勾股定理

勾股定理

圓形的概念的形成,是人類認知歷史上的一大里程碑。

圓周率

定义1

一个圆形的周长与直径之比:

定义2

以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积比。

圆与外接正方形

定义3

满足

的最小正实数。

y=sin(x)

这里的正弦函数定义为幂级数

百度百科:圆周率

Tamar Friedmann and Carl Hagen
18世纪沃利斯发现的经典圆周率公式

随着能量的增加,从变分解的极限公式里,哈根和弗里德曼找到了沃利斯的圆周率公式。

量子力学理论在20世纪初期诞生,而沃利斯圆周率公式已经存在了数百年,但这两者之间的内在关联直到今天才被发现。

代数

π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。

圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。

数学分析

Leibniz定理:

Wallis公式:

高斯积分:

A graph of the Gaussian function

The colored region between the function and the x-axis has area √π.

高斯分布

斯特林公式:

π的连分数表示:

数论

两个任意自然数是互质的概率是

任取一个任意整数,该整数没有重复质因子的概率为

一个任意整数平均可用

个方法写成两个完全数之和。

概率论

设我们有一个以平行且等距木纹铺成的地板,随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。这就是布丰投针问题。1777 年,布丰自己解决了这个问题——这个概率值是 1/π。

统计学

正态分布的概率密度函数:

圆的内接正多边形和外接正多边形

π can be estimated by computing the perimeters of circumscribed and inscribed polygons.

古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。

公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率

公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率

和约率

歐拉公式

欧拉公式:

[Euler's formula](https://en.m.wikipedia.org/wiki/Euler%27s_formula)

Euler's formula states that, for any [real number]

![](http://latex.codecogs.com/svg.latex?e^{ix}=\cos x+i\sin x)

![](http://latex.codecogs.com/svg.latex?e^{ix}=\cos x+i\sin x)

where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively, with the argument x given in radians.

三角函數分析

微積分

使用微积分,我们将圆象洋葱一样分为薄圆环,递增地求出面积。

对“洋葱”,以 t 为半径的无穷薄圆环,贡献的面积是 2πt dt,周长的长度乘以其无穷小宽度。这样对半径为 r 的圆给出了一个初等积分:

宇宙運行軌道

萬有引力定律

電磁場方程

相對論

相对论的场方程:

量子力學

海森堡不确定性原理:

本文绘图使用:http://zh.numberempire.com/graphingcalculator.php,在次感谢作者!

勾股定理·圓周率·無窮級數·微積分相关推荐

  1. 高等微積分(高木貞治) 1.4節 例2

    若$a>1$,$k>0$,則當$n\to\infty$時,$\frac{a^n}{n^k}\to\infty$. 證明:即證$\log a^n-\log n^k\to \infty$.即證 ...

  2. python求圆周率马青公式_Python 实现丘德诺夫斯基(Chudnovsky)法計算高精度圓周率...

    该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 源码:(需要将 @ 替换成 ASCII空格) # -*- coding: UTF-8 -*- # 丘德诺夫斯基法計算高精度圓周率程序 # Calculat ...

  3. Python 实现丘德诺夫斯基(Chudnovsky)法計算高精度圓周率

    [原创] 本文利用Python自带的高精度整型计算功能,实现丘德诺夫斯基(Chudnovsky)法計算高精度圓周率.计算速度比马青公式要快. 经过艰苦的调试,实现该计算,10万位的计算在秒级完成.以下 ...

  4. 解析函數論 Page 22 級數收斂的一個充分條件

    若$w_k=a_kb_k$,其中 \begin{equation} \label{eq:12.47} |\sum_1^na_k|\leq M(n=1,2,3,\cdots),\lim_{k\to\in ...

  5. 兩隨機變數乘積的期望值

    兩隨機變數乘積的期望值 以下推導參考Distribution of the product of two random variables - Expectation of product of ra ...

  6. 大剑无锋之分布式和微服务分别是什么?【面试推荐】

    提出一个技术,大多都是为了解决某一难题. 分布式: 分布式的提出是:是为了解决单个物理服务器容量和性能瓶颈问题而采用的优化手段. 该领域需要解决的问题极多,在不同的技术层面上,又包括:分布式文件系统. ...

  7. 用免費的電腦資源協助數學的教學,學習與探索_復華中學教師營_中山大學應數系高中數學人才班_2021

    "Talk is cheap. Show me the code." ― Linus Torvalds 摘要: 直到, 在學習 R 語言的過程, 才發現有 Markdown 這種文 ...

  8. Python程式與數據資料分析1

    "Talk is cheap. Show me the code." ― Linus Torvalds 老子第41章 上德若谷 大白若辱 大方無隅 大器晚成 大音希聲 大象無形 道 ...

  9. GeoGebra 與數學探索 1 GeoGebra 入門到進階之整體介紹

    免費的動態數學軟體 GeoGebra 入門與數學探索上的應用 賴鵬仁 國立高雄師範大學數學系 Goal: GeoGebra 除了可以輕鬆的讓我們以即時動態反饋圖形的方式模擬探索幾何的問題, 或是幫我們 ...

最新文章

  1. php 5.4.36 sqlserver,PHP:PHP5.4连接SQLSERVER
  2. .NET 数据访问架构指南(转)
  3. 【RecyclerView】二、RecyclerView 简介 ( RecyclerView 特点 | RecyclerView 涉及到的类 )
  4. 模型参数优化(一):遗传算法
  5. wxWidgets:wxContextMenuEvent类用法
  6. java面试题二十一 异常
  7. The requested URL /**** was not found on this server
  8. 安卓模拟器_exagear模拟器安卓模拟器
  9. 前端面试题Vue-cli目录汇总
  10. Tomcat显示文件列表
  11. MVC添加控制器时提示无法检索“MyContosoUniversity.Models.Student”的元数据
  12. moment获取几小时前_请问怎么把“多少小时前”精确到“多少小时多少分钟前”...
  13. [HTML] 表单和输入
  14. [编写高质量代码:改善java程序的151个建议]建议43 避免对象浅拷贝; 建议44:推荐使用序列化实现对象的深拷贝...
  15. 科研必备:LaTeX论文排版软件的简介,安装与使用教程
  16. TeleportUltra_1.65_PortableSoft离线浏览利器-扒网页神器
  17. 计算机视觉文献综述选题,机器视觉文献综述.doc
  18. 基于同源策略的移动应用细粒度隐私保护技术
  19. rgb 接口lcd 驱动调试
  20. Keep your fork synced

热门文章

  1. android studio查看android source code
  2. 【Node】node编译(windows)
  3. webkit如何实现JS DOM binding—基于V8分析
  4. 性能监控—spotlight监控mysql性能
  5. SDNU 1464.最大最小公倍数(思维)
  6. Spring Cloud Eureka(四):Eureka 配置参数说明
  7. 如何把安全证书导入到java中的cacerts证书库(转)
  8. matlab——sparse函数和full函数
  9. Jfreechart柱形图设置数值显示
  10. JavaScript中的面向对象(1):对象创建模式