可能很多人都看到过一个线程数设置的理论:

  • CPU 密集型的程序 - 核心数 + 1
  • I/O 密集型的程序 - 核心数 * 2

不会吧,不会吧,真的有人按照这个理论规划线程数?

线程数和CPU利用率的小测试

抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解): 一个CPU核心,单位时间内只能执行一个线程的指令 ** 那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。

来写个死循环空跑的例子验证一下:

测试环境:AMD Ryzen 5 3600, 6 - Core, 12 - Threads

public class CPUUtilizationTest {public static void main(String[] args) {//死循环,什么都不做while (true){}}
}

运行这个例子后,来看看现在CPU的利用率: 从图上可以看到,我的3号核心利用率已经被跑满了

那基于上面的理论,我多开几个线程试试呢?

public class CPUUtilizationTest {public static void main(String[] args) {for (int j = 0; j < 6; j++) {new Thread(new Runnable() {@Overridepublic void run() {while (true){}}}).start();}}
}

此时再看CPU利用率,1/2/5/7/9/11 几个核心的利用率已经被跑满: 那如果开12个线程呢,是不是会把所有核心的利用率都跑满?答案一定是会的: 如果此时我把上面例子的线程数继续增加到24个线程,会出现什么结果呢? 从上图可以看到,CPU利用率和上一步一样,还是所有核心100%,不过此时负载已经从11.x增加到了22.x(load average解释参考scoutapm.com/blog/unders…),说明此时CPU更繁忙,线程的任务无法及时执行。

现代CPU基本都是多核心的,比如我这里测试用的AMD 3600,6核心12线程(超线程),我们可以简单的认为它就是12核心CPU。那么我这个CPU就可以同时做12件事,互不打扰。

如果要执行的线程大于核心数,那么就需要通过操作系统的调度了。操作系统给每个线程分配CPU时间片资源,然后不停的切换,从而实现“并行”执行的效果。

但是这样真的更快吗?从上面的例子可以看出,一个线程就可以把一个核心的利用率跑满。如果每个线程都很“霸道”,不停的执行指令,不给CPU空闲的时间,并且同时执行的线程数大于CPU的核心数,就会导致操作系统更频繁的执行切换线程执行,以确保每个线程都可以得到执行。

不过切换是有代价的,每次切换会伴随着寄存器数据更新,内存页表更新等操作。虽然一次切换的代价和I/O操作比起来微不足道,但如果线程过多,线程切换的过于频繁,甚至在单位时间内切换的耗时已经大于程序执行的时间,就会导致CPU资源过多的浪费在上下文切换上,而不是在执行程序,得不偿失。

上面死循环空跑的例子,有点过于极端了,正常情况下不太可能有这种程序。

大多程序在运行时都会有一些 I/O操作,可能是读写文件,网络收发报文等,这些 I/O 操作在进行时时需要等待反馈的。比如网络读写时,需要等待报文发送或者接收到,在这个等待过程中,线程是等待状态,CPU没有工作。此时操作系统就会调度CPU去执行其他线程的指令,这样就完美利用了CPU这段空闲期,提高了CPU的利用率。

上面的例子中,程序不停的循环什么都不做,CPU要不停的执行指令,几乎没有啥空闲的时间。如果插入一段I/O操作呢,I/O 操作期间 CPU是空闲状态,CPU的利用率会怎么样呢?先看看单线程下的结果:

public class CPUUtilizationTest {public static void main(String[] args) throws InterruptedException {for (int n = 0; n < 1; n++) {new Thread(new Runnable() {@Overridepublic void run() {while (true){//每次空循环 1亿 次后,sleep 50ms,模拟 I/O等待、切换for (int i = 0; i < 100_000_000l; i++) { }try {Thread.sleep(50);}catch (InterruptedException e) {e.printStackTrace();}}}}).start();}}
}

