libtool 是一个通用库支持脚本,将使用动态库的复杂性隐藏在统一、可移植的接口中;使用libtool的标准方法,可以在不同平台上创建并调用动态库。可以认为libtool是gcc的一个抽象,其包装了gcc(或者其他的编译器),用户无需知道细节,只要告诉libtool需要编译哪些库即可,libtool将处理库的依赖等细节。libtool只与后缀名为lo、la为的libtool文件打交道。(lo是目标文件,la是库文件)

libtool主要的一个作用是在编译大型软件的过程中解决了库的依赖问题;将繁重的库依赖关系的维护工作承担下来,从而释放了程序员的人力资源。libtool提供统一的接口,隐藏了不同平台间库的名称的差异等细节,0生成一个抽象的后缀名为la高层库libxx.la(其实是个文本文件),并将该库对其它库的依赖关系,都写在该la的文件中。该文件中的dependency_libs记录该库依赖的所有库(其中有些是以.la文件的形式加入的);libdir则指出了库的安装位置;library_names记录了共享库的名字;old_library记录了静态库的名字。

当编译过程到link阶段的时候,如果有下面的命令:

$libtool --mode=link gcc -o myprog -rpath /usr/lib –L/usr/lib –la

libtool会到/usr/lib路径下去寻找liba.la,然后从中(也就是从liba.la中)读取实际的共享库的名字(library_names中记录了该名字,比如liba.so)和路径(lib_dir中记录了,比如libdir=’/usr/lib’),返回诸如/usr/lib/liba.so的参数给激发出的gcc命令行。

如果liba.so依赖于库/usr/lib/libb.so,则在liba.la中将会有dependency_libs=’-L/usr/lib -lb’或者dependency_libs=’/usr/lib/libb.la’的行,如果是前者,其将直接把“-L/usr/lib –lb”当作参数传给gcc命令行;如果是后者,libtool将从/usr/lib/libb.la中读取实际的libb.so的库名称和路径,然后组合成参数“/usr/lib/libb.so”传递给gcc命令行。

当要生成的文件是诸如libmylib.la的时候,比如:

$libtool --mode=link gcc -o libmylib.la -rpath /usr/lib –L/usr/lib –la

其依赖的库的搜索基本类似,只是在这个时候会根据相应的规则生成相应的共享库和静态库。

注意:libtool在链接的时候只会涉及到后缀名为la的libtool文件;实际的库文件名称和库安装路径以及依赖关系是从该文件中读取的。

2 为何使用 -Wl,--rpath-link -Wl,DIR?

使用libtool解决编译问题看上去没什么问题:库的名称、路径、依赖都得到了很好的解决。但下结论不要那么着急,一个显而易见的问题就是:并不是所有的库都是用libtool编译的。

比如上面那个例子,

$libtool --mode=link gcc -o myprog -rpath /usr/lib –L/usr/lib –la

如果liba.so不是使用libtool工具生成的,则libtool此时根本找不到liba.la文件(不存在该文件)。这种情况下,libtool只会把“–L/usr/lib –la”当作参数传递给gcc命令行。

考虑以下情况:要从myprog.o文件编译生成myprog,其依赖于库liba.so(使用libtool生成),liba.so又依赖于libb.so(libb.so的生成不使用libtool),而且由于某种原因,a对b的依赖并没有写入到liba.la中,那么如果用以下命令编译:

$libtool --mode=link gcc -o myprog -rpath /usr/lib –L/usr/lib –la

激发出的gcc命令行类似于下面:

gcc –o myprog /usr/lib/liba.so

由于liba.so依赖于libb.so(这种依赖可以用readelf读liba.so的ELF文件看到),而上面的命令行中,并没有出现libb.so,于是,可能会出现问题。

说“可能”,是因为如果在本地编译的情况下,gcc在命令行中找不到一个库(比如上面的liba.so)依赖的其它库(比如libb.so),链接器会按照某种策略到某些路径下面去寻找需要的共享库:

1. 所有由'-rpath-link'选项指定的搜索路径.

2. 所有由'-rpath'指定的搜索路径. '-rpath'跟'-rpath_link'的不同之处在于,由'-rpath'指定的路径被包含在可执行文件中,并在运行时使用, 而'-rpath-link'选项仅仅在连接时起作用.

3. 在一个ELF系统中, 如果'-rpath'和'rpath-link'选项没有被使用, 会搜索环境变量'LD_RUN_PATH'的内容.它也只对本地连接器起作用.

4. 在SunOS上, '-rpath'选项不使用, 只搜索所有由'-L'指定的目录.

5. 对于一个本地连接器,环境变量'LD_LIBRARY_PATH'的内容被搜索.

6. 对于一个本地ELF连接器,共享库中的`DT_RUNPATH'和`DT_RPATH'操作符会被需要它的共享库搜索. 如果'DT_RUNPATH'存在了, 那'DT_RPATH'就会被忽略.

7. 缺省目录, 常规的,如'/lib'和'/usr/lib'.

