分享嘉宾:徐增强 快手 高级研发工程师

编辑整理:Frank

出品平台:DataFunTalk

导读:作为快手内部数据规模和机器规模最大的分布式文件存储系统,HDFS一直伴随着快手业务的飞速发展而快速成长。

本文主要从以下三个层面,介绍下 HDFS系统在快手业务场景下的落地实践:

  • HDFS架构介绍

  • 快手HDFS 数据和集群规模介绍

  • 快手HDFS 挑战与实践

01

HDFS架构介绍

HDFS 全名 Hadoop Distributed File System,是Apache Hadoop的子项目,也是业界使用最广泛的开源分布式文件系统。

核心思想是:将文件按照固定大小进行分片存储,具备:强一致性、高容错性、高吞吐性等

架构层面是典型的主从结构:

  • 主节点:称为NameNode,主要存放诸如目录树、文件分片信息、分片存放位置等元数据信息

  • 从节点:称为DataNode,主要用来存分片数据

HDFS官网架构

02

快手HDFS数据规模和集群规模介绍

快手HDFS 历经 3 年的飞速发展,承载了整个快手几乎全量的数据存储,直接或间接的支持了上百种业务的发展。从最初的千台规模,目前已经发展成拥有几万台服务器、几EB数据的超大规模存储系统。

1. 业务类型

在整个数据平台中,HDFS 系统是一个非常底层也是非常重要的存储系统,除了常用的Hadoop生态开源组件之外,还承载诸如kafka、clickhouse等在线核心组件数据(ps:有兴趣的同学可以私聊)

2. 集群规模

作为数据平台中最底层的存储系统,目前也是整个快手中机器规模和数据规模最大的分布式存储系统,单个HDFS集群拥有:

  • 几万台服务器

  • 几EB数据规模、几百PB的EC数据量

  • 每天拥有几百PB的数据吞吐

  • 几十组NameService

  • 几百亿元数据信息

  • 百万级Qps

03

快手HDFS挑战与实践

在数据爆炸式增长的过程中,HDFS 系统遇见的挑战是非常大的。接下来,主要从HDFS架构四个比较核心的问题入手,重点介绍下快手的落地过程。

  • 主节点扩展性问题

  • 单NS性能瓶颈问题

  • 节点问题

  • 分级保障问题

1. 主节点扩展性问题

众所周知,主节点扩展性问题是一个非常棘手,也是非常难解决的问题。当主节点压力过大时,没办法通过扩容的手段来快速分担主节点压力。

随着集群规模越来越大,问题也越来越严重。我们认为要解决这个问题,至少需要具备两个能力:

  • 具备快速新增NameService的能力

  • 具备新增NS能快速分担现存NS压力的能力

无论社区2.0的Federation架构,还是社区最新3.0的Router Based Federation架构,都不能很好的满足这两个条件。综合讨论了多个方案之后,我们决定在社区最新3.0的RBF架构基础上,进行深度定制开发,来解决主节点扩展性问题。

首先,我们介绍两个业务场景的扩展性方案:

① 快手 FixedOrder && RbfBalancer机制

我们支持的第一个扩展性机制:FixedOrder机制

  • 将一个路径挂载到多个NS上,记为FixedOrderMountPoint

  • FixedOrderMountPoint下所有新建目录或文件都写到期望的NS(比如新增NS)

  • FixedOrderMountPoint下目录或文件的访问,通过探测的方式,可以有效的访问到新老数据(增加FixedOrderMountPoint前后的文件或目录)

利用这个机制,可以通过快速新增NS,来有效缓解热点NS Qps压力过大的问题。

除此之外,我们还研发了RbfBalancer机制,通过FastCp的方式,在业务完全透明的场景下将存量数据异步搬迁到新的NS里,达到缓解老NS内存压力的效果。由于老NS Qps压力已经被快速分担,所以异步数据迁移的进度,没有强要求。

利用FixedOrder + RBFBalancer机制,通过扩容新NS并快速分担老NS的压力,来解决大多数场景的扩展性问题。

② 快手 DFBH 机制

众所周知,分布式开源组件中存在大量Staing路径,比如:Yarn Staing路径、Spark Staing路径、Hive scratchdir路径、Kafka Partition路径等,这一类路径有两个特点:

