摘要:本文深入分析了Linux环境下文件、进程及模块的高级隐藏技术,其中包括:Linux可卸载模块编程技术、修改内存映象直接对系统调用进行修改技术,通过虚拟文件系统proc隐藏特定进程的技术。

  隐藏技术在计算机系统安全中应用十分广泛,尤其是在网络攻击中,当攻击者成功侵入一个系统后,有效隐藏攻击者的文件、进程及其加载的模块变得尤 为重要。本文将讨论Linux系统中文件、进程及模块的高级隐藏技术,这些技术有的已经被广泛应用到各种后门或安全检测程序之中,而有一些则刚刚起步,仍 然处在讨论阶段,应用很少。

  1.隐藏技术

  1.1.Linux下的中断控制及系统调用

  Intel x86系列微机支持256种中断,为了使处理器比较容易地识别每种中断源,把它们从0~256编号,即赋予一个中断类型码n,Intel把它称作中断向量。

  Linux用一个中断向量(128或者0x80)来实现系统调用,所有的系统调用都通过唯一的入口system_call来进入内核,当用户动 态进程执行一条int 0x80汇编指令时,CPU就切换到内核态,并开始执行system_call函数,system_call函数再通过系统调用表 sys_call_table来取得相应系统调用的地址进行执行。系统调用表sys_call_table中存放所有系统调用函数的地址,每个地址可以用 系统调用号来进行索引,例如sys_call_table[NR_fork]索引到的就是系统调用sys_fork()的地址。

  Linux用中断描述符(8字节)来表示每个中断的相关信息,其格式如下:

  偏移量31….16  一些标志、类型码及保留位
段选择符      偏移量15….0

  所有的中断描述符存放在一片连续的地址空间中,这个连续的地址空间称作中断描述符表(IDT),其起始地址存放在中断描述符表寄存器(IDTR)中,其格式如下:

  32位基址值  界限

  其中各个结构的相应联系可以如下表示:

通过上面的说明可以得出通过IDTR寄存器来找到system_call函数地址的方法:根据IDTR寄存器找到中断描述符表,中断描述符表的第0x80项即是system_call函数的地址,这个地址将在后面的讨论中应用到。

  1.2.Linux 的LKM(可装载内核模块)技术

  为了使内核保持较小的体积并能够方便的进行功能扩展,Linux系统提供了模块机制。模块是内核的一部分,但并没有被编译进内核,它们被编译成 目标文件,在运行过程中根据需要动态的插入内核或者从内核中移除。由于模块在插入后是作为Linux内核的一部分来运行的,所以模块编程实际上就是内核编 程,因此可以在模块中使用一些由内核导出的资源,例如Linux2.4.18版以前的内核导出系统调用表(sys_call_table)的地址,这样就 可以根据该地址直接修改系统调用的入口,从而改变系统调用。在模块编程中必须存在初始化函数及清除函数,一般情况下,这两个函数默认为 init_module()以及clearup_module(),从2.3.13内核版本开始,用户也可以给这两个函数重新命名,初始化函数在模块被插 入系统时调用,在其中可以进行一些函数及符号的注册工作,清除函数则在模块移除系统时进行调用,一些恢复工作通常在该函数中完成。

  1.3.Linux下的内存映像

  /dev/kmem是一个字符设备,是计算机主存的映像,通过它可以测试甚至修改系统,当内核不导出sys_call_table地址或者不允许插入模块时可以通过该映像修改系统调用,从而实现隐藏文件、进程或者模块的目的。

  1.4.proc 文件系统

  proc文件系统是一个虚拟的文件系统,它通过文件系统的接口实现,用于输出系统运行状态。它以文件系统的形式,为操作系统本身和应用进程之间 的通信提供了一个界面,使应用程序能够安全、方便地获得系统当前的运行状况何内核的内部数据信息,并可以修改某些系统的配置信息。由于proc以文件系统 的接口实现,因此可以象访问普通文件一样访问它,但它只存在于内存之中。

  2.技术分析

  2.1 隐藏文件

  Linux系统中用来查询文件信息的系统调用是sys_getdents,这一点可以通过strace来观察到,例如strace ls 将列出命令ls用到的系统调用,从中可以发现ls是通过sys_getedents来执行操作的。当查询文件或者目录的相关信息时,Linux系统用 sys_getedents来执行相应的查询操作,并把得到的信息传递给用户空间运行的程序,所以如果修改该系统调用,去掉结果中与某些特定文件的相关信 息,那么所有利用该系统调用的程序将看不见该文件,从而达到了隐藏的目的。首先介绍一下原来的系统调用,其原型为:
int sys_getdents(unsigned int fd, struct dirent *dirp,unsigned int count)
其中fd为指向目录文件的文件描述符,该函数根据fd所指向的目录文件读取相应dirent结构,并放入dirp中,其中count为dirp中返回的数据量,正确时该函数返回值为填充到dirp的字节数。下图是修改后的系统调用hacked_getdents执行流程。

