线程池

什么是线程池

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序
都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,
还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用
线程池,必须对其实现原理了如指掌。

线程池作用

线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。

如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。

线程池的分类

ThreadPoolExecutor

Java是天生就支持并发的语言,支持并发意味着多线程,线程的频繁创建在高并发及大数据量是非常消耗资源的,因为java提供了线程池。在jdk1.5以前的版本中,线程池的使用是及其简陋的,但是在JDK1.5后,有了很大的改善。JDK1.5之后加入了java.util.concurrent包,java.util.concurrent包的加入给予开发人员开发并发程序以及解决并发问题很大的帮助。这篇文章主要介绍下并发包下的Executor接口,Executor接口虽然作为一个非常旧的接口(JDK1.5 2004年发布),但是很多程序员对于其中的一些原理还是不熟悉,因此写这篇文章来介绍下Executor接口,同时巩固下自己的知识。如果文章中有出现错误,欢迎大家指出。

Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池,那么它的底层原理是怎样实现的呢,这篇就来介绍下ThreadPoolExecutor线程池的运行过程。

corePoolSize: 核心池的大小。 当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中
maximumPoolSize: 线程池最大线程数,它表示在线程池中最多能创建多少个线程;
keepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。
unit: 参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:

newCachedThreadPool

创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:

// 无限大小线程池 jvm自动回收
ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {final int temp = i;newCachedThreadPool.execute(new Runnable() {@Overridepublic void run() {try {Thread.sleep(100);} catch (Exception e) {// TODO: handle exception}System.out.println(Thread.currentThread().getName() + ",i:" + temp);}});
}

总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。

newFixedThreadPool

创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:

ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(5);for (int i = 0; i < 10; i++) {final int temp = i;newFixedThreadPool.execute(new Runnable() {@Overridepublic void run() {System.out.println(Thread.currentThread().getId() + ",i:" + temp);}});}

总结:因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。

定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()

newScheduledThreadPool

创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:

ScheduledExecutorService newScheduledThreadPool = Executors.newScheduledThreadPool(5);for (int i = 0; i < 10; i++) {final int temp = i;newScheduledThreadPool.schedule(new Runnable() {public void run() {System.out.println("i:" + temp);}}, 3, TimeUnit.SECONDS);
}

表示延迟3秒执行。

newSingleThreadExecutor

创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

ExecutorService newSingleThreadExecutor = Executors.newSingleThreadExecutor();for (int i = 0; i < 10; i++) {final int index = i;newSingleThreadExecutor.execute(new Runnable() {@Overridepublic void run() {System.out.println("index:" + index);try {Thread.sleep(200);} catch (Exception e) {// TODO: handle exception}}});}

注意: 结果依次输出,相当于顺序执行各个任务。

线程池原理剖析

提交一个任务到线程池中,线程池的处理流程如下:

1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。

2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。

3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

自定义线程线程池

如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;

如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;

如果队列已经满了,则在总线程数不大于maximumPoolSize的前提下,则创建新的线程

如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;

如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。

public class Test0007 {public static void main(String[] args) {ThreadPoolExecutor executor = new ThreadPoolExecutor(1, 2, 60L, TimeUnit.SECONDS,
new ArrayBlockingQueue<>(3));for (int i = 1; i <= 6; i++) {TaskThred t1 = new TaskThred("任务" + i);executor.execute(t1);}executor.shutdown();}
}class TaskThred implements Runnable {private String taskName;public TaskThred(String taskName) {this.taskName = taskName;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName()+taskName);}}

合理配置线程池

CPU密集

CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行。

CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程),而在单核CPU上,无论你开几个模拟的多线程,该任务都不可能得到加速,因为CPU总的运算能力就那些。

IO密集

IO密集型,即该任务需要大量的IO,即大量的阻塞。在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力浪费在等待。所以在IO密集型任务中使用多线程可以大大的加速程序运行,即时在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。

接着上一篇探讨线程池留下的尾巴,如何合理的设置线程池大小。

要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:

1.  任务的性质:CPU密集型任务、IO密集型任务、混合型任务。

2.  任务的优先级:高、中、低。

3.  任务的执行时间:长、中、短。

4.  任务的依赖性:是否依赖其他系统资源,如数据库连接等。

性质不同的任务可以交给不同规模的线程池执行。

对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。

若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。

当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论: 
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。 
以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。

CPU密集型时,任务可以少配置线程数,大概和机器的cpu核数相当,这样可以使得每个线程都在执行任务

IO密集型时,大部分线程都阻塞,故需要多配置线程数,2*cpu核数

操作系统之名称解释:

某些进程花费了绝大多数时间在计算上,而其他则在等待I/O上花费了大多是时间,

前者称为计算密集型(CPU密集型)computer-bound,后者称为I/O密集型,I/O-bound。

threadpoolexecutor底层实现原理相关推荐

  1. Java并发编程-线程池底层工作原理

    线程池底层工作原理 1.线程池的底层工作流程 1.1.线程池的底层工作原理图 1.2.银行办理业务案例 1.3.线程池的底层工作流程总结 2.线程池用哪个?生产中如何设置合理参数 2.1.在工作中单一 ...

