策树 3.C4.5决策树 4.CART决策树 5.剪枝操作 6.连续与缺失值处理 7.多变量决策树 ...

  3. ADSP重点习题第六章,第九章(原版书第七章,第十章)

    第六章 知识点 最佳FIR滤波器和预测器的格型结构 为了计算一个mmm阶FLP的前向预测误差,我们使用公式: emf(n)=x(n)+amHxm(n−1)=x(n)+∑k=1mak(m)∗x(n−k) ...

  4. 计算机理论导引第三版答案第四章,《计算理论导引》第四章:可判定性-学习笔记 | 诟屍...

    第四章:可判定性 4 Decidability 关于其他章节的内容,请点这:<计算理论导引>学习笔记 4.1 Decidable Languages 几个可判定的语言 acceptance ...

  5. The Little Book of Semaphores 信号量小书 第四章 经典同步问题 4.3 无饿死互斥

    第四章 经典同步问题 4.3 无饿死的互斥 在上一节中,我们讨论了被称之为绝对饥饿的问题,其中一类线程(读者)允许另一类别(写者)挨饿. 在更基本的层面上,我们必须解决线程饿死的问题,即一个线程可能无 ...

  6. 第四章计算机基础,大学计算机基础第四章.ppt

    <大学计算机基础第四章.ppt>由会员分享,可在线阅读,更多相关<大学计算机基础第四章.ppt(38页珍藏版)>请在人人文库网上搜索. 1.大学电脑基础(版本2).第4章数据库 ...

  7. 【OpenGL】蓝宝书第四章——基础变换:初识向量/矩阵

    目录 3D数学 向量 点乘 叉乘 矩阵 理解变换 视觉坐标 视图变换 模型变换 模型视图的二元性 投影变换 视口变换 模型视图矩阵 矩阵构造 单位矩阵 平移 旋转 缩放 综合变换 运用模型视图矩阵 更 ...

  8. 计算机基础知识第四章测试,计算机基础知识测试题第四章

    第四章 电子表格Excel 一.单项选择题 1.利用"文件"菜单打开Excel 2000的文件,一次可以打开多个不连续的文件,方法是先单击一个文件名,然后按住( )键,再单击其他文 ...

  9. 计算机组成原理第四章例4.1,计算机组成原理第四章.ppt

    文档介绍: 第四章指令系统4.1序4.2指令格式4.3指令类型4.4寻址方式舅骇引袜米匣栅撬井井芬庙从赚懂一纱灶诛呸仆苔樊能侮柿卸鲤兹掷摆牧计算机组成原理第四章计算机组成原理第四章14.1序指令:完成 ...

最新文章

  1. 不同浏览器 ajax,完整的 AJAX 写法(支持多浏览器)
  2. Winform中怎样设置ContextMenuStrip右键菜单的选项ToolStripMenuItem添加照片
  3. 文本输入框内实时检测输入的字数
  4. JSON与js对象序列化
  5. SVN下载谷歌上的代码
  6. 【测试点2超时问题】1046 Shortest Distance (20 分)_21行代码AC
  7. python使用ctypes模块下的windll.LoadLibrary报OSError: [WinError 193] % 不是有效的 Win32 应用程序...
  8. iOS通用链接(Universal Links)突然点击无效的解决方案
  9. Echarts 地理信息可视化:基于地图显示坐标点信息
  10. 杨笠代言电脑遭投诉抵制,网友吵翻!英特尔回应了...
  11. Gitlab利用Webhook实现Push代码后的Jenkins自动构建
  12. Node.js~在linux上的部署~pm2管理工具的使用
  13. 浪潮服务器pxe安装操作系统,规划 PXE 启动的操作系统部署
  14. 冰点还原密码查看工具
  15. Visual Studio 2015 TeamWork With TFS2015
  16. 计算机相关课程考核,计算机专业编程实践类课程考核方法
  17. 微信小程序---简约音乐播放器
  18. win ollvm环境_打造舒适搬砖环境,这些是我最想推介的桌面好物
  19. JAVA小功能手机短信发送
  20. 计算机自动更新的作用,电脑自动更新系统的好处和坏处有哪些?

热门文章

  1. ]许多代码段,没准儿有你需要的 C++ Builder
  2. 利用VBScript写一个定时任务弹窗-提醒休息或喝水
  3. 传感器通道波长单位换算
  4. 微信公众号支付java前后端分离开发
  5. Python3 源码安装
  6. 以下哪个不是python的内置函数_以下哪个 Python 内置函数可以返回列表对象中元素个数。...
  7. iOS 人脸识别拾遗一 坐标转换 截取
  8. c# 实现PC与PLC(三菱Fx系列)串口通信
  9. DataBase Tablespace
  10. 美国标准信息交换标准码