来源 | https://zhenbianshu.github.io/

前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。

之前了解一些操作系统的概念,主要是毕业后对自己大学四年的荒废比较懊恼,觉得自己有些对不起计算机专业出身,于是在工作之余抽出时间看了哈工大在网易云课堂的操作系统公开课,自己也读了一本讲操作系统比较浅的书 《Linux内核设计与实现》,而且去年自己用 C 写简单的服务器时,也追根究底了解了更多的系统底层知识。多亏了这些知识,让我对应用层的知识更有掌控感,也在上次排查问题时助了我一臂之力。

前几天另一位同事来问另一个虚拟内存相关的问题,我才发现对于虚拟内存,我的理解还不够深刻,一些概念还有些矛盾。于是翻一下资料重新整理一下这些知识,希望下次在用到它们时能更顺畅。

虚拟内存的由来

毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。

而在现代操作系统中,多任务已是标配。多任务并行,大大提升了 CPU 利用率,但却引出了多个进程对内存操作的冲突问题,虚拟内存概念的提出就是为了解决这个问题。

上图是虚拟内存最简单也是最直观的解释。

操作系统有一块物理内存(中间的部分),有两个进程(实际会更多)P1 和 P2,操作系统偷偷地分别告诉 P1 和 P2,我的整个内存都是你的,随便用,管够。可事实上呢,操作系统只是给它们画了个大饼,这些内存说是都给了 P1 和 P2,实际上只给了它们一个序号而已。只有当 P1 和 P2 真正开始使用这些内存时,系统才开始使用辗转挪移,拼凑出各个块给进程用,P2 以为自己在用 A 内存,实际上已经被系统悄悄重定向到真正的 B 去了,甚至,当 P1 和 P2 共用了 C 内存,他们也不知道。

操作系统的这种欺骗进程的手段,就是虚拟内存。对 P1 和 P2 等进程来说,它们都以为自己占用了整个内存,而自己使用的物理内存的哪段地址,它们并不知道也无需关心。

分页和页表

虚拟内存是操作系统里的概念,对操作系统来说,虚拟内存就是一张张的对照表,P1 获取 A 内存里的数据时应该去物理内存的 A 地址找,而找 B 内存里的数据应该去物理内存的 C 地址。

我们知道系统里的基本单位都是 Byte 字节,如果将每一个虚拟内存的 Byte 都对应到物理内存的地址,每个条目最少需要 8字节(32位虚拟地址->32位物理地址),在 4G 内存的情况下,就需要 32GB 的空间来存放对照表,那么这张表就大得真正的物理地址也放不下了,于是操作系统引入了 页(Page)的概念。

在系统启动时,操作系统将整个物理内存以 4K 为单位,划分为各个页。之后进行内存分配时,都以页为单位,那么虚拟内存页对应物理内存页的映射表就大大减小了,4G 内存,只需要 8M 的映射表即可,一些进程没有使用到的虚拟内存,也并不需要保存映射关系,而且Linux 还为大内存设计了多级页表,可以进一页减少了内存消耗。操作系统虚拟内存到物理内存的映射表,就被称为页表

如果您正在学习Spring Boot,推荐一个连载多年还在继续更新的免费教程:http://blog.didispace.com/spring-boot-learning-2x/

内存寻址和分配

我们知道通过虚拟内存机制,每个进程都以为自己占用了全部内存,进程访问内存时,操作系统都会把进程提供的虚拟内存地址转换为物理地址,再去对应的物理地址上获取数据。CPU 中有一种硬件,内存管理单元 MMU(Memory Management Unit)专门用来将翻译虚拟内存地址。CPU 还为页表寻址设置了缓存策略,由于程序的局部性,其缓存命中率能达到 98%。

以上情况是页表内存在虚拟地址到物理地址的映射,而如果进程访问的物理地址还没有被分配,系统则会产生一个缺页中断,在中断处理时,系统切到内核态为进程虚拟地址分配物理地址。

功能

虚拟内存不仅通过内存地址转换解决了多个进程访问内存冲突的问题,还带来更多的益处。

进程内存管理

它有助于进程进行内存管理,主要体现在:

  • 内存完整性:由于虚拟内存对进程的”欺骗”,每个进程都认为自己获取的内存是一块连续的地址。我们在编写应用程序时,就不用考虑大块地址的分配,总是认为系统有足够的大块内存即可。

  • 安全:由于进程访问内存时,都要通过页表来寻址,操作系统在页表的各个项目上添加各种访问权限标识位,就可以实现内存的权限控制。

数据共享

通过虚拟内存更容易实现内存和数据的共享。

在进程加载系统库时,总是先分配一块内存,将磁盘中的库文件加载到这块内存中,在直接使用物理内存时,由于物理内存地址唯一,即使系统发现同一个库在系统内加载了两次,但每个进程指定的加载内存不一样,系统也无能为力。

而在使用虚拟内存时,系统只需要将进程的虚拟内存地址指向库文件所在的物理内存地址即可。如上文图中所示,进程 P1 和 P2 的 B 地址都指向了物理地址 C。

而通过使用虚拟内存使用共享内存也很简单,系统只需要将各个进程的虚拟内存地址指向系统分配的共享内存地址即可。

SWAP

虚拟内存可以让帮进程”扩充”内存。

我们前文提到了虚拟内存通过缺页中断为进程分配物理内存,内存总是有限的,如果所有的物理内存都被占用了怎么办呢?