  • Qps非常大,需要多个NS承担

  • 具有短暂的生命周期

针对这一类路径 ,我们引入了DFBH机制,来解决主节点扩展性问题:

  • 通过一致性Hash实现多NS间Qps负载均衡

  • 利用动态FixedOrder机制,在不搬迁数据的场景下,实现透明扩缩容NS

实现的核心思想是:

  • 每个路径依据多组一致性Hash列表计算出归属NS,组合成FixedOrder

  • 将增量数据写到期望NS 中 ,存量数据依旧可见

  • 随着生命周期推移,逐步回退到最普通的一致性Hash策略

社区贡献

除了完善多个扩展性方案之外,我们还解决了大量RBF正确性、性能、资源隔离等稳定性问题,同时也积极为社区提供大量BugFix,有兴趣的同学可以参考下:

https://issues.apache.org/jira/browse/HDFS-15300

https://issues.apache.org/jira/browse/HDFS-15238

https://issues.apache.org/jira/browse/HDFS-14543

https://issues.apache.org/jira/browse/HDFS-14685

https://issues.apache.org/jira/browse/HDFS-14583

https://issues.apache.org/jira/browse/HDFS-14812

https://issues.apache.org/jira/browse/HDFS-14721

https://issues.apache.org/jira/browse/HDFS-14710

https://issues.apache.org/jira/browse/HDFS-14728

https://issues.apache.org/jira/browse/HDFS-14722

https://issues.apache.org/jira/browse/HDFS-14747

https://issues.apache.org/jira/browse/HDFS-14741

https://issues.apache.org/jira/browse/HDFS-14565

https://issues.apache.org/jira/browse/HDFS-14661

2. 单NS性能瓶颈问题

众所周知,HDFS 架构中NameNode 的实现中有一把全局锁,很容易就达到处理瓶颈。社区最新3.0提出了一个Observer Read架构,通过读写分离的架构,尝试提升单个NameService的处理能力,但是最新的架构问题比较多。

针对单NS性能瓶颈这个问题,我们尝试从两个阶段解决:

  • 快手特色ObserverRead架构,从读写分离角度提升NS处理能力【重点介绍】

  • 优化NameNode全局锁,从提升单NN处理能力角度提升NS处理能力【进行中】

快手特色ObserverRead架构

快手特色ObserverRead架构是基于最新的RBF框架落地的,在客户端完全透明的场景下,实现动态负载路由读请求的功能,提升整个NS处理能力。

相比社区的ObserverRead架构,快手特色ObserverRead架构有几个非常明显的优势:

  • 整个架构,基于RBF框架实现,客户端完全透明

  • Router检测NN节点状态,实现动态负载路由读请求

  • Standby、Active节点可以支持读请求

  • Observer节点支持快速扩容

在整个最新架构落地过程中,也解决了社区ObserverRead架构大量稳定性问题,比如:

  • MSync RPC稳定性问题

  • Observer Reader卡锁问题

  • NameNode Bootstrap失败问题

  • Client Interrupt导致无效重试问题(HDFS-13609)

3. 慢节点问题

随着集群规模越来越大,慢节点问题也越来越明显,经常导致作业出现长尾Task、训练“卡住”等问题。

慢节点问题主要体现在从节点DataNode上,主要是因为物理指标负载比较大,比如:网卡流量、磁盘Util、Tcp 异常等。

针对这个问题,我们从两个大的方向着手解决:

  • 慢节点规避

  • 慢节点根因优化

① 慢节点规避

主要从事先规避和事中熔断两个角度来实现HDFS层面的慢节点规避机制。

事先规避,即客户端在读写数据前,NameNode依据DN的负载信息进行排序,优先返回低负载的DN。

其判断依据主要有:负载指标(CPU使用率、磁盘Util、网卡流量、读写吞吐量);客户端上报慢节点。

事中熔断,即客户端在读写数据过程中,通过吞吐阈值实时感知慢节点,进行实时慢节点摘除功能。

通过事先规避和事中熔断机制,能有效地解决长尾Task、训练“卡住”等问题。

② 慢节点根因优化

从资源利用率最大化的角度出发,从节点DataNode机器是和Yarn NodeManager混布的。

通过硬件指标采集发现:Yarn MapReduce的shuffle功能对硬件繁忙程度贡献度非常大,所以我们从Yarn Shuffle优化和DN内部机制优化两个角度尝试从根因入手解决慢节点问题。

