使用LFM(Latent factor model)隐语义模型进行Top-N推荐

最近在拜读项亮博士的《推荐系统实践》,系统的学习一下推荐系统的相关知识。今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结。

隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类。这些技术一开始都是在文本挖掘领域中提出来的,近些年它们也被不断应用到其他领域中,并得到了不错的应用效果。比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不同类别/主题,这些主题/类别可以理解为用户的兴趣。

对于一个用户来说,他们可能有不同的兴趣。就以作者举的豆瓣书单的例子来说,用户A会关注数学,历史,计算机方面的书,用户B喜欢机器学习,编程语言,离散数学方面的书, 用户C喜欢大师Knuth, Jiawei Han等人的著作。那我们在推荐的时候,肯定是向用户推荐他感兴趣的类别下的图书。那么前提是我们要对所有item(图书)进行分类。那如何分呢?大家注意到没有,分类标准这个东西是因人而异的,每个用户的想法都不一样。拿B用户来说,他喜欢的三个类别其实都可以算作是计算机方面的书籍,也就是说B的分类粒度要比A小;拿离散数学来讲,他既可以算作数学,也可当做计算机方面的类别,也就是说有些item不能简单的将其划归到确定的单一类别;拿C用户来说,他倾向的是书的作者,只看某几个特定作者的书,那么跟A,B相比它的分类角度就完全不同了。

显然我们不能靠由单个人(编辑)或team的主观想法建立起来的分类标准对整个平台用户喜好进行标准化。

此外我们还需要注意的两个问题:

  1. 我们在可见的用户书单中归结出3个类别,不等于该用户就只喜欢这3类,对其他类别的书就一点兴趣也没有。也就是说,我们需要了解用户对于所有类别的兴趣度。
  2. 对于一个给定的类来说,我们需要确定这个类中每本书属于该类别的权重。权重有助于我们确定该推荐哪些书给用户。

下面我们就来看看LFM是如何解决上面的问题的?对于一个给定的用户行为数据集(数据集包含的是所有的user, 所有的item,以及每个user有过行为的item列表),使用LFM对其建模后,我们可以得到如下图所示的模型:(假设数据集中有3个user, 4个item, LFM建模的分类数为4)

R矩阵是user-item矩阵,矩阵值Rij表示的是user i 对item j的兴趣度,这正是我们要求的值。对于一个user来说,当计算出他对所有item的兴趣度后,就可以进行排序并作出推荐。LFM算法从数据集中抽取出若干主题,作为user和item之间连接的桥梁,将R矩阵表示为P矩阵和Q矩阵相乘。其中P矩阵是user-class矩阵,矩阵值Pij表示的是user i对class j的兴趣度;Q矩阵式class-item矩阵,矩阵值Qij表示的是item j在class i中的权重,权重越高越能作为该类的代表。所以LFM根据如下公式来计算用户U对物品I的兴趣度

我们发现使用LFM后,

  1. 我们不需要关心分类的角度,结果都是基于用户行为统计自动聚类的,全凭数据自己说了算。
  2. 不需要关心分类粒度的问题,通过设置LFM的最终分类数就可控制粒度,分类数越大,粒度约细。
  3. 对于一个item,并不是明确的划分到某一类,而是计算其属于每一类的概率,是一种标准的软分类。
  4. 对于一个user,我们可以得到他对于每一类的兴趣度,而不是只关心可见列表中的那几个类。
  5. 对于每一个class,我们可以得到类中每个item的权重,越能代表这个类的item,权重越高。

那么,接下去的问题就是如何计算矩阵P和矩阵Q中参数值。一般做法就是最优化损失函数来求参数。在定义损失函数之前,我们需要准备一下数据集并对兴趣度的取值做一说明。

数据集应该包含所有的user和他们有过行为的(也就是喜欢)的item。所有的这些item构成了一个item全集。对于每个user来说,我们把他有过行为的item称为正样本,规定兴趣度RUI=1,此外我们还需要从item全集中随机抽样,选取与正样本数量相当的样本作为负样本,规定兴趣度为RUI=0。因此,兴趣的取值范围为[0,1]。

