Datawhale推荐

作者:louwill,Machine Learning Lab

时隔大半年,机器学习算法推导系列终于有时间继续更新了。在之前的14讲中,笔者将监督模型中主要的单模型算法基本都过了一遍。预计在接下来的10讲中,笔者将努力更新完以GBDT代表的集成学习模型,以EM算法、CRF和隐马为代表的概率图模型以及以聚类降维为代表的无监督学习算法。

在系列第4和第5讲,笔者集中对ID3和CART决策树算法进行了阐述,并给出二者算法的一些初步实现。本节我们来看集成学习的核心模型GBDT(Gradient Boosting Decision Tree),即梯度提升决策树,这也是一种决策树模型算法。GBDT近年来在一些数据竞赛上大杀四方,并不断衍生出像XGBoost和LightGBM等更强大的版本。从名字上看,GBDT是由决策树、提升模型和梯度下降一起构成的。所以,要搞清楚GBDT的基本原理,就必须对这三者及其相互作用有一个深入的理解。

GBDT基本原理

决策树的基本原理我们已经很清楚了,就是依据信息增益等原则不断选择特征构建树模型的过程,具体可参考数学推导+纯Python实现机器学习算法5:决策树之CART算法。Boosting则是一种集成学习模式,通过将多个单个决策树(弱学习器)进行线性组合构成一个强学习器的过程,Boosting以一个单模型作为作为弱分类器,GBDT中使用CART作为这种弱学习器(基模型)。而融入了梯度下降对Boosting树模型进行优化之后就有了梯度提升树模型。

我们先来用一个通俗的说法来理解GBDT。假设某位同学月薪10k,笔者先用一个树模型拟合了6k,发现有4k的损失,然后再用一棵树模型拟合了2k,这样持续拟合下去,拟合值和目标值之间的残差会越来越小,而我们将每一轮迭代,也就是每一棵树的预测值加起来就是模型最终的预测结果。不停的使用单棵决策树组合就是Boosting的过程,使用梯度下降对Boosting树模型进行优化的过程就是Gradient Boosting。

下面我们用数学语言来描述GBDT。

一个提升树模型可以描述为:

在给定初始模型的情况下,第m步的模型可以表示为:

然后我们通过如下目标函数来优化下一棵树的参数:

以回归问题的提升树为例展开,一棵回归树可表示为:

第0步、第m步和最终模型可表示为:

给定第m-1步的模型下,求解:

当损失函数为平方损失时:

相应的损失可推导为:

则有:

说明提升树模型每一次迭代是在拟合一个残差函数。

但实际工作中并不是每一个损失函数都如平方损失那样容易优化,所以有学者就提出近似梯度下降的方法来使用损失函数的负梯度在当前模型的值作为回归提升树中残差的近似值,即:

所以,综合提升树和梯度提升,GBDT模型算法的一般流程可归纳为:

(1) 初始化弱学习器:

(2) 对有:

  • 对每个样本,计算负梯度,即残差

  • 将上步得到的残差作为样本新的真实值,并将数据作为下棵树的训练数据,得到一颗新的回归树其对应的叶子节点区域为。其中为回归树t的叶子节点的个数。

  • 对叶子区域计算最佳拟合值

  • 更新强学习器

(3) 得到最终学习器

GBDT代码框架

手动从头开始写一个GBDT模型并非易事,需要我们对GBDT模型算法细节都有足够深入的理解。在动手写代码之前,我们需要梳理清楚代码框架,一个完整的GBDT系统应包括如下几个方面,如图所示。

GBDT的基模型为CART,所以定义决策树结点和构建CART树至关重要,CART算法笔者系列第5讲已经进行了初步实现。当基模型构建好后,即可根据GBDT算法流程搭建GBDT和GBRT。除此之外,一些辅助函数的定义(最大熵/Gini指数计算),损失函数定义和模型可视化方法等辅助功能也应该一应俱全。