这里,我主要介绍下DN内部优化逻辑,主要包括:

  • 在线目录层级降维

即DN在不停读写的场景下,实现block存储目录的降维工作,极大地缩减磁盘元数据信息。

  • DataSet全局锁优化

将DN内部全局锁细粒度化,拆分成BlockPool + Volume 层级,降低BlockPool之间、磁盘之间的相互影响。

  • Du操作优化

将定期的DU操作,通过内存结构计算单磁盘BP使用量。

  • 选盘策略优化

添加负载选盘策略,优先选择负载比较低的磁盘。

4. 分级保障问题

众所周知,快手经常有一些大型活动,比如春节活动、电商活动、拉新活动等,而且整个活动过程中还伴随着无数个例行任务。

瞬间的洪峰流量,可能会导致HDFS系统满载,甚至过载。

为了在HDFS 系统满载的场景下尽可能的保障高优先级任务正常运行,所以我们将所有任务抽象成高优先级、中优先级和低优先级任务,同时HDFS系统支持分级保障功能,来满足这个需求。

我们主要从NameNode和DataNode两个角色入手,支持分级保障功能。

NameNode分级保障功能

我们深度定制了NameNode Rpc框架,将队列拆分成优先级队列,Handler依据资源配比依次处理不同优先级队列请求。与此同时,通过压力感知模块,实时感知各个优先级请求的压力,并动态调整资源配比,从而实现:

  • 未满载时,按照资源配配比处理请求

  • 满载时,资源倾向高优,优先处理高优请求

DataNode分级保障功能

由于DataNode内部是通过独占线程方式与客户端进行数据IO的,所以我们在每个磁盘上添加了磁盘限速器。

当磁盘资源达到上限后,高优先级请求到来时,会强占低优先级资源。除此之外,我们还添加了阈值调整模块,实时感知相关指标,动态调整磁盘限速器阈值,来控制单盘压力。

5. 快手HDFS架构图

最后,我们介绍下目前快手HDFS 系统的最新架构。

整个架构整体分为三层,分别是:路由层、元信息层和数据层。

① 路由层

由一组无状态的Router服务组成,Router间通过ZK来共享挂载点信息等,主要用于转发客户端的元信息请求。

② 元信息层

由多组相互独立的NameService组成,每组NameService内主要有一台Active NameNode服务、一台Standby NameNode服务、N台Observer NameNode服务组成。

其中:

  • Active和Standby通过ZKFC实现动态HA切换的功能

  • Active主要承担写请求压力

  • Standby除了承担定期Checkpoint功能外,还支持部分读请求

  • Observer主要分担读请求压力

③ 数据层

由一组无状态的从节点(DataNode)组成,主要用来存在数据;通过心跳、块汇报等Rpc与主节点保持最新状态。

04

结尾

快手HDFS 经历了3年的发展,从最初的几百台节点支持PB级数据量的小规模集群,到现在的拥有几万台节点支持EB级数据量的超大规模集群。我们团队用无数个黑夜,经历了数据爆炸式增长的过程,抗住了巨大压力,踩了无数的坑,同时也积累大量经验。

当然,快手依旧处于飞速发展过程中,我们团队依旧不忘初心,怀着敬畏之心,继续匠心前行。

快手EB级HDFS挑战与实践相关推荐

  1. 字节跳动 EB 级 HDFS 实践

    本文选自"字节跳动基础架构实践"系列文章. "字节跳动基础架构实践"系列文章是由字节跳动基础架构部门各技术团队及专家倾力打造的技术干货内容,和大家分享团队在基础 ...

  2. 字节跳动EB级HDFS的七年演进与实践

    作为目前字节跳动内部存储量及集群规模最大的分布式存储系统,HDFS 一直伴随着字节跳动关键业务的飞速扩张而快速发展.本文会从 HDFS 发展历程入手,介绍发展路径上的重大挑战及解决方案. HDFS简介 ...

  3. 万台 HDFS 集群规模在快手的挑战与实践

    作为快手内部数据规模和机器规模最大的分布式文件存储系统,HDFS一直伴随着快手业务的飞速发展而快速成长. HDFS架构介绍 HDFS 全名 Hadoop Distributed File System ...

