出处:http://blog.itpub.net/26855487/viewspace-754346/

FIO是测试IOPS的非常好的工具,用来对硬件进行压力测试和验证,支持13种不同的I/O引擎,

包括:sync,mmap, libaio, posixaio, SG v3, splice, null, network, syslet, guasi, solarisaio 等等。

fio 官网地址:

一,FIO安装

wget

yum install libaio-devel

tar -zxvf fio-2.0.7.tar.gz

cd fio-2.0.7

make

make install

二,随机读测试:

随机读:

fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randread -ioengine=psync -bs=16k -size=200G

-numjobs=10 -runtime=1000 -group_reporting -name=mytest

说明:

filename=/dev/sdb1 测试文件名称,通常选择需要测试的盘的data目录。

direct=1 测试过程绕过机器自带的buffer。使测试结果更真实。

rw=randwrite 测试随机写的I/O

rw=randrw 测试随机写和读的I/O

bs=16k 单次io的块文件大小为16k

bsrange=512-2048 同上,提定数据块的大小范围

size=5g 本次的测试文件大小为5g,以每次4k的io进行测试。

numjobs=30 本次的测试线程为30.

runtime=1000 测试时间为1000秒,如果不写则一直将5g文件分4k每次写完为止。

ioengine=psync io引擎使用pync方式

rwmixwrite=30 在混合读写的模式下,写占30%

group_reporting 关于显示结果的,汇总每个进程的信息。

此外

lockmem=1g 只使用1g内存进行测试。

zero_buffers 用0初始化系统buffer。

nrfiles=8 每个进程生成文件的数量。

顺序读:

fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=1000 -group_reporting -name=mytest

随机写:

fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randwrite -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=1000 -group_reporting -name=mytest

顺序写:

fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=write -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=1000 -group_reporting -name=mytest

混合随机读写:

fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=100 -group_reporting -name=mytest -ioscheduler=noop

三,实际测试范例:

[root@localhost ~]# fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=200G -numjobs=30

-runtime=100 -group_reporting -name=mytest1

mytest1: (g=0): rw=randrw, bs=16K-16K/16K-16K, ioengine=psync, iodepth=1

...

mytest1: (g=0): rw=randrw, bs=16K-16K/16K-16K, ioengine=psync, iodepth=1

fio 2.0.7

Starting 30 threads

Jobs: 1 (f=1): [________________m_____________] [3.5% done] [6935K/3116K /s] [423 /190 iops] [eta 48m:20s] s]

mytest1: (groupid=0, jobs=30): err= 0: pid=23802

read : io=1853.4MB, bw=18967KB/s, iops=1185 , runt=100058msec

clat (usec): min=60 , max=871116 , avg=25227.91, stdev=31653.46

lat (usec): min=60 , max=871117 , avg=25228.08, stdev=31653.46

clat percentiles (msec):

| 1.00th=[ 3], 5.00th=[ 5], 10.00th=[ 6], 20.00th=[ 8],

| 30.00th=[ 10], 40.00th=[ 12], 50.00th=[ 15], 60.00th=[ 19],

| 70.00th=[ 26], 80.00th=[ 37], 90.00th=[ 57], 95.00th=[ 79],

| 99.00th=[ 151], 99.50th=[ 202], 99.90th=[ 338], 99.95th=[ 383],

| 99.99th=[ 523]

bw (KB/s) : min= 26, max= 1944, per=3.36%, avg=636.84, stdev=189.15

write: io=803600KB, bw=8031.4KB/s, iops=501 , runt=100058msec

clat (usec): min=52 , max=9302 , avg=146.25, stdev=299.17

lat (usec): min=52 , max=9303 , avg=147.19, stdev=299.17

clat percentiles (usec):

| 1.00th=[ 62], 5.00th=[ 65], 10.00th=[ 68], 20.00th=[ 74],

| 30.00th=[ 84], 40.00th=[ 87], 50.00th=[ 89], 60.00th=[ 90],

| 70.00th=[ 92], 80.00th=[ 97], 90.00th=[ 120], 95.00th=[ 370],

| 99.00th=[ 1688], 99.50th=[ 2128], 99.90th=[ 3088], 99.95th=[ 3696],

| 99.99th=[ 5216]

bw (KB/s) : min= 20, max= 1117, per=3.37%, avg=270.27, stdev=133.27

lat (usec) : 100=24.32%, 250=3.83%, 500=0.33%, 750=0.28%, 1000=0.27%

lat (msec) : 2=0.64%, 4=3.08%, 10=20.67%, 20=19.90%, 50=17.91%

lat (msec) : 100=6.87%, 250=1.70%, 500=0.19%, 750=0.01%, 1000=0.01%

cpu : usr=1.70%, sys=2.41%, ctx=5237835, majf=0, minf=6344162

IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0%

submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%

complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%

issued : total=r=118612/w=50225/d=0, short=r=0/w=0/d=0

Run status group 0 (all jobs):