因树结点和CART树模型第5讲已讲过,具体实现方法这里不再重写。

结点定义代码框架:

class TreeNode():def __init__(self, feature_i=None, threshold=None,value=None, true_branch=None, false_branch=None):pass

树定义代码框架,主要包括树的基本属性和方法。基本属性包括根结点、最小划分样本数、最大深度和是否为叶子结点等等。基本方法包括决策树构建、决策树拟合、决策树预测和打印等方法。

class Tree(object):def __init__(self, min_samples_split=2, min_impurity=1e-7,max_depth=float("inf"), loss=None):self.root = None  # Root node in dec. tree# Minimum n of samples to justify splitself.min_samples_split = min_samples_split# The minimum impurity to justify splitself.min_impurity = min_impurity# The maximum depth to grow the tree toself.max_depth = max_depth# Function to calculate impurity (classif.=>info gain, regr=>variance reduct.)# 切割树的方法,gini,方差等self._impurity_calculation = None# Function to determine prediction of y at leaf# 树节点取值的方法,分类树:选取出现最多次数的值,回归树:取所有值的平均值self._leaf_value_calculation = None# If y is one-hot encoded (multi-dim) or not (one-dim)self.one_dim = None# If Gradient Boostself.loss = lossdef fit(self, X, y, loss=None):""" Build decision tree """passdef _build_tree(self, X, y, current_depth=0):""" Recursive method which builds out the decision tree and splits X and respective ypassdef predict_value(self, x, tree=None):""" Do a recursive search down the tree and make a prediction of the data sample by thevalue of the leaf that we end up at """passdef predict(self, X):""" Classify samples one by one and return the set of labels """passdef print_tree(self, tree=None, indent=" "):pass

以回归树为例,基于以上树模型,可定义回归树模型如下:

class RegressionTree(Tree):# 使用方差法进行树分割def _calculate_variance_reduction(self, y, y1, y2):var_tot = calculate_variance(y)var_1 = calculate_variance(y1)var_2 = calculate_variance(y2)frac_1 = len(y1) / len(y)frac_2 = len(y2) / len(y)# Calculate the variance reductionvariance_reduction = var_tot - (frac_1 * var_1 + frac_2 * var_2)return sum(variance_reduction)# 使用均值法取叶子结点值def _mean_of_y(self, y):value = np.mean(y, axis=0)return value if len(value) > 1 else value[0]# 回归树拟合def fit(self, X, y):self._impurity_calculation = self._calculate_variance_reductionself._leaf_value_calculation = self._mean_of_ysuper(RegressionTree, self).fit(X, y)

在定义GBRT之前,先定义损失均方误差损失函数:

class Loss(object):def loss(self, y_true, y_pred):return NotImplementedError()def gradient(self, y, y_pred):raise NotImplementedError()def acc(self, y, y_pred):return 0class SquareLoss(Loss):def __init__(self): passdef loss(self, y, y_pred):return 0.5 * np.power((y - y_pred), 2)def gradient(self, y, y_pred):return -(y - y_pred)

然后定义初始版本的GBDT模型:

class GBDT(object):def __init__(self, n_estimators, learning_rate, min_samples_split,min_impurity, max_depth, regression):# 基本参数self.n_estimators = n_estimatorsself.learning_rate = learning_rateself.min_samples_split = min_samples_splitself.min_impurity = min_impurityself.max_depth = max_depthself.regression = regressionself.loss = SquareLoss()if not self.regression:self.loss = SotfMaxLoss()# 分类问题也可以使用回归树,利用残差去学习概率self.estimators = []for i in range(self.n_estimators):self.estimators.append(RegressionTree(min_samples_split=self.min_samples_split,min_impurity=self.min_impurity,max_depth=self.max_depth))# 拟合方法def fit(self, X, y):# 让第一棵树去拟合模型self.estimators[0].fit(X, y)y_pred = self.estimators[0].predict(X)for i in range(1, self.n_estimators):gradient = self.loss.gradient(y, y_pred)self.estimators[i].fit(X, gradient)y_pred -= np.multiply(self.learning_rate, self.estimators[i].predict(X))# 预测方法def predict(self, X):y_pred = self.estimators[0].predict(X)for i in range(1, self.n_estimators):y_pred -= np.multiply(self.learning_rate, self.estimators[i].predict(X))if not self.regression:# Turn into probability distributiony_pred = np.exp(y_pred) / np.expand_dims(np.sum(np.exp(y_pred), axis=1), axis=1)# Set label to the value that maximizes probabilityy_pred = np.argmax(y_pred, axis=1)return y_pred