Linux 提出 SWAP 的概念,Linux 中可以使用 SWAP 分区,在分配物理内存,但可用内存不足时,将暂时不用的内存数据先放到磁盘上,让有需要的进程先使用,等进程再需要使用这些数据时,再将这些数据加载到内存中,通过这种”交换”技术,Linux 可以让进程使用更多的内存。

另外,如果您正在学习Spring Cloud,推荐一个连载多年还在继续更新的免费教程:https://blog.didispace.com/spring-cloud-learning/

常见问题

在了解虚拟内存时,我也有过很多的问题。

32位和64位

最常见的就是 32位和64位的问题了。

CPU 通过物理总线访问内存,那么访问地址的范围就受限于机器总线的数量,在32位机器上,有32条总线,每条总线有高低两种电位分别代表 bit 的 1 和 0,那么可访问的最大地址就是 2^32bit = 4GB,所以说 32 位机器上插入大于 4G 的内存是无效的,CPU 访问不到多于 4G 的内存。

但 64位机器并没有 64位总线,而且其最大内存还要受限于操作系统,Linux 目前支持最大 256G 内存。

根据虚拟内存的概念,在 32 位系统上运行 64 位软件也并无不可,但由于系统对虚拟内存地址的结构设计,64位的虚拟地址在32位系统内并不能使用。

直接操作物理内存

操作系统使用了虚拟内存,我们想要直接操作内存该怎么办呢?

Linux 会将各个设备都映射到 /dev/ 目录下的文件,我们可以通过这些设备文件直接操作硬件,内存也不例外。在 Linux 中,内存设置被映射为 /dev/mem,root 用户通过对这个文件读写,可以直接操作内存。

JVM 进程占用虚拟内存过多

使用 TOP 查看系统性能时,我们会发现在 VIRT 这一列,Java 进程会占用大量的虚拟内存。

导致这种问题的原因是 Java 使用 Glibc 的 Arena 内存池分配了大量的虚拟内存并没有使用。此外,Java 读取的文件也会被映射为虚拟内存,在虚拟机默认配置下 Java 每个线程栈会占用 1M 的虚拟内存。具体可以查看 为什么linux下多线程程序如此消耗虚拟内存。

而真实占用的物理内存要看 RES (resident) 列,这一列的值才是真正被映射到物理内存的大小。

常用管理命令

我们也可以自己来管理 Linux 的虚拟内存。

查看系统内存状态

查看系统内存情况的方式有很多,free、 vmstat等命令都可输出当前系统的内存状态,需要注意的是可用内存并不只是 free 这一列,由于操作系统的 lazy 特性,大量的 buffer/cache 在进程不再使用后,不会被立即清理,如果之前使用它们的进程再次运行还可以继续使用,它们在必要时也是可以被利用的。

此外,通过 cat /proc/meminfo 可以查看系统内存被使用的详细情况,包括脏页状态等。详情可参见:/PROC/MEMINFO之谜。

pmap

如果想单独查看某一进程的虚拟内存分布情况,可以使用 pmap pid 命令,它会把虚拟内存各段的占用情况从低地址到高地址都列出来。

可以添加 -XX 参数来输出更详细的信息。

修改内存配置

我们也可以修改 Linux 的系统配置,使用 sysctl vm [-options] CONFIG 或 直接读写 /proc/sys/vm/ 目录下的文件来查看和修改配置。

SWAP 操作

虚拟内存的 SWAP 特性并不总是有益,放任进程不停地将数据在内存与磁盘之间大量交换会极大地占用 CPU,降低系统运行效率,所以有时候我们并不希望使用 swap。

我们可以修改 vm.swappiness=0 来设置内存尽量少使用 swap,或者干脆使用 swapoff 命令禁用掉 SWAP。

小结

虚拟内存的概念非常容易理解,但是它会衍生出来的一系列非常复杂的知识。本文只讲了些基本原理,略过了很多细节,比如虚拟内存寻址中段寄存器的使用,操作系统使用虚拟内存增强缓存、缓冲区的应用等,有机会单独拿出来说。

- END -

往期推荐

好多大咖曾看他的书学习Java,如今这个男人的新作来了!

Lombok!代码简洁神器还是代码“亚健康”元凶?

IntelliJ IDEA官方宣布中文汉化包正式发布

令人笑喷的56个代码注释,你写过多少?

还在用 Random生成随机数?试试 ThreadLocalRandom,超好用!

喜欢本文欢迎转发,关注我订阅更多精彩

关注我回复「加群」,加入Spring技术交流群

关于虚拟内存,你需要了解的一些概念相关推荐

  1. 地址空间和虚拟内存(转载)http://topic.csdn.net/u/20090619/10/4c62a13b-536b-4b0a-af09-2271c6a104e1.html...