哇,唯一有利用率的9号核心,利用率也才50%,和前面没有sleep的100%相比,已经低了一半了。现在把线程数调整到12个看看: 单个核心的利用率60左右,和刚才的单线程结果差距不大,还没有把CPU利用率跑满,现在将线程数增加到18: 此时单核心利用率,已经接近100%了。由此可见,当线程中有 I/O 等操作不占用CPU资源时,操作系统可以调度CPU可以同时执行更多的线程。

现在将I/O事件的频率调高看看呢,把循环次数减到一半,50_000_000,同样是18个线程: 此时每个核心的利用率,大概只有70%左右了。

线程数和CPU利用率的小总结

上面的例子,只是辅助,为了更好的理解线程数/程序行为/CPU状态的关系,来简单总结一下:

  1. 一个极端的线程(不停执行“计算”型操作时),就可以把单个核心的利用率跑满,多核心CPU最多只能同时执行等于核心数的“极端”线程数
  2. 如果每个线程都这么“极端”,且同时执行的线程数超过核心数,会导致不必要的切换,造成负载过高,只会让执行更慢
  3. I/O 等暂停类操作时,CPU处于空闲状态,操作系统调度CPU执行其他线程,可以提高CPU利用率,同时执行更多的线程
  4. I/O 事件的频率频率越高,或者等待/暂停时间越长,CPU的空闲时间也就更长,利用率越低,操作系统可以调度CPU执行更多的线程

线程数规划的公式

前面的铺垫,都是为了帮助理解,现在来看看书本上的定义。《Java 并发编程实战》介绍了一个线程数计算的公式:

Ncpu=CPU核心数Ncpu=CPU 核心数Ncpu=CPU核心数

Ucpu=目标CPU利用率,0<=Ucpu<=1Ucpu=目标CPU利用率,0<=Ucpu<=1Ucpu=目标CPU利用率,0<=Ucpu<=1

WC=等待时间和计算时间的比例\frac{W}{C}=等待时间和计算时间的比例CW=等待时间和计算时间的比例

如果希望程序跑到CPU的目标利用率,需要的线程数公式为:

Nthreads=Ncpu∗Ucpu∗(1+WC)Nthreads=NcpuUcpu(1+\frac{W}{C})Nthreads=Ncpu∗Ucpu∗(1+CW)

公式很清晰,现在来带入上面的例子试试看:

如果我期望目标利用率为90%(多核90),那么需要的线程数为:

核心数12 * 利用率0.9 * (1 + 50(sleep时间)/50(循环50_000_000耗时)) ≈ 22

现在把线程数调到22,看看结果: 现在CPU利用率大概80+,和预期比较接近了,由于线程数过多,还有些上下文切换的开销,再加上测试用例不够严谨,所以实际利用率低一些也正常。

把公式变个形,还可以通过线程数来计算CPU利用率:

Ucpu=NthreadsNcpu∗(1+WC)Ucpu=\frac{Nthreads}{Ncpu*(1+\frac{W}{C})}Ucpu=Ncpu∗(1+CW)Nthreads

线程数22 / (核心数12 * (1 + 50(sleep时间)/50(循环50_000_000耗时))) ≈ 0.9

虽然公式很好,但在真实的程序中,一般很难获得准确的等待时间和计算时间,因为程序很复杂,不只是“计算”。一段代码中会有很多的内存读写,计算,I/O 等复合操作,精确的获取这两个指标很难,所以光靠公式计算线程数过于理想化。

真实程序中的线程数

那么在实际的程序中,或者说一些Java的业务系统中,线程数(线程池大小)规划多少合适呢?

先说结论:没有固定答案,先设定预期,比如我期望的CPU利用率在多少,负载在多少,GC频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数

比如一个普通的,SpringBoot 为基础的业务系统,默认Tomcat容器+HikariCP连接池+G1回收器,如果此时项目中也需要一个业务场景的多线程(或者线程池)来异步/并行执行业务流程。

此时我按照上面的公式来规划线程数的话,误差一定会很大。因为此时这台主机上,已经有很多运行中的线程了,Tomcat有自己的线程池,HikariCP也有自己的后台线程,JVM也有一些编译的线程,连G1都有自己的后台线程。这些线程也是运行在当前进程、当前主机上的,也会占用CPU的资源。