然后可分别定义GBDT和GBRT:

# regression tree
class GBDTRegressor(GBDT):def __init__(self, n_estimators=200, learning_rate=0.5, min_samples_split=2,min_var_red=1e-7, max_depth=4, debug=False):super(GBDTRegressor, self).__init__(n_estimators=n_estimators,learning_rate=learning_rate,min_samples_split=min_samples_split,min_impurity=min_var_red,max_depth=max_depth,regression=True)
# classification tree
class GBDTClassifier(GBDT):def __init__(self, n_estimators=200, learning_rate=.5, min_samples_split=2,min_info_gain=1e-7, max_depth=2, debug=False):super(GBDTClassifier, self).__init__(n_estimators=n_estimators,learning_rate=learning_rate,min_samples_split=min_samples_split,min_impurity=min_info_gain,max_depth=max_depth,regression=False)def fit(self, X, y):y = to_categorical(y)super(GBDTClassifier, self).fit(X, y)

最后基于boston房价数据集给出一个计算例子:

from sklearn import datasets
boston = datasets.load_boston()
X, y = shuffle_data(boston.data, boston.target, seed=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)model = GBDTRegressor()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Color map
cmap = plt.get_cmap('viridis')
mse = mean_squared_error(y_test, y_pred)
print ("Mean Squared Error:", mse)# Plot the results
m1 = plt.scatter(range(X_test.shape[0]), y_test, color=cmap(0.5), s=10)
m2 = plt.scatter(range(X_test.shape[0]), y_pred, color='black', s=10)
plt.suptitle("Regression Tree")
plt.title("MSE: %.2f" % mse, fontsize=10)
plt.xlabel('sample')
plt.ylabel('house price')
plt.legend((m1, m2), ("Test data", "Prediction"), loc='lower right')
plt.show();

slearn中为我们提供了GBDT算法完整的API可供调用,实际工程中更不可能自己手写这么复杂的算法系统。但作为学习,手写算法不失为一种深入理解算法细节和锻炼代码能力的好方法。

完整代码可参考:

https://github.com/RRdmlearning/Machine-Learning-From-Scratch/blob/master/gradient_boosting_decision_tree

参考资料:

https://github.com/RRdmlearning/Machine-Learning-From-Scratch/blob/master/gradient_boosting_decision_tree

李航 统计学习方法

这次一定点亮在看 好不好

数学推导+纯Python实现机器学习算法:GBDT相关推荐

  1. 【机器学习基础】数学推导+纯Python实现机器学习算法15:GBDT

    Python机器学习算法实现 Author:louwill Machine Learning Lab 时隔大半年,机器学习算法推导系列终于有时间继续更新了.在之前的14讲中,笔者将监督模型中主要的单模 ...

  2. 【机器学习基础】数学推导+纯Python实现机器学习算法30:系列总结与感悟

    Python机器学习算法实现 Author:louwill Machine Learning Lab 终于到了最后的总结.从第一篇线性回归的文章开始到现在,已经接近有两年的时间了.当然,也不是纯写这3 ...

  3. 【机器学习基础】数学推导+纯Python实现机器学习算法24:HMM隐马尔可夫模型

    Python机器学习算法实现 Author:louwill Machine Learning Lab HMM(Hidden Markov Model)也就是隐马尔可夫模型,是一种由隐藏的马尔可夫链随机 ...

