来源:机器学习社区
本文约3400字,建议阅读10分钟
本文与你分享7种最常用的交叉验证技术及其优缺点,提供了每种技术的代码片段。

在任何有监督机器学习项目的模型构建阶段,我们训练模型的目的是从标记的示例中学习所有权重和偏差的最佳值。

如果我们使用相同的标记示例来测试我们的模型,那么这将是一个方法论错误,因为一个只会重复刚刚看到的样本标签的模型将获得完美的分数,但无法预测任何有用的东西 - 未来的数据,这种情况称为过拟合。

为了克服过度拟合的问题,我们使用交叉验证。所以你必须知道什么是交叉验证?以及如何解决过拟合的问题?

什么是交叉验证?

交叉验证是一种用于估计机器学习模型性能的统计方法,它是一种评估统计分析结果如何推广到独立数据集的方法。

它是如何解决过拟合问题的?

在交叉验证中,我们将训练数据生成多个小的训练测试分割,使用这些拆分来调整您的模型。例如,在标准的 k 折交叉验证中,我们将数据划分为 k 个子集。然后,我们在 k-1 个子集上迭代训练算法,同时使用剩余的子集作为测试集。通过这种方式,我们可以在未参与训练的数据上测试我们的模型。

在本文中,我将分享 7 种最常用的交叉验证技术及其优缺点,我还提供了每种技术的代码片段,欢迎收藏学习,喜欢点赞支持。

下面列出了这些技术方法:

  • HoldOut 交叉验证

  • K-Fold 交叉验证

  • 分层 K-Fold交叉验证

  • Leave P Out 交叉验证

  • 留一交叉验证

  • 蒙特卡洛 (Shuffle-Split)

  • 时间序列(滚动交叉验证)

1、HoldOut 交叉验证

在这种交叉验证技术中,整个数据集被随机划分为训练集和验证集。根据经验,整个数据集的近 70% 用作训练集,其余 30% 用作验证集。

优点:

1.快速执行:因为我们必须将数据集拆分为训练集和验证集一次,并且模型将在训练集上仅构建一次,因此可以快速执行。

缺点:

1. 不适合不平衡数据集:假设我们有一个不平衡数据集,它具有“0”类和“1”类。假设 80% 的数据属于“0”类,其余 20% 的数据属于“1”类。在训练集大小为 80%,测试数据大小为数据集的 20% 的情况下进行训练-测试分割。可能会发生“0”类的所有 80% 数据都在训练集中,而“1”类的所有数据都在测试集中。所以我们的模型不能很好地概括我们的测试数据,因为它之前没有看到过“1”类的数据;

2. 大量数据无法训练模型。

在小数据集的情况下,将保留一部分用于测试模型,其中可能具有我们的模型可能会错过的重要特征,因为它没有对该数据进行训练。

代码片段:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
iris=load_iris()
X=iris.data
Y=iris.target
print("Size of Dataset {}".format(len(X)))
logreg=LogisticRegression()
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=42)
logreg.fit(x_train,y_train)
predict=logreg.predict(x_test)
print("Accuracy score on training set is {}".format(accuracy_score(logreg.predict(x_train),y_train)))
print("Accuracy score on test set is {}".format(accuracy_score(predict,y_test)))

2、K 折交叉验证

在这种 K 折交叉验证技术中,整个数据集被划分为 K 个相等大小的部分。每个分区称为一个“折叠”。因此,因为我们有 K 个部分,所以我们称之为 K 折叠。一折用作验证集,其余 K-1 折用作训练集。

该技术重复 K 次,直到每个折叠用作验证集,其余折叠用作训练集。

模型的最终精度是通过取 k-models 验证数据的平均精度来计算的。

优点:

1. 整个数据集既用作训练集又用作验证集。

缺点:

1. 不用于不平衡的数据集:正如在 HoldOut 交叉验证的情况下所讨论的,在 K-Fold 验证的情况下也可能发生训练集的所有样本都没有样本形式类“1”,并且只有 类“0”。验证集将有一个类“1”的样本;