8. 对于ELF系统上的本地连接器, 如果文件'/etc/ld.so.conf'存在, 这个文件中有的目录会被搜索.

从以上可以看出,在使用本地工具链进行本地编译情况下,只要库存在于某个位置,gcc总能通过如上策略找到需要的共享库。但在交叉编译下,上述八种策略,可以使用的仅仅有两个:-rpath-link,-rpath。这两个选项在上述八种策略当中优先级最高,当指定这两个选项时,如果链接需要的共享库找不到,链接器会优先到这两个选项指定的路径下去搜索需要的共享库。通过上面的描述可以看到:-rpath指定的路径将被写到可执行文件中;-rpath-link则不会;我们当然不希望交叉编译情况下使用的路径信息被写进最终的可执行文件,所以我们选择使用选项-rpath-link。

gcc的选项“-Wl,--rpath-link –Wl,DIR”会把-rpath-link选项及路径信息传递给链接器。回到上面那个例子,如果命令行中没有出现libb.so,但gcc指定了“-Wl,--rpath-link –Wl,DIR”,则链接器找不到libb.so的时候,会首先到后面-rpath-link指定的路径去寻找其依赖的库。此处我们使用的编译命令的示例是使用unicore平台的工具链。

$ unicore32-linux-gcc –o myprog /usr/lib/liba.so \

-Wl,--rpath-link -Wl,/home/UNITY_float/install/usr/lib

这样,编译器会首先到“/home/UNITY_float/install/usr/lib”下面去搜索libb.so

libtool如何把选项“-Wl,--rpath-link –Wl,DIR”传递给gcc?libtool中有一个变量“hardcode_libdir_flag_spec”,该变量本来是传递“-rpath”选项的,但我们可以修改它,添加我们需要的路径,传递给unicore32-linux-gcc。

“hardcode_libdir_flag_spec”原来的定义如下:

hardcode_libdir_flag_spec="\${wl}--rpath \${wl}\$libdir"

我们修改后的定义如下:

hardcode_libdir_flag_spec="\${wl}—rpath-link \${wl}\$libdir \

-Wl,--rpath-link -Wl,/home/UNITY_float/install/usr/lib \

-Wl,--rpath-link -Wl,/home/UNITY_float/install/usr/X11R6/lib "

这样,当libtool在“--mode=link”的模式下,就会把选项“-Wl,--rpath-link –Wl,DIR”传递给gcc编译器了。

============================================

Libtool创建和使用linux下动态库

文件fun.c,fun.h,hello.c,hello.h,main.c动态库函数都在fun.c和hello.c里面
fun.c:

int add(int a, int b)
{
return a+b;
}

fun.h:

#ifndef _FUN_H_11
#define _FUN_H_11
int add(int a, int b);
#endif
----------------------------

hello.c:

#i nclude <stdio.h>
void output(char *ss)
{
printf("HELLO   %s\n", ss);
}

hello.h

#ifndef HELLO_H_111
#define HELLO_H_111
void output(char *ss);
#endif
----------------------------

main.c:

#i nclude <stdio.h>
#i nclude "hello.h"
#i nclude "fun.h"
void
main()
{
output("world");
printf("Test Value:%d\n", add(1, 2));
}

使用libtools创建和使用安装动态库步骤:

(1)
libtool --mode=compile gcc -g -O -c hello.c
libtool --mode=compile gcc -g -O -c fun.c
libtool --mode=compile gcc -g -O -c main.c
#生成各自的o文件

(2)
libtool --mode=link gcc -g -O -o libhello.la hello.lo fun.lo -rpath /usr/local/lib -lm 
#连接成动态库文件

(3)
libtool --mode=link gcc -g -O -o test main.o libhello.la -lm
#连接生成可执行文件test

(4)
libtool --mode=install cp libhello.la /usr/local/lib/libhello.la
libtool --mode=install install -c libhello.la /usr/local/lib/libhello.la
libtool -n --mode=finish /usr/local/lib
libtool install -c test /usr/local/bin/test
#安装动态库

然后就可以运行/usr/local/bin/test了,当然路径可以任意设置,这是手动过程,写成Makefile文件为:

OBJS = fun.o hello.o
LO_OBJS = main.lo fun.lo hello.lo
PACKAGE_VERSION = 1:1:1
LIBDIR=/usr/local/lib

all : test

install : libhello.la

test : libhello.la main.o
libtool --mode=link gcc -g -O -o test main.o libhello.la -lm

libhello.la : $(OBJS)
libtool gcc -g -O -o libhello.la $(LO_OBJS) -rpath ${LIBDIR} -lm -version-info ${PACKAGE_VERSION}

main.o : main.c fun.h hello.h
libtool --mode=compile gcc -g -O -c main.c

fun.o : fun.c fun.h
libtool --mode=compile gcc -g -O -c fun.c

hello.o : hello.c hello.h
libtool --mode=compile gcc -g -O -c hello.c

clean :
@rm -f OBJ/* lib*.a *~ *core *.lo *.o *.la
@rm -rf .libs

转载于:https://blog.51cto.com/mooon/908871

libtool的工作原理相关推荐

  1. Nginx系列1: 正向代理和反向代理、Nginx工作原理、Nginx常用命令和升级、搭建Nginx负载均衡

    一.什么是正向代理.什么是反向代理 1. 正向代理,意思是一个位于客户端和原始服务器(origin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器 ...