图 系统调用hacked_getdents执行流程

  图中的hacked_getdents函数实际上就是先调用原来的系统调用,然后从得到的dirent结构中去除与特定文件名相关的文件信息,从而应用程序从该系统调用返回后将看不到该文件的存在。

  应该注意的是,一些较新的版本中是通过sys_getdents64来查询文件信息的,但其实现原理与sys_getdents基本相同,所以在这些版本中仍然可以用与上面类似的方法来修改该系统调用,隐藏文件。

  2.2 隐藏模块

  上面分析了如何修改系统调用以隐藏特定名字的文件,在实际的处理中,经常会用模块来达到修改系统调用的目的,但是当插入一个模块时,若不采取任 何隐藏措施,很容易被对方发现,一旦对方发现并卸载了所插入的模块,那么所有利用该模块来隐藏的文件就暴露了,所以应继续分析如何来隐藏特定名字的模块。 Linux中用来查询模块信息的系统调用是sys_query_module,所以可以通过修改该系统调用达到隐藏特定模块的目的。首先解释一下原来的系 统调用,原来系统调用的原型为:
int sys_query_module(const char *name, int which, void *buf, size_t bufsize , size_t *ret)
如 果参数name不空,则访问特定的模块,否则访问的是内核模块,参数which说明查询的类型,当which=QM_MODULES时,返回所有当前已插 入的模块名称,存入buff, 并且在ret中存放模块的个数,buffsize是buf缓冲区的大小。在模块隐藏的过程中只需要对which=QM_MODULES的情况进行处理就可 以达到目的。修改后的系统调用工作过程如下:

  1)调用原来的系统调用,出错则返回错误代码;
2)如果which不等于QM_MODULES,则不需要处理,直接返回。
3)从buf的开始位置进行处理,如果存在特定的名字,则将后面的模块名称向前覆盖该名字。
4)重复3),直到处理处理完所有的名字,正确返回。

  2.3 隐藏进程

  在Linux中不存在直接查询进程信息的系统调用,类似于ps这样查询进程信息的命令是通过查询proc文件系统来实现的,在背景知识中已经介 绍过proc文件系统,由于它应用文件系统的接口实现,因此同样可以用隐藏文件的方法来隐藏proc文件系统中的文件,只需要在上面的 hacked_getdents中加入对于proc文件系统的判断即可。由于proc是特殊的文件系统,只存在于内存之中,不存在于任何实际设备之上,所 以Linux内核分配给它一个特定的主设备号0以及一个特定的次设备号1,除此之外,由于在外存上没有与之对应的i节点,所以系统也分配给它一个特殊的节 点号PROC_ROOT_INO(值为1),而设备上的1号索引节点是保留不用的。通过上面的分析,可以得出判断一个文件是否属于proc文件系统的方 法:

  1)得到该文件对应的inode结构dinode;
2)if (dinode->i_ino == PROC_ROOT_INO && !MAJOR(dinode->i_dev) && MINOR(dinode->i _dev) == 1) {该文件属于proc文件系统}

  通过上面的分析,给出隐藏特定进程的伪代码表示:

  hacket_getdents(unsigned int fd, struct dirent *dirp, unsigned int count)
{

  调用原来的系统调用;

  得到fd所对应的节点;

  if(该文件属于proc文件系统&&该文件名需要隐藏)
{从dirp中去掉该文件相关信息}
}

  2.4 修改系统调用的方法

  现在已经解决了如何修改系统调用来达到隐藏的目的,那么如何用修改后的系统调用来替换原来的呢?这个问题在实际应用中往往是最关键的,下面将讨论在不同的情况下如何做到这一点。

  (1)当系统导出sys_call_table,并且支持动态的插入模块的情况下:

  在Linux内核2.4.18版以前,这种内核配置是非常普遍的。这种情况下修改系统调用非常容易,只需要修改相应的sys_call_table表项,使其指向新的系统调用即可。下面是相应的代码:

  int orig_getdents(unsigned int fd, struct dirent *dirp, unsigned int count)
int init_module(void) 
/*初始化模块*/
{
orig_getdents=sys_call_table[SYS_getdents];    //保存原来的系统调用
orig_query_module=sys_call_table[SYS_query_module]
sys_call_table[SYS_getdents]=hacked_getdents;  //设置新的系统调用
sys_call_table[SYS_query_module]=hacked_query_module;
return 0; //返回0表示成功
}
void cleanup_module(void)
/*卸载模块*/
{
sys_call_table[SYS_getdents]=orig_getdents;    //恢复原来的系统调用
sys_call_table[SYS_query_module]=orig_query_module;
}