所以受环境干扰下,单靠公式很难准确的规划线程数,一定要通过测试来验证。

流程一般是这样:

  1. 分析当前主机上,有没有其他进程干扰
  2. 分析当前JVM进程上,有没有其他运行中或可能运行的线程
  3. 设定目标
    1. 目标CPU利用率 - 我最高能容忍我的CPU飙到多少?
    2. 目标GC频率/暂停时间 - 多线程执行后,GC频率会增高,最大能容忍到什么频率,每次暂停时间多少?
    3. 执行效率 - 比如批处理时,我单位时间内要开多少线程才能及时处理完毕
    4. ……
  4. 梳理链路关键点,是否有卡脖子的点,因为如果线程数过多,链路上某些节点资源有限可能会导致大量的线程在等待资源(比如三方接口限流,连接池数量有限,中间件压力过大无法支撑等)
  5. 不断的增加/减少线程数来测试,按最高的要求去测试,最终获得一个“满足要求”的线程数**

而且而且而且!不同场景下的线程数理念也有所不同:

  1. Tomcat中的maxThreads,在Blocking I/O和No-Blocking I/O下就不一样
  2. Dubbo 默认还是单连接呢,也有I/O线程(池)和业务线程(池)的区分,I/O线程一般不是瓶颈,所以不必太多,但业务线程很容易称为瓶颈
  3. Redis 6.0以后也是多线程了,不过它只是I/O 多线程,“业务”处理还是单线程

所以,不要纠结设置多少线程了。没有标准答案,一定要结合场景,带着目标,通过测试去找到一个最合适的线程数。

可能还有同学可能会有疑问:“我们系统也没啥压力,不需要那么合适的线程数,只是一个简单的异步场景,不影响系统其他功能就可以”

很正常,很多的内部业务系统,并不需要啥性能,稳定好用符合需求就可以了。那么我的推荐的线程数是:CPU核心数

附录

Java 获取CPU核心数

Runtime.getRuntime().availableProcessors()//获取逻辑核心数,如6核心12线程,那么返回的是12

Linux 获取CPU核心数

# 总核数 = 物理CPU个数 X 每颗物理CPU的核数
# 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数# 查看物理CPU个数
cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l# 查看每个物理CPU中core的个数(即核数)
cat /proc/cpuinfo| grep "cpu cores"| uniq# 查看逻辑CPU的个数
cat /proc/cpuinfo| grep "processor"| wc -l

别再纠结线程池大小/线程数量了,没有固定公式的相关推荐

  1. 别再纠结线程池大小 + 线程数量了,没有固定公式的!

    来源:juejin.cn/post/6948034657321484318 线程数和CPU利用率的小测试 线程数和CPU利用率的小总结 线程数规划的公式 真实程序中的线程数 附录 Java 获取CPU ...

  2. Python 多线程总结(2)— 线程锁、线程池、线程数量、互斥锁、死锁、线程同步

    主要介绍使用 threading 模块创建线程的 3 种方式,分别为: 创建 Thread 实例函数 创建 Thread 实例可调用的类对象 使用 Thread 派生子类的方式 多线程是提高效率的一种 ...

  3. 线程池最佳线程数量到底要如何配置?

    一.前言 对于从事后端开发的同学来说,线程是必须要使用了,因为使用它可以提升系统的性能.但是,创建线程和销毁线程都是比较耗时的操作,频繁的创建和销毁线程会浪费很多CPU的资源. 此外,如果每个任务都创 ...

  4. idhttpserver是按线程接受请求的吗_1000个并发线程,10台机器,每台机器4核,设计线程池大小...

    一道面试题 兄弟们,怎么说? 我觉得如果你工作了两年左右的时间,或者是突击准备了面试,这题回答个八成上来,应该是手到擒来的事情.这题中规中矩,考点清晰,可以说的东西不是很多. 但是这都上血书了,那不得 ...

  5. 易语言mysql线程池数量_线程池最佳线程数量到底要如何配置?

