from:https://blog.csdn.net/qq_14845119/article/details/73648100

Inception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 conv,结构如下图所示,代表作GoogleNet

假设previous layer的大小为28*28*192,则,

a的weights大小,1*1*192*64+3*3*192*128+5*5*192*32=387072

a的输出featuremap大小,28*28*64+28*28*128+28*28*32+28*28*192=28*28*416

b的weights大小,1*1*192*64+(1*1*192*96+3*3*96*128)+(1*1*192*16+5*5*16*32)+1*1*192*32=163328

b的输出feature map大小,28*28*64+28*28*128+28*28*32+28*28*32=28*28*256

写到这里,不禁感慨天才般的1*1 conv,从上面的数据可以看出一方面减少了weights,另一方面降低了dimension。

Inception v1的亮点总结如下:

(1)卷积层共有的一个功能,可以实现通道方向的降维和增维,至于是降还是增,取决于卷积层的通道数(滤波器个数),在Inception v1中1*1卷积用于降维,减少weights大小和feature map维度。

(2)1*1卷积特有的功能,由于1*1卷积只有一个参数,相当于对原始feature map做了一个scale,并且这个scale还是训练学出来的,无疑会对识别精度有提升。

(3)增加了网络的深度

(4)增加了网络的宽度

(5)同时使用了1*1,3*3,5*5的卷积,增加了网络对尺度的适应性

下图为googlenet网络结构:

这里有2个地方需要注意:

(1)整个网络为了保证收敛,有3个loss

(2)最后一个全连接层之前使用的是global average pooling,全局pooling使用的好了,还是有好多地方可以发挥的。

v2:Batch Normalization: Accelerating Deep Network Training by ReducingInternal Covariate Shift

Inception v2的网络,代表作为加入了BN(Batch Normalization)层,并且使用2个3*3替代1个5*5卷积的改进版GoogleNet。

Inception v2的亮点总结如下:

(1)加入了BN层,减少了InternalCovariate Shift(内部neuron的数据分布发生变化),使每一层的输出都规范化到一个N(0, 1)的高斯,从而增加了模型的鲁棒性,可以以更大的学习速率训练,收敛更快,初始化操作更加随意,同时作为一种正则化技术,可以减少dropout层的使用。

(2)用2个连续的3*3 conv替代inception模块中的5*5,从而实现网络深度的增加,网络整体深度增加了9层,缺点就是增加了25%的weights和30%的计算消耗。

v3:Rethinking the InceptionArchitecture for Computer Vision

Inception v3网络,主要在v2的基础上,提出了卷积分解(Factorization),代表作是Inceptionv3版本的GoogleNet。

Inception v3的亮点总结如下:

(1) 将7*7分解成两个一维的卷积(1*7,7*1),3*3也是一样(1*3,3*1),这样的好处,既可以加速计算(多余的计算能力可以用来加深网络),又可以将1个conv拆成2个conv,使得网络深度进一步增加,增加了网络的非线性,更加精细设计了35*35/17*17/8*8的模块。

(2)增加网络宽度,网络输入从224*224变为了299*299。

v4:Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning

Inception v4主要利用残差连接(Residual Connection)来改进v3结构,代表作为,Inception-ResNet-v1,Inception-ResNet-v2,Inception-v4

resnet中的残差结构如下,这个结构设计的就很巧妙,简直神来之笔,使用原始层和经过2个卷基层的feature map做Eltwise。Inception-ResNet的改进就是使用上文的Inception module来替换resnet shortcut中的conv+1*1 conv。

Inception v4的亮点总结如下:

(1)将Inception模块和ResidualConnection结合,提出了Inception-ResNet-v1,Inception-ResNet-v2,使得训练加速收敛更快,精度更高。