2. 不适合时间序列数据:对于时间序列数据,样本的顺序很重要。但是在 K 折交叉验证中,样本是按随机顺序选择的。

代码片段:

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score,KFold
from sklearn.linear_model import LogisticRegression
iris=load_iris()
X=iris.data
Y=iris.target
logreg=LogisticRegression()
kf=KFold(n_splits=5)
score=cross_val_score(logreg,X,Y,cv=kf)
print("Cross Validation Scores are {}".format(score))
print("Average Cross Validation score :{}".format(score.mean()))

3、分层 K 折交叉验证

分层 K-Fold 是 K-Fold 交叉验证的增强版本,主要用于不平衡的数据集。就像 K-fold 一样,整个数据集被分成大小相等的 K-fold。

但是在这种技术中,每个折叠将具有与整个数据集中相同的目标变量实例比率。

优点:

1. 对于不平衡数据非常有效:分层交叉验证中的每个折叠都会以与整个数据集中相同的比率表示所有类别的数据。

缺点:

1. 不适合时间序列数据:对于时间序列数据,样本的顺序很重要。但在分层交叉验证中,样本是按随机顺序选择的。

代码片段:

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score,StratifiedKFold
from sklearn.linear_model import LogisticRegression
iris=load_iris()
X=iris.data
Y=iris.target
logreg=LogisticRegression()
stratifiedkf=StratifiedKFold(n_splits=5)
score=cross_val_score(logreg,X,Y,cv=stratifiedkf)
print("Cross Validation Scores are {}".format(score))
print("Average Cross Validation score :{}".format(score.mean()))

4、Leave P Out  交叉验证

Leave P Out 交叉验证是一种详尽的交叉验证技术,其中 p 样本用作验证集,剩余的 n-p 样本用作训练集。

假设我们在数据集中有 100 个样本。如果我们使用 p=10,那么在每次迭代中,10 个值将用作验证集,其余 90 个样本将用作训练集。

重复这个过程,直到整个数据集在 p 样本和 n-p 训练样本的验证集上被划分。

优点:

1. 所有数据样本都用作训练和验证样本。

缺点:

1. 计算时间长:由于上述技术会不断重复,直到所有样本都用作验证集,因此计算时间会更长;

2. 不适合不平衡数据集:与 K 折交叉验证相同,如果在训练集中我们只有 1 个类的样本,那么我们的模型将无法推广到验证集。

代码片段:

from sklearn.model_selection import LeavePOut,cross_val_score
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
iris=load_iris()
X=iris.data
Y=iris.target
lpo=LeavePOut(p=2)
lpo.get_n_splits(X)
tree=RandomForestClassifier(n_estimators=10,max_depth=5,n_jobs=-1)
score=cross_val_score(tree,X,Y,cv=lpo)
print("Cross Validation Scores are {}".format(score))
print("Average Cross Validation score :{}".format(score.mean()))

5、留一交叉验证

留一交叉验证是一种详尽的交叉验证技术,其中 1 个样本点用作验证集,其余 n-1 个样本用作训练集。

假设我们在数据集中有 100 个样本。然后在每次迭代中,1 个值将用作验证集,其余 99 个样本作为训练集。因此,重复该过程,直到数据集的每个样本都用作验证点。

它与使用 p=1 的 LeavePOut 交叉验证相同。

代码片段:

from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import LeaveOneOut,cross_val_score
iris=load_iris()
X=iris.data
Y=iris.target
loo=LeaveOneOut()
tree=RandomForestClassifier(n_estimators=10,max_depth=5,n_jobs=-1)
score=cross_val_score(tree,X,Y,cv=loo)
print("Cross Validation Scores are {}".format(score))
print("Average Cross Validation score :{}".format(score.mean()))

6、蒙特卡罗交叉验证(Shuffle Split)

