一.关于内存

 1、内存分配方式

  内存分配方式有三种:

  (1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在

。例如全局变量,static变量。

  (2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存

储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

  (3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自

己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。


2.内存使用错误
      发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。

而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有

发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:
       * 内存分配未成功,却使用了它。

  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查

指针是否为NULL。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

  * 内存分配虽然成功,但是尚未初始化就引用它。

  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值

错误(例如数组)。 内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不

可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。


  * 内存分配成功并且已经初始化,但操作越过了内存的边界。

  例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞

错,导致数组操作越界。

  * 忘记了释放内存,造成内存泄露。

  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次

程序突然死掉,系统出现提示:内存耗尽。

  动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误

(new/delete同理)。

  * 释放了内存却继续使用它。
 
  有三种情况:

  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新

设计数据结构,从根本上解决对象管理的混乱局面。

  (2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函

数体结束时被自动销毁。

  (3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

  【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存

  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

  【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。

  【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。


二. 详解new,malloc,GlobalAlloc
   
 1.  new

new和delete运算符用于动态分配和撤销内存的运算符

new用法:

1>     开辟单变量地址空间

1)new int;  //开辟一个存放数组的存储空间,返回一个指向该存储空间的地址.int *a = new

int 即为将一个int类型的地址赋值给整型指针a.

2)int *a = new int(5) 作用同上,但是同时将整数赋值为5

2>    开辟数组空间

一维: int *a = new int[100];开辟一个大小为100的整型数组空间

一般用法: new 类型 [初值]

delete用法:

1> int *a = new int;

delete a;   //释放单个int的空间

2>int *a = new int[5];

delete [] a; //释放int数组空间

要访问new所开辟的结构体空间,无法直接通过变量名进行,只能通过赋值的指针进行访问.

用new和delete可以动态开辟,撤销地址空间.在编程序时,若用完一个变量(一般是暂时存储的数组),

下次需要再用,但却又想省去重新初始化的功夫,可以在每次开始使用时开辟一个空间,在用完后撤销它.

2.  malloc
  原型:extern void *malloc(unsigned int num_bytes);
  用法:#i nclude <malloc.h>或#i nclude <stdlib.h>
  功能:分配长度为num_bytes字节的内存块
  说明:如果分配成功则返回指向被分配内存的指针,否则返回空指针NULL。
  当内存不再使用时,应使用free()函数将内存块释放。
  malloc的语法是:指针名=(数据类型*)malloc(长度),(数据类型*)表示指针.
说明:malloc 向系统申请分配指定size个字节的内存空间。返回类型是 void* 类型。void* 表示未确定类型

的指针。C,C++规定,void* 类型可以强制转换为任何其它类型的指针。

malloc()函数的工作机制

  malloc函数的实质体现在,它有一个将可用的内存块连接为一个长长的列表的所谓空闲链表。调用malloc

函数时,它沿连接表寻找一个大到足以满足用户请求所需要的内存块。然后,将该内存块一分为二(一块的大

小与用户请求的大小相等,另一块的大小就是剩下的字节)。接下来,将分配给用户的那块内存传给用户,并

将剩下的那块(如果有的话)返回到连接表上。调用free函数时,它将用户释放的内存块连接到空闲链上。到

最后,空闲链会被切成很多的小内存片段,如果这时用户申请一个大的内存片段,那么空闲链上可能没有可以

满足用户要求的片段了。于是,malloc函数请求延时,并开始在空闲链上翻箱倒柜地检查各内存片段,对它们

进行整理,将相邻的小空闲块合并成较大的内存块。
 
和new的不同
从函数声明上可以看出。malloc 和 new 至少有两个不同: new 返回指定类型的指针,并且可以自动计算所需

要大小。比如:
int *p;
p = new int; //返回类型为int* 类型(整数型指针),分配大小为 sizeof(int);
或:
int* parr;
parr = new int [100]; //返回类型为 int* 类型(整数型指针),分配大小为 sizeof(int) * 100;