ILSVRC-2012测试结果如下(single crop),

(2)设计了更深的Inception-v4版本,效果和Inception-ResNet-v2相当。

(3)网络输入大小和V3一样,还是299*299

Aggregated ResidualTransformations for Deep Neural Networks

这篇提出了resnet的升级版。ResNeXt,the next dimension的意思,因为文中提出了另外一种维度cardinality,和channel和space的维度不同,cardinality维度主要表示ResNeXt中module的个数,最终结论

(1)增大Cardinality比增大模型的width或者depth效果更好

(2)与 ResNet 相比,ResNeXt 参数更少,效果更好,结构更加简单,更方便设计

其中,左图为ResNet的一个module,右图为ResNeXt的一个module,是一种split-transform-merge的思想

 

Xception: DeepLearning with Depthwise Separable Convolutions

这篇文章主要在Inception V3的基础上提出了Xception(Extreme Inception),基本思想就是通道分离式卷积(depthwise separable convolution operation)。最终实现了

(1)模型参数有微量的减少,减少量很少,具体如下,

(2)精度较Inception V3有提高,ImageNET上的精度如下,

先说,卷积的操作,主要进行2种变换,

(1)spatial dimensions,空间变换

(2)channel dimension,通道变换

而Xception就是在这2个变换上做文章。Xception与Inception V3的区别如下:

(1)卷积操作顺序的区别

Inception V3是先做1*1的卷积,再做3*3的卷积,这样就先将通道进行了合并,即通道卷积,然后再进行空间卷积,而Xception则正好相反,先进行空间的3*3卷积,再进行通道的1*1卷积。

(2)RELU的有无

这个区别是最不一样的,Inception V3在每个module中都有RELU操作,而Xception在每个module中是没有RELU操作的。

MobileNets: EfficientConvolutional Neural Networks for Mobile Vision Applications

MobileNets其实就是Exception思想的应用。区别就是Exception文章重点在提高精度,而MobileNets重点在压缩模型,同时保证精度。

depthwiseseparable convolutions的思想就是,分解一个标准的卷积为一个depthwise convolutions和一个pointwise convolution。简单理解就是矩阵的因式分解。

传统卷积和深度分离卷积的区别如下,

假设,输入的feature map大小为DF * DF,维度为M,滤波器的大小为DK * DK,维度为N,并且假设padding为1,stride为1。则,

原始的卷积操作,需要进行的矩阵运算次数为DK · DK · M · N · DF · DF,卷积核参数为DK · DK · N · M

depthwise separable convolutions需要进行的矩阵运算次数为DK · DK ·M · DF · DF + M · N · DF · DF,卷积核参数为DK · DK · M+N · M

由于卷积的过程,主要是一个spatial dimensions减少,channel dimension增加的过程,即N>M,所以,DK · DK · N · M> DK · DK · M+N · M。

因此,depthwiseseparable convolutions在模型大小上和模型计算量上都进行了大量的压缩,使得模型速度快,计算开销少,准确性好。如下图所示,其中,横轴MACS表示加法和乘法的计算量(Multiply-Accumulates),纵轴为准确性。

depthwise separable convolutions在caffe中,主要通过卷积层中group操作实现,base_line模型大小大概为16M。

mobileNet网络结构如下:

ShuffleNet: AnExtremely Efficient Convolutional Neural Network for Mobile Devices

这篇文章在mobileNet的基础上主要做了1点改进:

mobileNet只做了3*3卷积的deepwiseconvolution,而1*1的卷积还是传统的卷积方式,还存在大量冗余,ShuffleNet则在此基础上,将1*1卷积做了shuffle和group操作,实现了channel shuffle 和pointwise group convolution操作,最终使得速度和精度都比mobileNet有提升。