READ: io=1853.4MB, aggrb=18966KB/s, minb=18966KB/s, maxb=18966KB/s, mint=100058msec, maxt=100058msec

WRITE: io=803600KB, aggrb=8031KB/s, minb=8031KB/s, maxb=8031KB/s, mint=100058msec, maxt=100058msec

Disk stats (read/write):

sdb: ios=118610/50224, merge=0/0, ticks=2991317/6860, in_queue=2998169, util=99.77%

主要查看以上红色字体部分的iops(read/write)

**磁盘阵列吞吐量与IOPS两大瓶颈分析**

1、吞吐量

吞吐量主要取决于阵列的构架,光纤通道的大小(现在阵列一般都是光纤阵列,至于SCSI这样的SSA阵列,我们不讨论)以及硬盘的个数。阵列的构架与每个阵列不同而不同,他们也都存在内部带宽(类似于pc的系统总线),不过一般情况下,内部带宽都设计的很充足,不是瓶颈的所在。

光纤通道的影响还是比较大的,如数据仓库环境中,对数据的流量要求很大,而一块2Gb的光纤卡,所77能支撑的最大流量应当是2Gb/8(小B)=250MB/s(大B)的实际流量,当4块光纤卡才能达到1GB/s的实际流量,所以数据仓库环境可以考虑换4Gb的光纤卡。

最后说一下硬盘的限制,这里是最重要的,当前面的瓶颈不再存在的时候,就要看硬盘的个数了,我下面列一下不同的硬盘所能支撑的流量大小:

10 K rpm 15 K rpm ATA

——— ——— ———

10M/s 13M/s 8M/s

那么,假定一个阵列有120块15K rpm的光纤硬盘,那么硬盘上最大的可以支撑的流量为120*13=1560MB/s,如果是2Gb的光纤卡,可能需要6块才能够,而4Gb的光纤卡,3-4块就够了。

2、IOPS

决定IOPS的主要取决与阵列的算法,cache命中率,以及磁盘个数。阵列的算法因为不同的阵列不同而不同,如我们最近遇到在hds usp上面,可能因为ldev(lun)存在队列或者资源限制,而单个ldev的iops就上不去,所以,在使用这个存储之前,有必要了解这个存储的一些算法规则与限制。

cache的命中率取决于数据的分布,cache size的大小,数据访问的规则,以及cache的算法,如果完整的讨论下来,这里将变得很复杂,可以有一天好讨论了。我这里只强调一个cache的命中率,如果一个阵列,读cache的命中率越高越好,一般表示它可以支持更多的IOPS,为什么这么说呢?这个就与我们下面要讨论的硬盘IOPS有关系了。

硬盘的限制,每个物理硬盘能处理的IOPS是有限制的,如

10 K rpm 15 K rpm ATA

——— ——— ———

100 150 50

同样,如果一个阵列有120块15K rpm的光纤硬盘,那么,它能撑的最大IOPS为120*150=18000,这个为硬件限制的理论值,如果超过这个值,硬盘的响应可能会变的非常缓慢而不能正常提供业务。

在raid5与raid10上,读iops没有差别,但是,相同的业务写iops,最终落在磁盘上的iops是有差别的,而我们评估的却正是磁盘的IOPS,如果达到了磁盘的限制,性能肯定是上不去了。

那我们假定一个case,业务的iops是10000,读cache命中率是30%,读iops为60%,写iops为40%,磁盘个数为120,那么分别计算在raid5与raid10的情况下,每个磁盘的iops为多少。

raid5:

单块盘的iops = (10000*(1-0.3)*0.6 + 4 * (10000*0.4))/120

= (4200 + 16000)/120

= 168

这里的10000*(1-0.3)*0.6表示是读的iops,比例是0.6,除掉cache命中,实际只有4200个iops

而4 * (10000*0.4) 表示写的iops,因为每一个写,在raid5中,实际发生了4个io,所以写的iops为16000个

为了考虑raid5在写操作的时候,那2个读操作也可能发生命中,所以更精确的计算为:

单块盘的iops = (10000*(1-0.3)*0.6 + 2 * (10000*0.4)*(1-0.3) + 2 * (10000*0.4))/120

= (4200 + 5600 + 8000)/120

= 148

计算出来单个盘的iops为148个,基本达到磁盘极限

raid10

单块盘的iops = (10000*(1-0.3)*0.6 + 2 * (10000*0.4))/120

= (4200 + 8000)/120

= 102

可以看到,因为raid10对于一个写操作,只发生2次io,所以,同样的压力,同样的磁盘,每个盘的iops只有102个,还远远低于磁盘的极限iops。

在一个实际的case中,一个恢复压力很大的standby(这里主要是写,而且是小io的写),采用了raid5的方案,发现性能很差,通过分析,每个磁盘的iops在高峰时期,快达到200了,导致响应速度巨慢无比。后来改造成raid10,就避免了这个性能问题,每个磁盘的iops降到100左右。

linux fio释放内存,linux使用FIO测试磁盘的iops相关推荐

  1. linux 进程 释放内存,Linux 释放内存方法和原理

    今天惊愕地发现,主节点上8G内存被不知道什么进程吃掉了整整6G有余,正常的计算快要维持不下去了,遂处理之. 先看看内存使用状况 [root@node1 ~]# free -m total used f ...