  (2)在系统并不导出sys_call_table的情况下:

  linux内核在2.4.18以后为了安全起见不再导出sys_call_table符号,从而无法直接获得系统调用表的地址,那么就必须找到 其他的办法来得到这个地址。在背景知识中提到了/dev/kmem是系统主存的映像,可以通过查询该文件来找到sys_call_table的地址,并对 其进行修改,来使用新的系统调用。那么如何在系统映像中找到sys_call_table的地址呢?让我们先看看system_call的源代码是如何来 实现系统调用的(代码见/arch/i386/kernel/entry.S):

ENTRY(system_call)
pushl %eax      # save orig_eax
SAVE_ALL
GET_CURRENT(%ebx)
cmpl $(NR_syscalls),%eax
jae badsys
testb $0x02,tsk_ptrace(%ebx)  # PT_TRACESYS
jne tracesys
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
movl %eax,EAX(%esp)    # save the return value
ENTRY(ret_from_sys_call)

   这段源代码首先保存相应的寄存器的值,然后判断系统调用号(在eax寄存器中)是否合法,继而对设置调试的情况进行处理,在所有这些进行完后,利用 call *SYMBOL_NAME(sys_call_table)(,%eax,4) 来转入相应的系统调用进行处理,其中的SYMBOL_NAME(sys_call_table)得出的就是sys_call_table的地址。从上面的 分析可以看出,当找到system_call函数之后,利用字符匹配来寻找相应call语句就可以确定sys_call_table的位置,因为call something(,%eax,4)的机器指令码是0xff 0x14 0x85。所以匹配这个指令码就行了。至于如何确定system_call的地址在背景知识中已经介绍了,下面给出相应的伪代码:

  struct{   //各字段含义可以参考背景知识中关于IDTR寄存器的介绍
unsigned short limit;
unsigned int base;
}__attribute__((packed))idtr;
struct{ //各字段含义可以参考背景知识中关于中断描述符的介绍
unsigned short off1;
unsigned short sel;
unsigned char none,flags;
unsigned short off2;
}__attribute__((packed))idt;
int kmem;
/ *下面函数用于从kemem对应的文件中偏移量为off处读取sz个字节至内存m处*/
void readkmem(void *m,unsigned off,int sz) {………}
/*下面函数用于从src读取count个字节至dest处*/
void weitekmem(void *src,void *dest,unsigned int count) {………..}
unsigned sct;  //用来存放sys_call_table地址
char buff[100]; //用于存放system_call函数的前100个字节。
char *p;
if((kmem=open(“/dev/kmem”,O_RDONLY))<0)
return 1;
asm(“sidt %0” “:=m” (idtr));          //读取idtr寄存器的值至idtr结构中
readkmem(&idt,idtr.base+8*0x80,sizeof(idt))    //将0x80描述符读至idt结构中
sys_ call_off=(idt.off2<<16)idt.off1;       //得到system_call函数的地址。
readkmem(buff,sys_call_off,100)   //读取system_call函数的前100字节至buff
p=(char *)memmem(buff,100,”xffx14x85”,3);  //得到call语句对应机器码的地址
sct=(unsigned *)(p+3)            //得到sys_call_table的地址。

  至此已经得到了sys_call_table在内存中的位置,这样在根据系统调用号就能够找到相应的系统调用对应的地址,修改该地址就可以使用新的系统调函数,具体的做法如下:

  readkmem(&orig_getdents,sct+ SYS_getdents*4,4)//保存原来的系统调用
readkmem(&orig_query_module,sct+SYS_query_module*4,4);
writekmem(hacked_getdents,sct+SYS_getdents*4,4);//设置新的系统调用
writekmem(hacket_query_module,sct+SYS_query_module*4,4);

  2.5 其他的相关技术

  上面已经完全解决了隐藏的相关技术问题,在实际应用中,可以把启动模块或者进程的代码做成脚本加入到相应的启动目录中,假设你的Linux运行 级别为3,则可以加到目录rc3.d中(该目录常存在于/etc/rc.d或者/etc目录下),然后把该脚本的名字改为可以隐藏的名字。另一种方法就是 在一些启动脚本中加入启动你的模块或者进程的代码,但这样比较容易被发现,一个解决思路就是进程或模块启动以后马上恢复正常的脚本,由于系统关机时会向所 有进程发送SIGHUP信号,可以在进程或模块中处理该信号,使该信号发生时修改启动脚本,重新加入启动模块的代码,这样当系统下次启动时又可以加载这个 的模块了,而且管理员察看启动脚本时也不会发现异常。

  3.结束语

本文对Linux环境下的一些高级隐藏技术进行了分析研究,其中所涉及的技术不仅可以用在系统安全方面,在其他方面也有重要的借鉴意义。由于Linux的开放特性,使得攻击者一旦获得了root权限就能够对系统进行较多的修改,所以避免第一次被入侵是至关重要的。

Linux 环境下的高级隐藏技术相关推荐

  1. linux目录隐藏技术,Linux环境下的高级隐藏技术

    摘要:本文深入分析了Linux环境下文件.进程及模块的高级隐藏技术,其中包括:Linux可卸载模块编程技术.修改内存映象直接对系统调用进行修改技术,通过虚拟文件系统proc隐藏特定进程的技术. 隐藏技 ...