也就是说: new 函数会自动根据你分配的指针类型分配内存。

而 malloc 则必须由我们计算要字节数,并且在返回后强行转换为实际类型的指针。
int* p;
p = (int *) malloc (sizeof(int));
第一、malloc 函数返回的是 void * 类型,如果你写成:p = malloc (sizeof(int)); 则程序无法通过编译,

报错:“不能将 void* 赋值给 int * 类型变量”。所以必须通过 (int *) 来将强制转换。
第二、函数的实参为 sizeof(int) ,用于指明一个整型数据需要的大小。如果你写成:
int* p = (int *) malloc (1);
代码也能通过编译,但事实上只分配了1个字节大小的内存空间,当你往里头存入一个整数,就会有3个字节无

家可归,而直接“住进邻居家”!造成的结果是后面的内存中原有数据内容全部被清空。

3.  GlobalAlloc
 
   VC中关于GlobalAlloc,GlobalLock,GlobalUnLock

调用GlobalAlloc函数分配一块内存,该函数会返回分配的内存句柄。
调用GlobalLock函数锁定内存块,该函数接受一个内存句柄作为参数,然后返回一个指向被锁定的内存块的指

针。 您可以用该指针来读写内存。
调用GlobalUnlock函数来解锁先前被锁定的内存,该函数使得指向内存块的指针无效。
调用GlobalFree函数来释放内存块。您必须传给该函数一个内存句柄。
 
GlobalAlloc
说明
分配一个全局内存块
返回值
Long,返回全局内存句柄。零表示失败。会设置GetLastError
参数表
参数 类型及说明
wFlags Long,对分配的内存类型进行定义的常数标志,如下所示:
             GMEM_FIXED 分配一个固定内存块
             GMEM_MOVEABLE 分配一个可移动内存块
             GMEM_DISCARDABLE 分配一个可丢弃内存块
             GMEM_NOCOMPACT 堆在这个函数调用期间不进行累积
             GMEM_NODISCARD 函数调用期间不丢弃任何内存块
             GMEM_ZEROINIT 新分配的内存块全部初始化成零
dwBytes Long,要分配的字符数

GlobalLock 
函数功能描述:锁定一个全局的内存对象,返回指向该对象的第一个字节的指针
函数原型:
LPVOID GlobalLock( HGLOBAL hMem )
参数:
hMem:全局内存对象的句柄。这个句柄是通过GlobalAlloc或GlobalReAlloc来得到的
返回值:
调用成功,返回指向该对象的第一个字节的指针
调用失败,返回NULL,可以用GetLastError来获得出错信息
注意:
调用过GlobalLock锁定一块内存区后,一定要调用GlobalUnlock来解锁
 
  GlobalUnlock
函数功能描述:解除被锁定的全局内存对象
函数原型:BOOL GlobalUnlock( HGLOBAL hMem );
参数:hMem:全局内存对象的句柄
返回值:
非零值,指定的内存对象仍处于被锁定状态
0,函数执行出错,可以用GetLastError来获得出错信息,如果返回NO_ERROR,则表示内存对象已经解锁了
注意:    这个函数实际上是将内存对象的锁定计数器减一,如果计数器不为0,则表示执行过多个GlobalLock

函数来对这个内存对象加锁,需要对应数目的GlobalUnlock函数来解锁。如果通过GetLastError函数返回错误

码为ERROR_NOT_LOCKED,则表示未加锁或已经解锁。

示例:
// Malloc memory
hMem = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE, nSize);
// Lock memory
pMem = (BYTE *) GlobalLock(hMem);
..................
// Unlock memory
GlobalUnlock(hMem);
GlobalFree(hMem);


下载Windows Debug 工具, http://www.microsoft.com/whdc/devtools/debugging/default.mspx
安装后,使用其中的gflags.exe工具打开PageHeap,
gflags -p /enable MainD.exe /full
重新使用VS用调试方式运行,很快就找到了出错位置,因为在某个静态函数中笔误导致

在编写稳定的服务器程序时,这个工具尤为有用。

参考文献及网页地址:
1. http://www.bccn.net/Article/kfyy/cjj/jszl/200607/4172.html
2. http://www.7880.com/Info/Article-8282a500.html
3. http://www.cnblogs.com/jjzhou1988/archive/2008/11/30/1344314.html
4. http://blog.chinaunix.net/u3/101356/showart_2031203.html
5. http://www.cnblogs.com/howareyou586/archive/2008/11/06/1328353.html

The Memory Managerment of the Computer相关推荐

  1. Android系统匿名共享内存Ashmem(Anonymous Shared Memory)驱动程序源代码分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6664554 在上一文章Android系统匿名共 ...