    我对于虚拟地址空间和虚拟内存的理解:32位的CPU中,一个进程都有个4G的虚拟地址空间:虚拟内存是存在于硬盘上的页交换文件. 前段时间听了一个报告,报告人竟然一再强调说MMU管理的是虚拟内存,个人认为 ...

  2. [转]十问 Linux 虚拟内存管理 (glibc)

    最近在做 MySQL 版本升级时( 5.1->5.5 ) , 发现了 mysqld 疑似"内存泄露"现象,但通过 valgrind 等工具检测后,并没发现类似的问题.因此,需 ...

  3. 什么是内存(二):虚拟内存

    通过上一篇文章的扯淡,我们应该已经明白了存储器的层次结构,技术细节很复杂,但是思想却不难理解,因为就是很简单的缓存思想.那么本文我们开始讨论关于内存的另一个话题.虚拟内存.其实思想也是很容易理解的. ...

  4. 操作系统课设--虚拟内存

    山东大学操作系统课设lab7 实验七 虚拟内存(lab7) 实验目的 实验环境 实验思路 关键源代码注释以及程序说明 调试记录 实验七 虚拟内存(lab7) 实验目的 在未实现虚拟内存管理之前,Nac ...

  5. Linux内存管理:为什么 Linux 需要虚拟内存?为什么 Linux 默认页大小是 4KB?

    Table of Contents 为什么 Linux 需要虚拟内存? 缓存 内存管理 内存保护 总结 推荐阅读 为什么 Linux 默认页大小是 4KB? 页表项 碎片化 总结 推荐阅读 为什么 L ...

  6. 虚拟内存技术的来龙去脉(上)

    1. 虚拟内存简介 每个现代计算机系统都配有高速可随机访问存储器,称为主存储器.物理内存或者直接称为内存.内存是用于存放代码和数据的硬件,它是处理器能直接寻址的存储空间,内存由半导体器件制成,特点是存 ...

  7. Linux虚拟内存管理

    Linux的虚拟内存管理有几个关键概念: 每个进程有独立的虚拟地址空间,进程访问的虚拟地址空间并不是真正的物理地址 虚拟地址可通过每个进程上页表与物理地址进行映射,获得真正的物理地址 如果虚拟地址所对 ...

  8. 十问 Linux 虚拟内存管理 (glibc)

      最近在做 MySQL 版本升级时( 5.1->5.5 ) , 发现了 mysqld 疑似"内存泄露"现象,但通过 valgrind 等工具检测后,并没发现类似的问题.因此 ...

  9. 十问 Linux 虚拟内存管理 (glibc) (一二 )

    转自:https://zhuanlan.zhihu.com/p/26855207 最近在做 MySQL 版本升级时( 5.1->5.5 ) , 发现了 mysqld 疑似"内存泄露&q ...

  10. 【Linux】十问 Linux 虚拟内存管理

    Linux 的虚拟内存管理有几个关键概念: 每个进程有独立的虚拟地址空间,进程访问的虚拟地址并不是真正的物理地址 虚拟地址可通过每个进程上页表与物理地址进行映射,获得真正物理地址 如果虚拟地址对应物理 ...

最新文章

  1. R语言dplyr包filter函数通过逻辑条件过滤数据实战
  2. .net c# 正则表达式 平衡组/递归匹配
  3. vim 如何将特定范围行注释掉,以及在末尾添加注释
  4. 【已解决】width与max-width理解
  5. LeetCode 980. 不同路径 III(DFS+回溯)
  6. Size Balanced Tree
  7. BoolToVisibilityConverter In WPF
  8. python反编译难度_记录一次python3.7反编译过程
  9. 互联网数仓之:Lambda架构 vs Kappa架构
  10. C语言入门实战(12):求自然常数e的值
  11. LaTex使用技巧19:罗马数字输入(大写和小写)
  12. Python wxpython篇 | Python生态库之图形用户界面开发库 “wxPython “ 的安装及使用(附. 使用pyinstaller 库打包Python随机点名小程序程序.exe文件)
  13. mcpe服务器网页控制台教程,mcpe服务器指令
  14. 【Linux修炼】6.gcc/g++及Makefile【工具篇】
  15. 迅雷下载文件名为download的解决办法
  16. 什么是微信防火墙_【听课】第4节 什么是“合并单元”(MU)?智能站中的合并单元有什么作用?...
  17. 打造完美自用Ubuntu 18.04 开发环境,解决qq微信网易云
  18. EF Core 既生,何生
  19. 程序员该如何应对大龄危机
  20. 汽车报户计算机自动选号,【国内】全国将统一机动车号牌选号 号码全由计算机随机投放...

热门文章

  1. 理解Android系统的进程间通信原理------RPC机制
  2. HTML5 特性检测:Canvas(画布)
  3. linux qemu 报错 Unable to reserve 0xfffff000 bytes of virtual address space at 0x1000 解决方法
  4. golang map 存储函数
  5. linux yum仓库建立 createrepo 命令简介
  6. tcp socket 异常关闭总结
  7. Nmap源码分析(端口扫描)
  8. VC++如何判断当前操作系统是32位还是64位?
  9. Windows热键注册(反汇编方法 查看win32api 原理)
  10. Cygwin获取root权限