  4. 【机器学习基础】数学推导+纯Python实现机器学习算法28:CRF条件随机场

    Python机器学习算法实现 Author:louwill Machine Learning Lab 本文我们来看一下条件随机场(Conditional Random Field,CRF)模型.作为概 ...

  5. 【机器学习基础】数学推导+纯Python实现机器学习算法27:EM算法

    Python机器学习算法实现 Author:louwill Machine Learning Lab 从本篇开始,整个机器学习系列还剩下最后三篇涉及导概率模型的文章,分别是EM算法.CRF条件随机场和 ...

  6. 【机器学习基础】数学推导+纯Python实现机器学习算法26:随机森林

    Python机器学习算法实现 Author:louwill Machine Learning Lab 自从第14篇文章结束,所有的单模型基本就讲完了.而后我们进入了集成学习的系列,整整花了5篇文章的篇 ...

  7. 【机器学习基础】数学推导+纯Python实现机器学习算法25:CatBoost

    Python机器学习算法实现 Author:louwill Machine Learning Lab 本文介绍GBDT系列的最后一个强大的工程实现模型--CatBoost.CatBoost与XGBoo ...

  8. 【机器学习基础】数学推导+纯Python实现机器学习算法24:LightGBM

    Python机器学习算法实现 Author:louwill Machine Learning Lab 第17讲我们谈到了竞赛大杀器XGBoost,本篇我们来看一种比XGBoost还要犀利的Boosti ...

  9. 【机器学习基础】数学推导+纯Python实现机器学习算法23:kmeans聚类

    Python机器学习算法实现 Author:louwill Machine Learning Lab 聚类分析(Cluster Analysis)是一类经典的无监督学习算法.在给定样本的情况下,聚类分 ...

最新文章

  1. vector 源码及使用
  2. 语义分割和实例分割_语义分割入门的一点总结
  3. Activity之间传递bitmap,Observer观察者模式
  4. js获取当前时间格式YYYY/MM/DD
  5. 【转】修饰符new将父类中的该方法隐藏掉有什么意义 不隐藏有什么弊端
  6. GiraffeDet的学习笔记
  7. php 遍历文件夹下的所有文件名以及文件大小
  8. 统计学中RR OR AR HR的区别
  9. 对华为HG255D路由器进行JTAG调试的进一步研究
  10. Creo 6.0软件安装教程|兼容WIN10
  11. 2018/9/18单舵轮AGV项目笔记之二
  12. 判断听云是否正常嵌入及注意事项
  13. 一个遮罩层怎么遮罩两个图层_遮罩动画需要用两个图层,一个是遮罩层,另一个是()层...
  14. 复化梯形公式c语言sinx x,复化梯形公式和复化辛卜生公式
  15. 计算机毕业设计Java城市出行行程智能推荐系统(源码+系统+mysql数据库+lw文档)
  16. CorelDRAW VBA - 段落文本内容的导出 ExportToFile 方法
  17. CHARINDEX函数
  18. 开启手机找回连接服务器失败,原神连接服务器失败什么意思?连接服务器失败解决方法...
  19. linux系统中怎样抓logo,linux启动成功修改logo
  20. linux 两块硬盘做r0,本文是emp3r0r:Linux用户打造的Linux后渗透框架的后续。

热门文章

  1. AutoConfig工具使用
  2. NCEPU:线下组队学习周报(008)
  3. 利用 createTrackbar 进行二值化
  4. 【ACM】连续出现的字符
  5. 【ACM】杭电OJ 1106 函数atoi
  6. 对数函数定义域和值域_呆哥数学每日一题 —— 复合函数值域
  7. 明年,我要用 AI 给全村写对联
  8. 梅花桩上练真功,腾讯公布机器人移动技术探索新突破
  9. 全球超2万名开发者调研:Python 3渗透率至84%
  10. 来呀!AI喊你斗地主——首个搞定斗地主的深度神经网络