    前言 对应从事后端开发的同学来说,线程是必须要使用了,因为使用它可以提升系统的性能.但是,创建线程和销毁线程都是比较耗时的操作,频繁的创建和销毁线程会浪费很多CPU的资源.此外,如果每个任务都创建一个 ...

  6. 如何用利特尔法则调整线程池大小

    利特尔法则 利特尔法则派生于排队论,用以下数学公式表示: L=λWL = λW L=λW L 系统中存在的平均请求数量. λ 请求有效到达速率.例如:5/s 表示每秒有5个请求到达系统. W 请求在系 ...

  7. mysql 线程池大小设置_MySQL线程池参数解析

    线程池是数据库系统非常重要功能,然而MySQL社区版并不包含线程池功能,不过好在MySQL的Percona发行版本提供了这个功能,除此之外,MySQL的企业版也提供线程池,从性价比上说,Percona ...

  8. 1000个并发线程,10台机器,每台机器4核,设计线程池大小

    这是why哥的第 71 篇原创文章 一道面试题 兄弟们,怎么说? 我觉得如果你工作了两年左右的时间,或者是突击准备了面试,这题回答个八成上来,应该是手到擒来的事情.这题中规中矩,考点清晰,可以说的东西 ...

  9. 线程池大小选择:针对 I/O 密集型场景和 CPU 密集型场景

    线程池大小选择:针对 I/O 密集型场景和 CPU 密集型场景 I/O 密集型场景 CPU密集型场景 线程池大小选择 线程池在 I/O 密集型场景的必要性 线程池在 CPU 密集型场景的必要性 线程池 ...

最新文章

  1. 自定义控件详解(六):Paint 画笔MaskFilter过滤
  2. 百分点首席经济学家张忠解读《美国白宫大数据白皮书》
  3. React开发(137):ant design学习指南之form中日期时间处理format时间处理
  4. CSS Reset(css的初始化)
  5. 数据结构学习(一)数组
  6. HTML5 DOM File API 转)
  7. 小D课堂 - 新版本微服务springcloud+Docker教程_5-08 断路器监控仪表参数
  8. 会员分享几个平时看榜单常去的网站
  9. canvas文字粒子动画js特效
  10. python3自动发送邮件并添加附件
  11. pmos管驱动原理图
  12. 2021年中国工业互联网安全大赛
  13. ArcGIS API for javascript创建二维度地图
  14. MSDC 4.3 接口规范(27)
  15. 怎么把中文用户名改成英文?
  16. 【题解】食物链(并查集)
  17. 知网查重提交论文显示服务器错误,知网查重时显示检测失败是什么原因?
  18. 为了结婚领证,我做了个「一键结婚」插件
  19. 证明:如果向量组A可由向量组B线性表示,那么A的秩小于等于B的秩
  20. FT232RL芯片USB转TTL应用

热门文章

  1. SEL | 植物通过根系分泌物招募假单孢菌协助抵抗地上部病原菌侵染
  2. 今晚中科院刘永鑫报告:宏基因组数据分析的机遇与挑战
  3. 上传数据,直接分析,这才是真正的生物云
  4. 口腔菌群让你心口一致——牙疼和心脏病都会犯
  5. R语言使用ggpubr包的ggarrange函数组合多张结论图(水平并排组合)
  6. R语言使用aov函数进行双因素方差分析(Two-way factorial ANOVA)、在双因素方差分析中,受试者被分配到由两个因素交叉分类形成的组(Two-way factorial ANOVA)
  7. 生成浮点数列表:Python range():TypeError: ‘float‘ object cannot be interpreted as an integer
  8. R语言使用edit函数在Rsudio中生成数据编辑器(在windows中生成编辑器)、在编辑器中输出需要的数据生成最终的dataframe
  9. R语言使用upper.tri函数、lower.tri函数、diag函数改变matrix矩阵上三角形、下三角形、对角线的数值
  10. R语言临床预测模型的评价指标与验证指标实战:综合判别改善指数IDI(Integrated Discrimination Improvement, IDI)