  4. 阿里靠什么支撑 EB 级计算力?

    戳蓝字"CSDN云计算"关注我们哦! 技术头条:干货.简洁.多维全面.更多云计算精华知识尽在眼前,get要点.solve难题,统统不在话下! 作者:观涛 转自:阿里技术 阿里妹导读 ...

  5. 微信、QQ都在用的腾讯云EB级对象存储架构剖析

    背景:5月23-24日,以"焕启"为主题的腾讯"云+未来"峰会在广州召开,广东省各级政府机构领导.海内外业内学术专家.行业大咖及技术大牛等在现场共议云计算与数字 ...

  6. 揭秘阿里云EB级大数据计算引擎MaxCompute

    日前,全球权威咨询与服务机构Forrester发布了<The Forrester WaveTM: Cloud Data Warehouse, Q4 2018>报告.这是Forrester ...

  7. 书生云签10亿元、EB级订单,中国超融合迎来春天

    不知不觉间,京城又到了杨絮飘飞的季节,春天真的来了.中国的超融合市场又何尝不是一派生机盎然的景象? 4月11日,中国的超融合市场诞生了一项世界纪录:书生云将承建凤凰创新园数据中心这一全球最大单体云数据 ...

  8. 【演讲实录】金融级数据库技术与实践

    近期,巨杉数据库 受邀在第七届数据技术嘉年华中做了"金融级数据库技术与实践"为主题的演讲,分享了巨杉数据库有关金融行业数据库管理以及金融级数据库技术与应用的一些实践及思考. 新一代 ...

  9. 10亿级存储挑战!看一看、微信广告、微信支付、小程序都在用的存储系统究竟是怎么扛住的?!...

    导读:10亿级,是微信用户的数量级.这个庞大数字的背后,是"看一看"."微信广告"."微信支付"."小程序"等业务对数据 ...

最新文章

  1. Java中时间戳和Date类型以及字符串日期的相互转换
  2. 前端每日实战:108# 视频演示如何用 CSS 和 D3 创作一个抽象的黑白交叠动画
  3. 震惊!原来Android OpenGL ES可以这样用,实现 (水波纹)涟漪效果超惊艳!
  4. 使用pdb调试python
  5. 双目测距测深度_TOF还能这么玩?荣耀V20黑科技升级变测距神器
  6. mysql单源多表同步单库单表_MySQL主从复制单表或者多表
  7. Unity之CharacterController2D学习笔记(1)——基础使用
  8. python的百分号和斜杠 除_关于python:如何替换除字母,数字,正斜杠和反斜杠之外的所有字符...
  9. windows server2008 IIS搭建网站简易教程(阿里云)
  10. python标准化输出
  11. 常见数据结构List之LinkedList
  12. top 并grep 特定信息打印至txt
  13. 工具类ConfigTool封装Nacos Config 本地缓存(实战附代码实现)
  14. 关键词细分优化的策略方法
  15. java中三元运算符_java中的三元运算符详解
  16. MySql Sharding分表、分库、分片和分区知识讲解
  17. 怎么抓取计算机窗口,又学会了一种黑别人电脑的方法——如何在登录界面获取shell...
  18. matlab画三维点坐标,已知各个点的三维坐标(x,y,z),怎么用MATLAB画三维图
  19. Linux九阴真经之无影剑残卷7(进程管理)
  20. 玄虚子:巧记易经64卦,分宫卦象次序表。

热门文章

  1. 关于Linux的一些个人研习感悟
  2. 两种Linux CentOS 6.5 网络配置方法
  3. java 删除数组指定元素_Java从在数组中删除指定元素
  4. poj1523(割点)
  5. [USACO16JAN]Angry Cows S[二分+贪心]
  6. poj 2352 Stars 线段树(先建后查/边建边查)/树状数组三种方法思路详解,带你深入了解线段树难度⭐⭐⭐★
  7. 例题6-2 铁轨(Rails, ACM/ICPC CERC 1997, UVa 514)
  8. pyqtdeploy教程_PyQtdeploy-V2.4 User Guide 中文 (一)
  9. 三菱modbusRTU通讯实例_「笔记」信捷plc应用,两个plc通讯篇
  10. 瞎聊Spring Cloud