采样之后原有的数据集得到扩充,得到一个新的user-item集K={(U,I)},其中如果(U,I)是正样本,则RUI=1,否则RUI=0。损失函数如下所示:

上式中的是用来防止过拟合的正则化项,λ需要根据具体应用场景反复实验得到。损失函数的优化使用随机梯度下降算法:

  1. 通过求参数PUK和QKI的偏导确定最快的下降方向;
  1. 迭代计算不断优化参数(迭代次数事先人为设置),直到参数收敛。

其中,α是学习速率,α越大,迭代下降的越快。α和λ一样,也需要根据实际的应用场景反复实验得到。本书中,作者在MovieLens数据集上进行实验,他取分类数F=100,α=0.02,λ=0.01。
               【注意】:书中在上面四个式子中都缺少了

综上所述,执行LFM需要:

  1. 根据数据集初始化P和Q矩阵(这是我暂时没有弄懂的地方,这个初始化过程到底是怎么样进行的,还恳请各位童鞋予以赐教。)
  2. 确定4个参数:分类数F,迭代次数N,学习速率α,正则化参数λ。

LFM的伪代码可以表示如下:

[python] view plaincopy
  1. def LFM(user_items, F, N, alpha, lambda):
  2. #初始化P,Q矩阵
  3. [P, Q] = InitModel(user_items, F)
  4. #开始迭代
  5. For step in range(0, N):
  6. #从数据集中依次取出user以及该user喜欢的iterms集
  7. for user, items in user_item.iterms():
  8. #随机抽样,为user抽取与items数量相当的负样本,并将正负样本合并,用于优化计算
  9. samples = RandSelectNegativeSamples(items)
  10. #依次获取item和user对该item的兴趣度
  11. for item, rui in samples.items():
  12. #根据当前参数计算误差
  13. eui = eui - Predict(user, item)
  14. #优化参数
  15. for f in range(0, F):
  16. P[user][f] += alpha * (eui * Q[f][item] - lambda * P[user][f])
  17. Q[f][item] += alpha * (eui * P[user][f] - lambda * Q[f][item])
  18. #每次迭代完后,都要降低学习速率。一开始的时候由于离最优值相差甚远,因此快速下降;
  19. #当优化到一定程度后,就需要放慢学习速率,慢慢的接近最优值。
  20. alpha *= 0.9

本人对书中的伪代码追加了注释,有不对的地方还请指正。

当估算出P和Q矩阵后,我们就可以使用(*)式计算用户U对各个item的兴趣度值,并将兴趣度值最高的N个iterm(即TOP N)推荐给用户。

总结来说,LFM具有成熟的理论基础,它是一个纯种的学习算法,通过最优化理论来优化指定的参数,建立最优的模型。

本文来源于此博客

转载于:https://www.cnblogs.com/peizhe123/p/5113272.html

推荐系统中的隐语义模型相关推荐

  1. Python推荐系统学习笔记(1)基于协同过滤的个性化推荐算法实战---隐语义模型

    一.相关概念: 1.隐语义模型(LFM) 通过矩阵分解建立用户和隐类之间的关系,物品和隐类之间的关系,最终得到用户对物品的偏好关系. 假设我们想要发现 F 个隐类, 我们的任务就是找到两个矩阵 U 和 ...

  2. 基于隐语义模型的个性化推荐算法综述-笔记整理

    1. 前期知识 均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation) 1.均方根值(RMS)也称作为效值,它的计算方法是先平方.再平均.然后开方. 2.均方根误 ...

  3. 推荐系统(5)—隐语义模型(LFM)

    https://www.toutiao.com/a6663676280782717454/ 2019-03-02 14:27:17 基本概念 LFM(latent factor model)隐语义模型 ...