  2. 【Nginx系列】Nginx配置使用与工作原理

    热门系列: [Linux系列]Linux实践(一):linux常用命令 程序人生,精彩抢先看 目录 1.Nginx介绍 1.1 什么是Nginx? 1.2 Nginx能做什么 1.3 为什么要选择用N ...

  3. 2021年大数据ELK(十八):Beats 简单介绍和FileBeat工作原理

    全网最详细的大数据ELK文章系列,强烈建议收藏加关注! 新文章都已经列出历史文章目录,帮助大家回顾前面的知识重点. 目录 Beats 简单介绍和FileBeat工作原理 一.Beats 二.FileB ...

  4. 深入理解Nginx工作原理

    1 反向代理 1.1 概念 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给intern ...

  5. 高频开关电源原理_程控开关电源的工作原理

    本文介绍了开关电源的工作原理以及它的特点. 程控开关电源要要比线性电源复杂得多. 下图是典型的开关电源工作原理图. 首先对 220 V/50Hz 的 AC 输入,通过桥式整流器进行整流 储能电容对整流 ...

  6. Servlet生命周期与工作原理

    Servlet生命周期分为三个阶段: 1,初始化阶段  调用init()方法 2,响应客户请求阶段 调用service()方法 3,终止阶段 调用destroy()方法 Servlet初始化阶段: 在 ...

  7. java的工作原理你知道吗_每天用Mybatis,但是Mybatis的工作原理你真的知道吗?

    近来想写一个mybatis的分页插件,但是在写插件之前肯定要了解一下mybatis具体的工作原理吧,于是边参考别人的博客,边看源码就开干了. 核心部件:SqlSession Executor Stat ...

  8. linux网络管理原理,Linux__网络管理(物理层 数据链路层 网络层工作原理)

    千锋云计算逆战班11点后打卡 今天学习后,进行复习下,物理层 数据链路层  网络层 的工作原理 物理层关心的两件事情:1.信号 2.介质 先说信号:信号分为模拟信号和数字信号 模拟信号: 模拟信号,不 ...

  9. HDD工作原理 导图

    以上导图介绍了我们使用的 (HDD)机械硬盘的基本构造以及核心工作原理,对于大家扫盲有所帮助 参考文档: https://blog.csdn.net/yizhaoxin/article/details ...

最新文章

  1. WMI技术介绍和应用——接收事件
  2. git reset到之前的某一个commit或者恢复之前删除的某一个分支
  3. pygame 移开的矩形留痕迹_Python之pygame学习矩形区域(5)
  4. oracle性能调整的九大要点:四诊断latch竞争
  5. 不插电的计算机科学百度云,【精品】不插电的计算机科学.pdf
  6. 线性条件随机场代码解读
  7. vue从哪看组件版本_VUE源码解析之路
  8. KKK下拉框lookupedit绑定数据时,添加一条固定数据
  9. 图片转字符画(已打包)
  10. python将png转为jpg,Python OpenCV读取png图像转成jpg图像存储的方法
  11. roc曲线spss怎么做_如何用SPSS做ROC曲线分析
  12. Unity 代码帧动画
  13. win7定时关机命令_只需9步教你轻松设置win7系统定时关机,无需任何工具
  14. JMeter工具:场景设计,场景设置,场景运行,性能参数配置,测试监控
  15. 微信公众号接口调试流程
  16. eclipse的plugins导入hadoop-eclipse-plugin-2.6.0.jar后Preference下没有hadoop Map/Reduce的解决方法
  17. cad注释比例和打印比例不一样_CAD注释性比例该如何设置?看完你就懂了
  18. 使用ultraISO制作U盘制作系统盘提醒:设备忙,请退出所有在运行的应用。
  19. Vue 中 Echarts绘图 在一个圆环图或多个圆环图中间插入图片 插入文字(考虑到浏览器大小兼容问题)
  20. 传音控股年营收494亿:增长31% 源科基金套现超10亿

热门文章

  1. 马斯克用实力赢得信任!SpaceX获NASA批准,可用“二手”火箭和飞船载人航天
  2. 打开深度神经网络黑箱:竟是模块化的?图聚类算法解密权重结构 | ICML 2020
  3. Hibernate学习第一天
  4. 如何用R和API免费获取Web数据?
  5. pandas 索引与列相互转化
  6. cdoj916-方老师的分身 III 【拓扑排序】
  7. 116. Populating Next Right Pointers in Each Node
  8. ISP线路类型【整理】
  9. 在PHPStorm中支持ThinkPHP代码提示
  10. 数据防泄漏(中文版)