  2. linux及时释放内存,LINUX释放内存

    细心的朋友会注意到,当你在linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都没有看到有什么很好解决的办法 ...

  3. linux使用FIO测试磁盘的iops

    linux使用FIO测试磁盘的iops 博客分类: IO FIO是测试IOPS的非常好的工具,用来对硬件进行压力测试和验证,支持13种不同的I/O引擎,包括:sync,mmap, libaio, po ...

  4. linux手动释放内存的方法

    Linux手动释放缓存的方法 Linux释放内存的命令: sync echo 1 > /proc/sys/vm/drop_caches drop_caches的值可以是0-3之间的数字,代表不同 ...

  5. linux 手动释放内存

    当在Linux下 频繁存取文件 或者 程序测试频繁崩溃后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching 因此我们很有必要手动清理系统缓存释放内存. 我们在清理缓存 ...

  6. Linux下释放内存

    当在Linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching,因此我们很有必要手动清理系统缓存释放内存. 第一步 我们在清理缓存前应该先执行syn ...

  7. linux定时释放内存,定时释放Linux 内存 带释放记录

    细心的朋友会注意到,当你在linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都没有看到有什么很好解决的办法 ...

  8. linux清理进程内存,linux 内存使用管理及释放

    Linux 内存使用检查及释放内存 如何查看linux内存使用: 1.free -g 命令 或 free -h total:总计物理内存的大小. used:已使用多大. free:可用有多少. Sha ...

  9. linux系统清理内存,Linux实验室:五个清理磁盘空间小妙招

    1删除安装包:清空系统APT缓存 玩儿电脑最怕的就是卡慢,那么电脑卡慢应该怎么解决呢?对于windows系统来说,你可能有各种免费的杀毒软件.全家桶帮你清空系统空间,那么Linux系统怎么办?今天笔者 ...

最新文章

  1. 使用openpyxl处理表格数据
  2. 管理和配置客户端访问服务器
  3. 【luogu2737】 [USACO4.1]麦香牛块Beef McNuggets [动态规划 完全背包][数学 扩展欧几里德]...
  4. Design Compiler指南——预综合过程
  5. AT1219-歴史の研究(历史研究)【回滚莫队】
  6. java高性能序列化_Java最佳实践–高性能序列化
  7. 曾经很火但消失了的软件,你还记得几个?
  8. react 返回一个页面_react-router-dom 怎么让第二个页面返回到第一个页面使得第一个页面不重新加载...
  9. LDA主题模型简介及Python实现
  10. Ruby设计模式透析之 —— 策略(Strategy)
  11. 2012.4.19总结(二)
  12. C++:vector的push_back()与emplace_back()
  13. 小学二年级操行评语1
  14. 分享一套永久免费的ChatGPT使用方法
  15. 大学计算机实验图灵机模型与计算机硬件,北理大学计算机实验基础 实验一_图灵机模型与计算机硬件系统虚拟拆装-实验报告...
  16. SAP SD基础知识之免费货物(Free Goods)
  17. 美国糖尿病协会发布:2019糖尿病医疗标准
  18. php内嵌百度播放器,网页中内嵌的百度影音插件如何从网页中播放本地上的文件_html/css_WEB-ITnose...
  19. 解决Unit mysql.service could not be found
  20. 局域网关机助手 v1.0.bat 批处理

热门文章

  1. 陶哲轩挑战失败的百年数学问题,被两名在家隔离的数学家破解了
  2. 我以前一直没有真正理解支持向量机,直到我画了一张图!
  3. 报道 | 本科4篇顶会论文如何做到?清华特奖干货分享:我是这样写论文、做实验、与导师相处...
  4. K-近邻算法之案例:鸢尾花种类预测—流程实现
  5. C语言,统计0~9出现次数。_只愿与一人十指紧扣_新浪博客
  6. 深度学习七个实用技巧
  7. 你不知道的车牌识别系统
  8. 实战:基于 CNN 的验证码破解项目(附代码)
  9. 21个深度学习调参技巧,一定要看到最后一个
  10. 基于OpenCV的实时面部识别