  2. 深入理解计算机系统——第六章 The Memory Hierarchy

    深入理解计算机系统--第六章 The Memory Hierarchy 6.1 Storage Technologies 6.1.1 Random Access Memory Nonvolatile ...

  3. CPU三级缓存技术解析

    CPU三级缓存技术解析 cpu存取数据 cpu存取数据大致可以认为是下图的流程(此处图比较简单) cpu拿到需要的内存地址,之后这个地址会被mmu转换成真正的物理地址,接下来会去查接下来查L1 cac ...

  4. 适合初学者的数据结构_数据结构101:数组-初学者的直观介绍

    适合初学者的数据结构 了解您每天使用的数据结构. (Get to know the data structures that you use every day. ) Welcome! Let's S ...

  5. Java开发中的23种设计模式详解(转)

    设计模式(Design Patterns) --可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了 ...

  6. 面向人工智能的计算机体系结构

    来源:计算机研究与发展 前 言 近几年来人工智能技术的飞速发展使得其应用迅猛扩大,而传统的计算机体系结构对于面向人工智能的应用在处理速度.能耗.使用的方便性等方面有着诸多不足.随着人工智能应用的发展, ...

  7. c++封装继承多态实例

    #include <iostream> #include <string> using namespace std; class CPU {public:virtual voi ...

  8. java设计模式之九外观模式(Facade)

    外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口 ...

  9. 【设计模式】Java 23种设计模式对比总结

    一.设计模式的分类 创建型模式,共五种(1-5):工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. 结构型模式,共七种(6-12):适配器模式.装饰器模式.代理模式.外观模式.桥接模式.组 ...

最新文章

  1. QT学习:认识QMainWindow
  2. Jzoj4891 摆书
  3. 快速搭建Python+Selenium+Sublime 自动化测试环境方法
  4. 一个小小的抽奖活动测试脚本(python2.7)
  5. 乐优商城服务器部署_黑马乐优商城19天(全)+源码+配套笔记
  6. 如何在swap中获取交易对的价格
  7. Arduino -uno 核心板 之中级系列3 QAU04生日快乐歌实验
  8. html买手机的流程图,支付流程图.html
  9. 解决TypeError: conv2d() received an invalid combination of arguments
  10. React中setState的怪异行为 ——setState没有即时生效
  11. oracle显示连接超时,Oracle 12179:tns:连接超时的问题
  12. 大牛很通俗地介绍《信号与系统》
  13. txt文本的魔数到底是多少
  14. 镭速传输 Linux离线激活教程
  15. 使用 ab 对网站进行压力测试
  16. Java中String 字符串与List<String>互转
  17. 微信小程序实现锚点跳转
  18. 深度学习学习笔记-论文研读4-基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法
  19. 《肥鸟笔记--基础数据结构》一、栈
  20. 王阳明:人心本是光明之镜 奈何因私欲黯淡无光

热门文章

  1. 专访Keras之父:关于深度学习、Keras的诞生和给初学者的建议
  2. 【深度学习理论】一文看懂卷积神经网络
  3. SAP库存历史库存表更新逻辑
  4. 一文概述2017年深度学习NLP重大进展与趋势
  5. 从json到抽取关键词
  6. 有了Anaconda如何安装Pycharm以及简单使用和调试
  7. 机器学习重新构想计算的构建块
  8. 人脑启发AI设计:让神经网络统一翻译语音和文本
  9. 结构化数据不应该被人工智能忘之脑后 !
  10. 【平行驾驶】王飞跃 | 人工智能与智能汽车:在CPSS中驶向第三轴心时代