  4. 【推荐系统(二)】协同过滤之隐语义模型(LFM)

    文章目录 一.引例 二.LFM 主要思想 训练样本构造 损失函数定义 参数学习 调参相关 三.小结 优点 缺点 基于用户行为分析的推荐算法一般称为协同过滤算法.所谓协同过滤,就是指众多的用户可以齐心协 ...

  5. 大数据之推荐系统梗概---以ALS隐语义模型为例

    看过视频网站的小伙伴们有好奇过每次打开app出现的内容究竟是怎么来的呢,为啥自己的和别人的会不一样呢,接下来就开始我们的解密之旅. 当我们注册一个网站会员的时候多半会让我们挑选自己感兴趣的频道,这样系 ...

  6. 电商推荐系统(上):推荐系统架构、数据模型、离线统计与机器学习推荐、历史热门商品、最近热门商品、商品平均得分统计推荐、基于隐语义模型的协同过滤推荐、用户商品推荐列表、商品相似度矩阵、模型评估和参数选取

    文章目录 第1章 项目体系架构设计 1.1 项目系统架构 1.2 项目数据流程 1.3 数据模型 第2章 工具环境搭建 2.1 MongoDB(单节点)环境配置 2.2 Redis(单节点)环境配置 ...

  7. python实现lfm_推荐系统之隐语义模型(LFM)

    一 基本概念 LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF有什么不同呢?这里可以做一个对比: 对于Use ...

  8. 【推荐系统】隐语义模型(LFD)与矩阵分解(Matrix Factorization)

    如果需要完整代码可以关注下方公众号,后台回复"代码"即可获取,阿光期待着您的光临~ 文章目录 1.隐语义模型与矩阵分解 2.隐语义模型(Latent Factor Model) 3 ...

  9. 电商推荐系统四: 基于隐语义模型的协同过滤推荐

    四.离线推荐服务建设(基于隐语义模型的协同过滤推荐) 目录 四.离线推荐服务建设(基于隐语义模型的协同过滤推荐) 4.1 离线推荐服务 4.2 离线统计服务 4.3 基于隐语义模型的协同过滤推荐 4. ...

最新文章

  1. java consumer_Java 8 Consumer接口
  2. 分数四则运算_JAVA
  3. java mysql 死锁,java-Spring JPA MySQL和死锁
  4. Spring Cloud学习笔记-002
  5. GDI+ 设置不同的分辨率来显示不同大小的图片
  6. 熊猫“大虾”-03/07/2011开始修炼
  7. 阿里巴巴Java开发手册的正确学习姿势是怎样的? | 文末送书
  8. 自适应 响应式展示型企业通用网站源码 织梦dedecms模板
  9. 如何安装最新的 XFCE 桌面?
  10. 【华为云技术分享】云小课 | SAP容灾一点通
  11. Shell脚本学习-阶段十二-在CentOS 7上给一个网卡分配多个IP地址
  12. WPF 嵌入字体文件
  13. 量子计算机时空穿越,时光穿梭是否可行?未来人类真能穿越时空吗?科学家:不是不可能...
  14. iPhone13如何设置卡1和卡2收发信息
  15. 我的世界java版幻翼_见到幻翼的方式是熬夜?这几个被忽略了
  16. 机器学习识别颜色_使用机器学习为颜色命名
  17. 小学计算机应用计划,小学生计算机教学计划
  18. was unable to send heartbeat
  19. 计算机基础之冯诺依曼体系结构
  20. 数据库系统--码,超码,候选码,主属性,非主属性,主码,全码,外码基本概念

热门文章

  1. Ajax 通过 Request Payload 体发送 JSON 数据体
  2. SQL Server 索引结构及其使用(二)
  3. Nagios+Cacti+Nconf配置
  4. 文本框怎么变大html,如何设置HTML文本框的大小?
  5. FPGA中实现对数运算
  6. Windows下修改Git Bash 默认路径
  7. 基于Eclipse的TI集成开发环境IDE-CCSv5使用教程
  8. 输出字符数字空格个数
  9. 神经网络模拟逻辑推理-演绎推理
  10. 装系统w7、ubuntu、centos等系统(一)