如下图所示,

(a)是原始的mobileNet的框架,各个group之间相互没有信息的交流。

(b)将feature map做了shuffle操作

(c)是经过channel shuffle之后的结果。

Shuffle的基本思路如下,假设输入2个group,输出5个group

| group 1   | group 2  |

| 1,2,3,4,5  |6,7,8,9,10 |

转化为矩阵为2*5的矩阵

1 2 3 4 5

6 7 8 9 10

转置矩阵,5*2矩阵

1 6

2 7

3 8

4 9

5 10

摊平矩阵

| group 1   | group 2  | group 3   | group 4  | group 5  |

| 1,6           |2,7          |3,8           |4,9          |5,10        |

ShuffleNet Units 的结构如下,

(a)是一个带depthwiseconvolution (DWConv)的bottleneck unit

(b)在(a)的基础上,进行了pointwisegroup convolution (GConv) and channel shuffle

(c)进行了AVG pooling和concat操作的最终ShuffleNetunit

MobileNetV2: Inverted Residuals and Linear Bottlenecks

主要贡献有2点:

1,提出了逆向的残差结构(Inverted residuals)

由于MobileNetV2版本使用了残差结构,和resnet的残差结构有异曲同工之妙,源于resnet,却和而不同。

由于Resnet没有使用depthwise conv,所以,在进入pointwise conv之前的特征通道数是比较多的,所以,残差模块中使用了0.25倍的降维。而MobileNet v2由于有depthwise conv,通道数相对较少,所以残差中使用 了6倍的升维。

总结起来,2点区别

(1)ResNet的残差结构是0.25倍降维,MobileNet V2残差结构是6倍升维

(2)ResNet的残差结构中3*3卷积为普通卷积,MobileNet V2中3*3卷积为depthwise conv

MobileNet v1,MobileNet v2 有2点区别:

(1)v2版本在进入3*3卷积之前,先进行了1*1pointwise conv升维,并且经过RELU。

(2)1*1卷积出去后,没有进行RELU操作

2,提出了线性瓶颈单元(linear bottlenecks)

Why no RELU?

首选看看RELU的功能。RELU可以将负值全部映射为0,具有高度非线性。下图为论文的测试。在维度比较低2,3的时候,使用RELU对信息的损失是比较严重的。而单维度比较高15,30时,信息的损失是比较少的。

MobileNet v2中为了保证信息不被大量损失,应此在残差模块中去掉最后一个的RELU。因此,也称为线性模块单元。

MobileNet v2网络结构:

其中,t表示通道的扩大系数expansion factor,c表示输出通道数,

n表示该单元重复次数,s表示滑动步长stride

其中bottleneck模块中,stride=1和stride=2的模块分别如上图所示,只有stride=1的模块才有残差结构。

结果:

MobileNet v2速度和准确性都优于MobileNet v1

references:

http://iamaaditya.github.io/2016/03/one-by-one-convolution/

https://github.com/soeaver/caffe-model

https://github.com/facebookresearch/ResNeXt

https://github.com/kwotsin/TensorFlow-Xception

https://github.com/shicai/MobileNet-Caffe https://github.com/shicai/MobileNet-Caffe

https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md

https://github.com/HolmesShuan/ShuffleNet-An-Extremely-Efficient-CNN-for-Mobile-Devices-Caffe-Reimplementation

https://github.com/camel007/Caffe-ShuffleNet

https://github.com/shicai/MobileNet-Caffe

https://github.com/chinakook/MobileNetV2.mxnet

转载于:https://www.cnblogs.com/bonelee/p/8977912.html

从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2相关推荐

  1. 经典卷积神经系列(Inception v1\v2\v3\v4、ResNet、ResNext、DenseNet、SENet)

    写在前面:此文只记录了下本人感觉需要注意的地方,不全且不一定准确.详细内容可以参考文中帖的链接,比较好!!! 经典的CNN:Inception v1\v2\v3\v4.Resnet.Resnext.D ...

  2. PyTorch 实现经典模型7:YOLO (v1, v2, v3, v4)

    YOLO (v1, v2, v3, v4) 网络结构 YOLO v3 网络结构 代码 Ref <机器爱学习>YOLO v1深入理解 <机器爱学习>YOLOv2 / YOLO90 ...