  2. RocketMQ(九):rocketMQ设计的全链路消息零丢失方案?+rocketmq消息中间件事务消息机制的底层实现原理?+half是什么?+half消息是如何对消费者不可见的?

    前言: 目前rocketmq更新已经更新了11篇博客了,预计接下来的2-3篇是暂时的更新进度了,准备更新一下springboot或者是jvm,mysql相关的专题出来,后续更新完事后,再分享一些实战性 ...

  3. Java并发机制的底层实现原理

    Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行,Java中所使用的并发机制依赖于JVM的实现和CPU的指令.本章我们将 ...

  4. HashMap底层实现原理,红黑树,B+树,B树的结构原理,volatile关键字,CAS(比较与交换)实现原理

    HashMap底层实现原理,红黑树,B+树,B树的结构原理,volatile关键字,CAS(比较与交换)实现原理 首先HashMap是Map的一个实现类,而Map存储形式是键值对(key,value) ...

  5. Spring AOP概述及底层实现原理

    Spring AOP概述及底层实现原理 aop概述 AOP全称为Aspect Oriented Programming的缩写,意为:面向切面编程.将程序中公用代码进行抽离,通过动态代理实现程序功能的统 ...

  6. java底层原理书籍_阿里面试题:Java中this和super关键字的底层实现原理

    知道的越多,不知道的就越多,业余的像一棵小草! 编辑:业余草 来源:https://www.xttblog.com/?p=5028 B 站:业余草 最近一个粉丝加我说,接到了阿里的面试,问问我阿里会面 ...

  7. Spring(二)IOC底层实现原理

    IOC原理 将对象创建交给Spring去管理. 实现IOC的两种方式 IOC配置文件的方式 IOC注解的方式 IOC底层实现原理 底层实现使用的技术 1.1 xml配置文件 1.2 dom4j解析xm ...

  8. 《Java并发编程的艺术》一一第2章Java并发机制的底层实现原理

    第2章Java并发机制的底层实现原理 2.1 volatile的应用 Java代码在编译后会变成Java字节码,字节码被类加载器加载到JVM里,JVM执行字节码,最终需要转化为汇编指令在CPU上执行, ...

  9. Java多线程之线程池7大参数、底层工作原理、拒绝策略详解

    Java多线程之线程池7大参数详解 目录 企业面试题 线程池7大参数源码 线程池7大参数详解 底层工作原理详解 线程池的4种拒绝策略理论简介 面试的坑:线程池实际中使用哪一个? 1. 企业面试题 蚂蚁 ...

最新文章

  1. Ruby实例方法和类方法的简写
  2. c# 多线程异步demo
  3. AI Challenger 2018:细粒度用户评论情感分析冠军思路总结
  4. CCleaner Free
  5. 数据标准是物联网大集成应用的核心
  6. BFS解决连同块问题
  7. 浙大计算机学院 数字媒体处理与企业智能计算实验室在哪个校区,浙大计算机学院各大实验室介绍.pdf...
  8. 记一次mybatis-plus遇到的问题
  9. Github 爆火!程序员疯抢的 Java 面试宝典(PDF 版)限时开源
  10. 电脑重启只剩下c盘怎么办_电脑突然只剩下c盘了怎么办?
  11. 软件项目设计文档分类
  12. mysql两个库相互同步_实现两个Mysql数据库之间同步的方案
  13. json解析小冒号:出错
  14. Dreamweaver——滚动字幕制作方法总结
  15. android 联系人 字母索引,Android手机联系人带字母索引的快速查找
  16. 今日新闻早报 精选简报12条 每天一分钟 知晓天下事 2月3日
  17. openshift介绍与应用
  18. C# DataView常见操作
  19. linux命令英文单词缩写,linux常用命令的英文单词缩写
  20. 极简Python:用opencv实现人脸检测,并用本地摄像头实现视频流的人脸识别

热门文章

  1. cordova 插件开发
  2. Jquery$和$$的区别
  3. 选择指定的MySQL数据库
  4. 有关单点登录的几种方案
  5. Silverlight中如何实现上下标的显示
  6. 程序员编程艺术第一~十章集锦与总结(教你如何编程)--持续更新中
  7. HTTPClient系统学习
  8. go defer性能测试
  9. SFP模块光信号强度知识介绍
  10. python2.7安装setuptools-36.6.0报ascii' codec can't decode byte 0xce in position 7问题