  2. Linux系统漏洞复现分析,Linux环境下常见漏洞利用技术

    记得以前在drops写过一篇文章叫 linux常见漏洞利用技术实践 ,现在还可以找得到(https://woo.49.gs/static/drops/binary-6521.html), 不过当时开始 ...

  3. 【Linux、进程隐藏】在Linux环境下添加系统调用实现进程隐藏

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 [进程隐藏]在Linux环境下添加系统调用实现进程隐藏 前言 一.环境设置: 二.实现方法步骤: 1.思路图 2.利用strace命令 ...

  4. 【第83期】10 款你不知道的 Linux 环境下的替代工具!

    大家好,我是华章妹. 在 Linux 操作系统下,我们经常使用 cat 命令去连接多个文件并打印到标准输出,合成几个文件为一个目标文件,追加几个文件到目标文件中. 最近我在 GitHub 上发现了一个 ...

  5. Linux环境下——C语言聊天室项目

    由于使用了多线程操作,客户端进入程序后请先随便注册一次用户后再进行使用. 本程序默认第一个用户即ID为1的用户为超级管理员. 由于线程阻塞,最后的踢人操作有阻塞,需要在被踢出在线链表后手动下线. 看了 ...

  6. 10 款 Linux 环境下的开源替代工具

    在 Linux 操作系统下,我们经常使用 cat 命令去连接多个文件并打印到标准输出,合成几个文件为一个目标文件,追加几个文件到目标文件中. 最近我在 GitHub 上发现了一个具有相似作用的命令叫做 ...

  7. Linux环境下的网络编程

    本文介绍了在Linux环境下的socket编程常用函数用法及socket编程的一般规则和客户/服务器模型的编程应注意的事项和常遇问题的解决方法,并举了具体代  码实例.要理解本文所谈的技术问题需要读者 ...

  8. 理解 Linux 网络栈(2):非虚拟化Linux 环境中的 Segmentation Offloading 技术

    本系列文章总结 Linux 网络栈,包括: (1)Linux 网络协议栈总结 (2)非虚拟化Linux环境中的网络分段卸载技术 GSO/TSO/UFO/LRO/GRO (3)QEMU/KVM + Vx ...

  9. linux下运行hadoop,Linux环境下hadoop运行平台的搭建

    1.hadoop版本认识 截至目前(2012年12月23日),Apache Hadoop版本分为两代,我们将第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop 2.0.第一 ...

最新文章

  1. 结构体解决念数字问题
  2. 2007年3月东北微软技术活动预告
  3. 【LeetCode笔记】124. 二叉树中的最大路径和(Java、二叉树、DFS)
  4. CSS+DIV+HTML(一)--HTML总结
  5. [Leetcode] single number ii 找单个数
  6. 如何自学python知乎-初次接触python,怎么样系统的自学呢?
  7. bash脚本之case语句应用,while、until和select循环应用及其示例
  8. 《机器学习与数据科学(基于R的统计学习方法)》——2.15 小结
  9. div中字符串自动换行
  10. Xcode更改Build输出路径
  11. 9.6.5对象的常引用
  12. 同样是搞IT,差距怎么这么大呢,快来看看互联网行业最富有的100人
  13. 百度热点排行榜 ---JS
  14. 计算机信息管理基础考试试题及答案,计算机信息管理基础复习题A及答案
  15. 搞个气氛 用MATLAB画一棵精致的圣诞树
  16. python支付程序源码_Python提取支付宝和微信支付二维码的示例代码
  17. X11VNC远程连接Ubuntu
  18. QT5串口编程——编写简单的上位机
  19. java贪吃蛇博客带图片_java课程设计--贪吃蛇小队博客
  20. 搭建机器人电控系统——PID算法——什么是PID?

热门文章

  1. ASM 磁盘、目录的管理
  2. Linux下查看Apache的版本号
  3. 使用Mock.js进行独立于后端的前端开发
  4. Silve37.Silverlight和ASP.NET相互传参的两种常用方式(QueryString,Cookie)
  5. 全栈JVM框架Micronaut通向1.0版本之路
  6. Redux源码浅析系列(二):`combineReducer`
  7. Supervisor行为分析和实践
  8. TCP/IP协议(三次握手)
  9. 在RHEL5下构建基于系统用户的Postfix邮件系统
  10. 如何使用SMTPDiag 工具