蒙特卡罗交叉验证,也称为Shuffle Split交叉验证,是一种非常灵活的交叉验证策略。在这种技术中,数据集被随机划分为训练集和验证集。

我们已经决定了要用作训练集的数据集的百分比和用作验证集的百分比。如果训练集和验证集大小的增加百分比总和不是 100,则剩余的数据集不会用于训练集或验证集。

假设我们有 100 个样本,其中 60% 的样本用作训练集,20% 的样本用作验证集,那么剩下的 20%( 100-(60+20)) 将不被使用。

这种拆分将重复我们必须指定的“n”次。

优点:

1.我们可以自由使用训练和验证集的大小;

2.我们可以选择重复的次数,而不依赖于重复的折叠次数。

缺点:

1. 可能不会为训练集或验证集选择很少的样本;

2. 不适合不平衡的数据集:在我们定义了训练集和验证集的大小后,所有的样本都是随机选择的,所以训练集可能没有测试中的数据类别 设置,并且该模型将无法概括为看不见的数据。

代码片段:

from sklearn.model_selection import ShuffleSplit,cross_val_score
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
shuffle_split=ShuffleSplit(test_size=0.3,train_size=0.5,n_splits=10)
scores=cross_val_score(logreg,iris.data,iris.target,cv=shuffle_split)
print("cross Validation scores:n {}".format(scores))
print("Average Cross Validation score :{}".format(scores.mean()))


7、时间序列交叉验证

什么是时间序列数据?

时间序列数据是在不同时间点收集的数据。由于数据点是在相邻时间段收集的,因此观测值之间可能存在相关性。这是区分时间序列数据与横截面数据的特征之一。

在时间序列数据的情况下如何进行交叉验证?

在时间序列数据的情况下,我们不能选择随机样本并将它们分配给训练集或验证集,因为使用未来数据中的值来预测过去数据的值是没有意义的。

由于数据的顺序对于时间序列相关问题非常重要,所以我们根据时间将数据拆分为训练集和验证集,也称为“前向链”方法或滚动交叉验证。

我们从一小部分数据作为训练集开始。基于该集合,我们预测稍后的数据点,然后检查准确性。

然后将预测样本作为下一个训练数据集的一部分包括在内,并对后续样本进行预测。

优点:

1. 最好的技术之一。

缺点:

1. 不适用于其他数据类型的验证:与其他技术一样,我们选择随机样本作为训练或验证集,但在该技术中数据的顺序非常重要。

代码片段:

import numpy as np
from sklearn.model_selection import TimeSeriesSplit
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
y = np.array([1, 2, 3, 4, 5, 6])
time_series = TimeSeriesSplit()
print(time_series)
for train_index, test_index in time_series.split(X):print("TRAIN:", train_index, "TEST:", test_index)X_train, X_test = X[train_index], X[test_index]y_train, y_test = y[train_index], y[test_index]

结论

在本文中,我试图概述各种交叉验证技术的工作原理以及我们在实施这些技术时应牢记的事项,我真诚地希望在这个数据科学之旅中对你有所帮助。

编辑:黄继彦
校对:龚力

深度盘点:详细介绍机器学习中的7种交叉验证方法!相关推荐

  1. 【机器学习】深度盘点:详细介绍 Python 中的 7 种交叉验证方法!

    在任何有监督机器学习项目的模型构建阶段,我们训练模型的目的是从标记的示例中学习所有权重和偏差的最佳值. 如果我们使用相同的标记示例来测试我们的模型,那么这将是一个方法论错误,因为一个只会重复刚刚看到的 ...

  2. 真香啊,机器学习中这3种交叉验证方法要掌握

    交叉验证是机器学习中常用的一种策略,其核心是对数据集进行划分,本文介绍sklearn中的3种交叉验证时划分数据集的方法: KFold StratifiedKFold GroupKFold 这里来举例说 ...

  3. 【机器学习】图解机器学习中的 12 种交叉验证技术

    今天我给大家盘点下机器学习中所使用的交叉验证器都有哪些,用最直观的图解方式来帮助大家理解他们是如何工作的. 数据集说明 数据集来源于kaggle M5 Forecasting - Accuracy[1 ...