  3. android V1,V2,V3,V4签名详解

    前言 最近帮测试做了一点关于签名的需求,今天就和各位同学简单聊一聊关于签名的那些事儿. 如果问到 Android 为什么需要签名?大家都可能想到官网的解释: ❝ Android 系统要求所有 APK ...

  4. 论文记录1_YOLO系列(v1 v2 v3 v4)

    注:此文为阅读笔记,参考了很多论文,博客,如有侵权请联系,我附上原出处. 文章目录 准备知识: YOLO V1 创新点 grid cell 置信度 例子 网络架构 Backbone Neck Head ...

  5. UUID-五个版本-v1|v2|v3|v4|v5-使用说明

    1.UUID概要 UUID 的全称是 Universally Unique Identifier,中文为通用唯一识别码. 构成:由一组32位数的16进制数字所构成. 格式:以连字号分为五段,表现形式为 ...

  6. Android Apk签名修改V1,V2,V3,V4

    Unity游戏打出 Android Apk 包,默认签名方式是V1,V2方式的. 但是九游要求只能用V1签名方式.那就对生成的 Andorid Apk包重新签名就OK了. 改签环境 改签 Androi ...

  7. android v3签名格式,Android Apk签名修改V1,V2,V3,V4

    Unity游戏打出 Android Apk 包,默认签名方式是V1,V2方式的. 但是九游要求只能用V1签名方式.那就对生成的 Andorid Apk包重新签名就OK了. 改签环境 改签 Androi ...

  8. SQL组合查询:(字段1, 字段2) in ((v1, v2),(v3, v4))

    目录 优化前 优化后 场景:数据库表两个字段组成唯一键,需要批量用唯一键查询记录 UNIQUE KEY `uk_channel_org` (`channel`, `org`), 优化前 for (Ch ...

  9. 使用自己的数据集训练GoogLenet InceptionNet V1 V2 V3模型(TensorFlow)

    使用自己的数据集训练GoogLenet InceptionNet V1 V2 V3模型(TensorFlow) [尊重原创,转载请注明出处]https://blog.csdn.net/guyueali ...

最新文章

  1. 提供一个基于.NET的加密/解密算法
  2. Libvirt — 4 种主机虚拟化网络模式
  3. 洛谷P1001 A+B Problem
  4. linux查找最近访问的文件,教您在Linux系统中查找最近修改的文件/文件夹
  5. TCP/IP详解--TCP/IP中三次握手 四次握手状态分析
  6. S/4HANA表现抢眼——第一季度SAP大中华区营收再现双位数增长
  7. python 细枝末节
  8. Linux命令解释之fdisk
  9. 计算机跳转列表常用组合框,2015计算机二级VB考点复习指导:列表框和组合框
  10. 【Android开发】jarsigner重新打包apk
  11. import python settings from_python settings 中通过字符串导入模块
  12. 迅为恩智浦iTOP-IMX6开发平台
  13. 奇虎360笔试题 挑选镇长
  14. 帆软报表参数传给网络报表_自定义报表之自定义参数界面
  15. 从818悟空榜看苏宁全场景零售的数据赋能
  16. 设计模式:设配器模式
  17. C语言编程规范 学习笔记
  18. BrightlyPro - 照片视屏后期自动调色增亮工具
  19. 低代码助力生产管理:车间管理系统
  20. text/plain

热门文章

  1. 正则表达式中^的用法
  2. bochs调试方法与指令详解
  3. 路径搜索算法 python实现_A*算法在栅格地图上的路径搜索(python实现)
  4. linux 命令博客,Linux 命令
  5. 制作模板_木模板制作流程
  6. linux apache 文件服务器,Linux下搭建Apache服务器全过程详解
  7. 在线提交信息 程序 php,在线短消息收发的程序,不用数据库_php基础_脚本
  8. windows下用elasticdump导入json数据到Elasticsearch中
  9. 【Ubuntu入门到精通系列讲解】Linux 终端命令格式
  10. python绘制科赫雪花(递归)