  4. 详细介绍机器学习中的交叉验证方法

    机器学习的交叉验证 前言 HoldOut交叉验证 K折交叉验证 分层K折交叉验证 Leave P Out 留一交叉验证 蒙特卡罗交叉验证 时间序列交叉验证 前言 在研究生阶段接触机器学习的时候,我导问 ...

  5. 一文介绍机器学习中的三种特征选择方法

    作者 | luanhz 来源 | 小数志 导读 机器学习中的一个经典理论是:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限.也正因如此,特征工程在机器学习流程中占有着重要地位.广义的特征 ...

  6. 机器学习面试题集 - 详解四种交叉验证方法

    https://www.toutiao.com/a6701090733618627076/ 本文结构: 什么是交叉验证法? 为什么用交叉验证法? 主要有哪些方法?优缺点? 各方法应用举例? 什么是交叉 ...

  7. 详细介绍Android中Parcelable的原理和使用方法

    今日推荐 经常阅读博客是个好习惯 推荐技术小黑屋的Blog 引言 本篇文章目的在于详细的理解Parcelable的使用,而不是死记代码 我的简书博客地址 (由于csdn的图片经常出现不显示问题,以后就 ...

  8. 几种交叉验证法(超详细)

    交叉验证 交叉验证是一种用来评价一个训练出的模型是否可以推广到另一个数据结构相同的数据集上的方法.主要用于PCR .PLS 回归建模等建模应用中. 交叉验证有时也称为交叉比对,如:10折交叉比对.主要 ...

  9. 第1节--深度学习基础介绍-机器学习--课程介绍(上)

    本课程为麦子学院彭亮老师讲授的(深度学习基础介绍-机器学习),共28小节. 彭亮在麦子学院还有两门课,一门是Python语言编程基础,另一门是深度学习进阶:算法与应用. 建议三门课的学习顺序为:Pyt ...

最新文章

  1. 颠覆认知了,公司 SRE 天天到底在干嘛?不会是重启工程师吧?
  2. 拥有至高无上的特权 使用system账户
  3. 西门子安装未找到ssf文件_V5.3安装时显示NO SSF FILE FOUND对话框,我该怎么解决啊? 谢谢!-工业支持中心-西门子中国...
  4. 两条边延长角会有什么变化_田园易经:什么样的风水环境会影响人的健康?
  5. python读取大数据量xml_多快好省地使用pandas分析大型数据集
  6. 内存中Android,什么是Android内存转储中的EGL和GL mtrack?
  7. MySQL 时间戳转换成秒
  8. 现代数字信号处理——维纳滤波原理及自适应算法
  9. Python高速缓存和会话库——Beaker
  10. 2022.10.23高沿坪易地扶贫 霜降
  11. 直击JDD | 京东开启技术服务元年:携手合作伙伴,共创产业未来
  12. 报表中的地图怎么做?
  13. 如何做好国产三维CAD软件的研发?
  14. 相似度计算的三种方式
  15. 计算机存储容量单位的倍数关系,存储器容量单位有哪些,它们之间的关系是什么...
  16. 大众点评开源分布式监控平台 CAT 深度剖析
  17. 毕达哥拉斯素数的王伟猜想
  18. PAT 自学题解 B1033【测试点4超时】
  19. 【JAVA今法修真】 第八章 仙道万维网 圣地元宇宙
  20. 市场营销学1——入门

热门文章

  1. 声明一个图书类(Java)
  2. 7-24 约分最简分式 (C语言)
  3. 【c语言】蓝桥杯算法提高 勾股数
  4. Service Fabric独立集群搭建
  5. 臻好黄金百香果苗做一个有脑子的程序员
  6. 除了 iOS 和 Android,世界第三大移动系统是什么?
  7. 图片怎么优化的8个小技巧
  8. mysql数据库设计之三范式
  9. Mysql中对table的操作问题
  10. 文件查找利器---find详解